Nghiên cứu tổng hợp và ứng dụng của một số vật liệu khung kim loại hữu cơ.

140 36 0
Nghiên cứu tổng hợp và ứng dụng của một số vật liệu khung kim loại  hữu cơ.

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Nghiên cứu tổng hợp và ứng dụng của một số vật liệu khung kim loại hữu cơ.Nghiên cứu tổng hợp và ứng dụng của một số vật liệu khung kim loại hữu cơ.Nghiên cứu tổng hợp và ứng dụng của một số vật liệu khung kim loại hữu cơ.Nghiên cứu tổng hợp và ứng dụng của một số vật liệu khung kim loại hữu cơ.

ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC SƯ PHẠM ĐẶNG THỊ QUỲNH LAN NGHIÊN CỨU TỔNG HỢP VÀ ỨNG DỤNG CỦA MỘT SỐ VẬT LIỆU KHUNG KIM LOẠI-HỮU CƠ Chuyên ngành: Hóa lý thuyết hóa lý Mã số: 62.44.01.19 LUẬN ÁN TIẾN SĨ HÓA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS Vũ Anh Tuấn PGS.TS Dương Tuấn Quang HUẾ-NĂM 2015 LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu riêng tơi, số liệu kết nghiên cứu nêu luận án trung thực, đồng tác giả cho phép sử dụng chưa công bố cơng trình khác Tác giả Đặng Thị Quỳnh Lan LỜI CẢM ƠN Trước hết, xin tỏ lòng biết ơn sâu sắc đến PGS.TS Vũ Anh Tuấn PGS.TS Dương Tuấn Quang, thầy tận tình hướng dẫn, hỗ trợ giúp đỡ tơi hồn thành luận án Tôi xin chân thành cảm ơn TS Hồ Văn Thành, TS Hoàng Vinh Thăng giúp đỡ tơi suốt q trình nghiên cứu Tơi xin chân thành cảm ơn tập thể cán phịng Hóa lý Bề mặt- Viện Hóa học- Viện Hàn lâm Khoa học Công nghệ Việt Nam, quý thầy cô thuộc khoa Hóa trường Đại học Sư phạm Huế trường Đại học Khoa học giúp đỡ tơi q trình thực luận án Tôi xin chân thành cảm ơn Tỉnh ủy, UBND Tỉnh Thừa Thiên Huế, cảm ơn Ban giám hiệu trường Cao đẳng Sư phạm quan tâm tạo điều kiện thuận lợi cho thực đề tài nghiên cứu Cuối cùng, xin cảm ơn gia đình, bạn bè, đồng nghiệp động viên giúp đỡ tơi hồn thành luận án Đặng Thị Quỳnh Lan MỤC LỤC Trang Trang phụ bìa………………………………………………………………… … i Lời cam đoan………………………………………………………………………ii Lời cảm ơn……………………………………………………………………… iii Mục lục………………………………………………………………………….…iv Danh mục chữ viết tắt……………………………………………………… vi Danh mục bảng………………………………………………………………vii Danh mục hình vẽ……………………………………………………………viii DANH MỤC CÁC BÀI BÁO LIÊN QUAN ĐẾN LUẬN ÁN TÀI LIỆU THAM KHẢO PHỤ LỤC DANH MỤC CÁC CHỮ VIẾT TẮT TRONG LUẬN ÁN AAS Phổ hấp phụ nguyên tử (Atomic Adsorption Spectroscopy) BET Brunauer-Emmett-Teller COD Nhu cầu oxi hóa học (Chemical Oxygen Demand) CUS Số phối trí chưa bão hịa (Coordinated Unsaturated Site) DTA Phân tích nhiệt vi sai (Differental Thermal Analysis) FT-IR Phổ hồng ngoại (Fourier Transform Infrared) EDX Tán xạ tia X (Energy Dispersive X-ray) HKUST-1 HongKong University of Science and Technology- HPHH Hấp Phụ Hóa Học HPVL Hấp Phụ Vật Lý IUPAC International Union of Pure and Applied Chemistry MCM Mobil Composition of Matter MIL Material Institute Lavoisier MOFs Metal Organic Frameworks SBA Santa Barbara Amorphous SBUs Các đơn vị cấu trúc thứ cấp (Secondary Building Units) SEM Hiển vi điện tử quét (Scanning Electron Microscopy) TEM Hiển vi điện tử truyền qua (Transmission Electron Microscopy) TGA Phân tích nhiệt trọng (Thermogravimetric Analysis) TMAOH Tetramethyl Ammonium Hydroxide UV-Vis Phổ tử ngoại-khả kiến (Ultra Violet – Visible) VOC Hợp chất hữu dễ bay (Volatile Organic Compound) XPS Phổ quang điện tử tia X (X-ray Photoelectron Spectroscopy) XRD Nhiễu xạ tia X (X-Ray Diffraction) DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH MỞ ĐẦU Các ngành công nghiệp phát triển tác động tích cực đến mặt đời sống xã hội Tuy nhiên, kèm với vấn đề ô nhiễm môi trường Môi trường bị ô nhiễm phần lớn nhà máy lọc dầu, khu công nghiệp sản xuất thuốc trừ sâu, dệt, nhuộm, dược phẩm gây nên Các nguồn nước gần khu công nghiệp thường bị ô nhiễm chất hữu độc hại, khó phân huỷ phenol dẫn xuất phenol, thuốc nhuộm; nồng độ ion kim loại nặng Cd, Pb, As, Hg nước q lớn Vì vậy, bảo vệ mơi trường xử lý môi trường bị ô nhiễm vấn đề cấp thiết đặc biệt quan trọng nhà khoa học giới Việt Nam Trong năm qua, xu hướng nghiên cứu phát triển vật liệu tiên tiến có kích thước nano diện tích bề mặt riêng lớn, làm chất hấp phụ xúc tác chọn lọc cho số q trình xử lý chất gây nhiễm mơi trường có ý nghĩa quan trọng mặt khoa học thực tiễn ứng dụng Vật liệu mao quản có cấu trúc tinh thể, chứa hệ mao quản đồng đều, có khả biến tính, nên đánh giá loại xúc tác có hoạt tính, độ chọn lọc cao ứng dụng nhiều thực tiễn [7] Các vật liệu mao quản trung bình trật tự MCM-41, MCM-48, SBA-15, SBA-16, tạo năm cuối kỷ XX có giá trị định mặt khoa học thương mại Tuy nhiên, nhược điểm loại vật liệu hoạt tính xúc tác, hấp phụ tương đối thấp, diện tích bề mặt thấp, chủ yếu chứa Si Al Để khắc phục nhược điểm đó, hướng nhà khoa học giới tập trung nghiên cứu tổng hợp vật liệu khung kim loại - hữu (Metal-Organic-Framework, kí hiệu: MOFs) Vật liệu khung kim loại - hữu (MOFs) mạng không gian đa chiều, tạo nên từ kim loại oxit kim loại kết nối phối tử axit hữu đa chức thành khung mạng, để lại khoảng trống lớn bên trong, thông ngồi cửa sổ có kích thước nano đặn với diện tích bề mặt lên tới 6000 m 2/g [28], [35], [54], [60] Khác với vật liệu rắn xốp khác zeolit, than hoạt tính, với cấu trúc ổn định, chất tinh thể, độ xốp cao diện tích bề mặt riêng lớn, họ vật liệu MOFs thu hút quan tâm nhà khoa học giới nước khả hấp phụ chọn lọc vượt trội chúng Một số nghiên cứu công bố gần cho thấy, cấu trúc lỗ xốp tự nhiên MOFs nên chúng ứng dụng làm chất xúc tác số phản ứng hóa học liên quan đến công nghệ sản xuất vật liệu dược phẩm [37], [62] Ngoài ra, tùy thuộc vào cấu trúc khung kim loại phối tử hữu (organic ligand) mà khả ứng dụng MOFs khác Đặc biệt khả lưu trữ lượng lớn H 2, CO2,và ứng dụng chúng cho việc làm khí [61], [79], [97] Một số loại vật liệu MOFs nhà khoa học giới ý khả ứng dụng tính chất đặc trưng chúng là: MIL-53(Al), MIL-53(Cr), MIL53(Fe), MIL-101, MIL-88(A,B,C,D), MIL-100, MOF-5, MOF-77 Ngoài khả lưu trữ lớn khí CO2 cơng bố, MIL-53(Al), MIL-53(Cr), MIL53(Fe), MIL-101, MIL-88 (A,B,C,D) biết đến chất xúc tác có hoạt tính cao so với than hoạt tính [17] Với kích thước mao quản lớn giúp cho khả khuếch tán di chuyển phân tử chất vào mao quản tương đối dễ dàng, nên vật liệu có tiềm ứng dụng lớn lĩnh vực xúc tác hấp phụ Tuy nhiên, nghiên cứu trước hầu hết tập trung tổng hợp cấu trúc MOFs mới, nghiên cứu tính chất hấp phụ, phân tách tàng trữ khí (CO2, H2) vật liệu MOFs, số lượng công bố khoa học tổng hợp ứng dụng làm xúc tác, hấp phụ MOFs cịn Ở Việt Nam, việc nghiên cứu vật liệu khung kim loại-hữu cịn mẻ, có số sở nghiên cứu khoa học như: Đại học Bách khoa TP.HCM, Viện Hóa học, Viện Cơng nghệ Hóa học, Viện Khoa học vật liệu thuộc Viện Hàn lâm Khoa học Công nghệ VN, Trường Đại học Khoa học Huế tiến hành nghiên cứu, tổng hợp vật liệu MOFs, nghiên cứu khả lưu trữ, tách chất (H2/CH4, CH4/CO2, ) tính chất xúc tác MOFs phản ứng Tuy nhiên, khả ứng dụng vật liệu MOFs xúc tác hấp phụ cịn quan tâm nghiên cứu, đặc biệt lĩnh vực làm chất hấp phụ hiệu cao việc loại bỏ chất độc hại asen, kim loại nặng, chất màu, thuốc bảo vệ thực vật Để nghiên cứu cách có hệ thống q trình tổng hợp khả hấp phụ đặc biệt vật liệu MOFs, chọn đề tài “Nghiên cứu tổng hợp ứng dụng số vật liệu khung kim loại - hữu cơ” Nhiệm vụ luận án: - Nghiên cứu yếu tố ảnh hưởng tìm điều kiện thích hợp để tổng hợp vật liệu MIL-53(Fe), MIL-101, MIL-88B có độ tinh thể cao - Sử dụng phương pháp hoá lý đại như: XRD, XPS, EDX, FT-IR, UV- Vis, TGA-DTA, BET, SEM, TEM, AAS…để nghiên cứu tính chất đặc trưng vật liệu - Nghiên cứu tổng hợp đồng hình Cr Fe vật liệu Cr-MIL-101 - Nghiên cứu đánh giá khả xúc tác quang hóa hấp phụ asen vật liệu tổng hợp Những đóng góp luận án: - Đã thành cơng việc đồng hình Cr Fe cấu trúc Cr-MIL- 101 phương pháp tổng hợp trực tiếp (phương pháp thuỷ nhiệt) Vật liệu có hoạt tính xúc tác quang hố cao phân huỷ thuốc nhuộm RR195 Lần đầu tiên, kết cơng bố tạp chí RSC Adv., Vol 4, pp 41185-41194 - Đã tổng hợp MIL-53( Fe) MIL- 88B(Fe) phương pháp nhiệt dung môi không sử dụng HF Cả hai vật liệu có hoạt tính xúc tác quang hố cao phản ứng phân huỷ thuốc nhuộm hoạt tính RR195 Các kết cơng bố tạp chí RSC Adv., Vol 5, pp 5261–5268 - MIL-53(Fe) MIL-88B(Fe) có khả hấp phụ Asen cao (Q max = 20-25 mg/g Asen V) Kết chứng minh khả loại bỏ Asen nước vật liệu – vật liệu khung kim loại hữu có chứa Fe - Đã nghiên cứu mơ hình hấp phụ đẳng nhiệt động học hấp phụ MIL-53(Fe) MIL-88B(Fe) khẳng định trình hấp phụ As(V) phù hợp mơ hình hấp phụ đẳng nhiệt Langmuir tuân theo phương trình động học biểu kiến bậc Các kết cơng bố tạp chí RSC Adv., Vol 5, pp 5261–5268 Luận án trình bày theo mục sau: Phần mở đầu Chương Tổng quan tài liệu Chương Mục tiêu, nội dung, phương pháp nghiên cứu thực nghiệm Chương Kết quả thảo luận các vấn đề sau: − Nghiên cứu yếu tố ảnh hưởng đến trình tổng hợp vật liệu Cr-MIL-101 + Nghiên cứu ảnh hưởng tỷ lệ H 2BDC/Cr(NO3)3 trình tổng hợp vật liệu + Nghiên cứu ảnh hưởng tỷ lệ HF/Cr(NO3)3 trình tổng vật liệu + Nghiên cứu ảnh hưởng thời gian kết tinh trình tổng hợp vật liệu − Nghiên cứu yếu tố ảnh hưởng đến trình tổng hợp vật liệu MIL-53(Fe) + Nghiên cứu ảnh hưởng tỷ lệ H 2BDC/FeCl3 trình tổng hợp vật liệu 10 DANH MỤC CÁC BÀI BÁO LIÊN QUAN ĐẾN LUẬN ÁN I TẠP CHÍ QUỐC TẾ Tuan A Vu, Giang H Le, Canh D Dao, Lan Q Dang, Kien T Nguyen, Phuong T Dang, Hoa T K Tran, Quang T Duong, Tuyen V Nguyen and Gun D Lee (2014), “Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous photo-Fenton catalyst for reactive dyes degradation”, RSC Adv., vol 4, pp 41185-41194 Tuan A Vu, Giang H Le, Canh D Dao, Lan Q Dang, Kien T Nguyen, Quang K Nguyen, Phuong T Dang, Hoa T K Tran, Quang T Duong, Tuyen V Nguyena and Gun D Leed (2015), “Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent, RSC Adv., 5, pp 5261–5268 Tuan A Vu, Giang H Le, Canh D Dao, Kien T Nguyen, Lan Q Dang, Quang K Nguyen, Phuong T Dang, Hoa T K Tran, Loi D Vu and Gun D Lee, “Efficient As(V) removal from aqueous solution using novel FeMIL-88B as highly selective adsorbent”, Environmental Science & Technology (đang gửi đăng) II TẠP CHÍ TRONG NƯỚC Đặng Thị Quỳnh Lan, Trần Thị Hương, Hồ Văn Thành, Dương Tuấn Quang, Vũ Anh Tuấn (2011), “Tổng hợp đặc trưng vật liệu MIL-101”, Tạp chí Hóa học, Tập 49 (5AB), pp 831-834 Dang Thi Quynh Lan, Nguyen Trung Kien, Ho Van Thanh, Duong Tuan Quang, Vu Anh Tuan (2013), “Synthesis and characterization of Fe-Cr-MIL101 and Cr-MIL-101”, Vietnam journal of chemistry, vol 51(5A), pp 106109 Đặng Thị Quỳnh Lan, Lê Thị Quỳnh Nhi, Hồ Văn Thành, Dương Tuấn Quang, Vũ Anh Tuấn (2013), “Tổng hợp đặc trưng vật liệu MIL-53(Fe)”, Tạp chí Hóa học, Tập 51(6), pp 765-769 III HỘI NGHỊ Dang Thi Quynh Lan, Ho Van Thanh, Duong Tuan Quang, Vu Anh Tuan (2013), “Synthesis of mesoporous Cr-MIL-101 and Fe-Cr-MIL-101 used as highly selective adsorbents for arsenic removal”, Proceedings of IWNA 2013, 14-16 November 2013, Vung tau, Vietnam, pp.268-271 126 TÀI LIỆU THAM KHẢO TIẾNG VIỆT Nguyễn Hữu Đĩnh, Trần Thị Đà (1999), Ứng dụng số phương pháp phổ nghiên cứu cấu trúc phân tử, NXB Giáo Dục, Hà Nội Phạm Luận (2006), Phương pháp phân tích phổ nguyên tử, NXB Đại Học Quốc Gia Hà Nội Phạm Ngọc Nguyên (2004), Kỹ thuật phân tích Vật Lý, NXB Khoa Học Kỹ Thuật, Hà Nội, tr 154 – 206 Trần Văn Nhân, Nguyễn Thạc Sửu, Nguyễn Văn Tuế (2007), Hoá lý, NXB Giáo dục Nguyễn Hữu Phú (2003), Hoá lý hoá keo, NXB Khoa Học Kỹ Thuật, Hà Nội Nguyễn Hữu Phú (1998), Giáo trình hấp phụ xúc tác bề mặt vật liệu vô mao quản, NXB Khoa học Kỹ thuật, Hà Nội Hồ Văn Thành (2009), Nghiên cứu tổng hợp ứng dụng vật liệu rây phân tử để hấp phụ chất hữu độc hại, Luận án Tiến Sĩ Hóa học, Viện Hóa học-Viện Hàn Lâm Khoa học Cơng nghệ Việt Nam Nguyễn Đình Triệu (2003), Các phương pháp vật lý ứng dụng hóa học, NXB Đại học Quốc gia Hà Nội TIẾNG ANH Alaerts L., Se´guin E., Poelman H., Thibault-Starzyk F., Jacobs P A., De Vos D E (2006), “Probing the Lewis acidity and catalytic activity of the metal– organic-framework [Cu3(BTC)2] (BTC=Benzene-1,3,5-tricarboxylate)”, Chemical Engineering Journal, 12, p 7353 -7363 10 Alexey L N., Konstantin A K., Danil N D., Galina A B (2010), “Removal of nitrogen compounds from liquid hydrocarbon streams by selective sorption on metal-organic framework MIL-101”, Mendeleev Communications, 20, pp 57-58 127 11 Alexis S M., Anibal J R.C., Franck M., Richard I W (2013), “Interaction of methanol with the flexible metal-organic framework MIL-53(Fe) observed by inelastic neutron scatterin”, Chemical Physics, 427, pp 30–37 12 Alhamami M., Doan H and Cheng C H (2014), “A review on breathing behaviors of metal–organic-frameworks (MOFs) for gas adsorption”, Materials, 7, pp 3198–3250 13 Alina M B., Carol S K L., Hongli L., Yingwei L., Carolina V., Rafael L (2013), “Iron oxide functionalised MIL-101 materials in aqueous phase selective oxidations”, Applied Catalysis A: General, 455, pp 261–266 14 Andrea C S., Adrien P C., Antek G W.F., Michael O K and Omar M Y (2006), “A metal–organic framework with a hierarchical system of pores and tetrahedral building blocks”, Angewandte Chemie-International Edition, 45, pp.2528 –2533 15 Anne B S C., Franỗois-X C., Pablo S C., Jorge G., Freek K., Alain H F., Joeri F.M D (2011), “Thermodynamic analysis of the breathing of aminofunctionalized MIL-53(Al) upon CO2 adsorption”, Microporous and Mesoporous Materials, Vol 140, pp 108–113 16 Antek G W., A.J.M., Omar M Y (2006), “Exceptional H2 saturation uptake in microporous metal-organic frameworks, Journal of the American Chemical Society, 128, pp 3494-3495 17 Antje H., Kristina G., Ralph K., Stefan K (2008), “Catalytic properties of MIL-101”, Chemical Communications, 10, pp 4192–4194 18 Arup K S (2002), Environmental separation of heavy metals: Engineering Processes, Lewis publishers 19 Banerjee K., Amy G L., Prevost M., Nour S., Jekel M Gallagher and P M (2008), “Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH)”, Water Research., 42, pp 3371-3378 20 Bang J Z., Xin Y Y., Yong J, Fu M P., Bai S., Mei Y Z., Tao L, Jin H L and Xing J H (2012), “Iron and 1,3,5-benzenetricarboxylic metal–organic coordination polymers prepared by solvothermal method and their 128 application in efficient As(V) removal from aqueous solutions”, Journal of Physical Chemitry C, 116 (15), pp 8601–8607 21 Bing L., Yongchun D., Zhizhong D., Yiming X., and Chi Z (2013), “Renovation and reuse of reactive dyeing effluent by a novel heterogeneous Fenton system based on metal modified PTFE fibrous catalyst/H 2O2”, International Journal of Photoenergy, Article ID 169493, 10 pages 22 Bourrelly S., Llewellyn P L., Serre C., Millange F., Loiseau T., Férey G (2005), “How hydration drastically improves adsorption selectivity for CO2”, Journal of the American Chemical Society, 127, pp 13519-13521 23 Camilla Catharina Scherb (2009), Controlling the surface growth of metalorganic frameworks, Dissertation for the PhD degree from the Faculty of Chemistry and Pharmacy of the Ludwig-Maximilians-University of Munich 24 Camilla S., Alexander S., and Thomas B (2008), “Directing the structure of metal–organic frameworks by oriented surface growth on an organic monolayer”, Angewandte Chemie-International Edition, 47, 5777 –5779 25 Carl K B and Mircea D (2013), “Ti 3+, V2+/3+, Cr2+/3+, Mn2+, and Fe2+ substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5”, Journal of the American Chemical Society, 135, pp 12886−12891 26 Carlos M G., André D S B., Susana R., Isabel C M S S., Baltazar C., Luís C S and Salete S B (2014), “Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr)”, Catalysis Science & Technology, 4, pp 1416-1425 27 Chanda D., Tanay K., Bishnu P B., Arijit M., and Rahul B (2014), “Crystalline metal-organic frameworks (MOFs): synthesis, structure and function”, Acta Crystallographica, B70, pp 3-10 28 Chang J.S., Férey G., Hong D.Y., Hwang Y.K., Serre C (2009), “Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites” Advanced Functional Materials, 19, pp 1537–1552 129 29 Chen C., Meng Z., Qingxin G., Wei L (2012), “Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101(Cr)”, Chemical Engineering Journal, 183, pp 60–67 30 Chen Y F., Babarao R., Sandler S I., Jiang J W (2010), “Metal – Organic Framework MIL-101 for adsorption and effect of terminal water molecules simulation”, Langmuir, 26 (11), pp 8743 – 8750 31 Christian S., Sandrine B., Alexandre V., Naseem A R, Guillaume M., Philip L L, Marco D., Yaroslav F., Olivier L., Paul B., Gérard F (2007), “An explanation for the very large breathing effect of a metal–organic framework during CO2 adsorption”, Advanced Functional Materials, 19, pp 2246–2251 32 Christoph J and Jana K.V (2010), “MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs)”, New Journal of Chemistry, 34, pp 2366–2388 33 Demessence A., Patricia H., Christian S., Cedric B., David G.,Clement S., and Férey G (2009), “Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr)”, The Royal Society of Chemistry, 10, pp 7149 – 7151 34 Do Xuan D., Hoang Vinh T., Serge K (2011), “MIL-53(Al) mesostructured metal-organic frameworks”, Microporous and Mesoporous Materials, 141, pp 135–139 35 Do-Young H., Young K H., Christian S., Gérard F and Jong-San C (2009), “Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis”, Advanced Functional Materials, 19,(10), pp 1537–1552 36 Eddaoudi M (2002), “Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage”, Science, 295, pp.469-472 130 37 Enamul H., Ji E L., In T J., Young K H., Jong-San C., Jonggeon J., Sung H J (2010), “Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium benzenedicarboxylates”, Journal of Hazardous Materials, 181, pp 535–542 38 Fabian C., Jie S., Ana E P.P., Wei W., Yifeng Y., Louise S., and Xiaodong Z (2013), “Framework isomerism in vanadium metal−organic frameworks: MIL-88B(V) and MIL-101(V)”, Crystal Growth & Design, 13, pp 5036−5044 39 Farha O K., Malliakas C D., Kanatzidis M G., & Hupp J T (2010), “Control over catenation in metal-organic frameworks via rational design of the organic building block”, Journal of the American Chemical Society, 132, pp.950–952 40 Férey G., Latroche M., Serre C., Millange F., Loiseau T., Percheron-Guégan A (2003), “Hydrogen adsorption in the nanoporous metal- benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M = Al3+, Cr3+), MIL-53”, Chemical Communications, pp 2976-2977 41 Férey G., Mellot-D.C., Serre C., Millange F., Dutour J., Surblé S., Margiolaki I (2005), “Chromium terephthalate–based solid with unusually large pore volumes and surface area”, Science, 309, pp 20402042 42 Finsy V, Ma L., Alaert L., De Vos D E., Baron G.V., Denayer J.F.M (2009), “Separation of CO2/CH4 mixtures with the MIL-53(Al) metal– organic framework”, Microporous and Mesoporous Materials, 120, pp 221–227 43 Franck M., Nathalie G., Manuela E M., Gérard F., Abel C.S., Kathryn M G., and Richard I W (2010), “Selective sorption of organic molecules by the flexible porous hybrid metal-organic framework MIL-53(Fe) controlled by various host-guest interactions”, Chemistry of Materials, 22, pp 4237– 4245 131 44 G de Combarieu, M Morcrette, F Millange, N Guillou, J Cabana, C P Grey, I Margiolaki, G Férey, and J M Tarascon (2009), “Influence of the benzoquinone sorption on the Sstructure and electrochemical performance of the MIL-53(Fe) hybrid porous material in a Lithium-Ion battery”, Chemistry of Materials, 21, pp 1602–1611 45 Gu Z., Fang J and Deng B (2005), “Preparation and evaluation of GAC- based iron-containing adsorbents for arsenic removal”, Environmental Science and Technology, 39, pp 3833–3843 46 Guodong S., Yimin L., Xin Y., Xuemei R., Shitong Y., Jun H and Xiangke W (2012), “Efficient removal of arsenate by versatile magnetic graphene oxide composites”, The Royal Society of Chemistry Advances, 2, pp.12400– 12407 47 Horcajada P (2010), “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging”, Nature Materials 9, pp.172-178 48 Horcajada P., Serre C., Vallet-Regi M., Sebban M., Taulelle F., Férey G (2006), “Metal-organic frameworks as efficient materials for drug delivery”, Angewandte Chemie-International Edition, 45, pp 5974-5978 49 Horcajada P., Surble´ S., Serre C., Hong D Y., Seo Y K., Chang J S., Grenèche J M., Margiolaki I., Férey G (2007), “Synthesis and catalytic properties of MIL-100(Fe) an iron(III) carboxylate with large pores”, Chemical Communications, 27, pp 2820-2822 50 Hwang Y K., Hong D Y., Chang J S., Seo H., Yoon M., Kim J., Jhung S H., Serre C., Férey G (2009), “Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101”, Applied Catalysis A: General, 358, pp 249-253 51 Jana J.A., Jesús F.S., Ignacio L., Pablo S.C., Emmanuel S., Vera P S., Emilio P., Francesc X L.X., Freek K., Jorge G (2013), “The oxamate route, a versatile post-functionalization for metal incorporation in MIL132 101(Cr): Catalytic applications of Cu, Pd, and Au”, Journal of Catalysis, 307, pp 295–304 52 Jeff G., Hossein K., Sohrab R (2012), “Rapid and efficient crystallization of MIL-53(Fe) by ultrasound and microwave irradiation”, Microporous and Mesoporous Materials, 162, pp 36 -43 53 Jeongyong L (2007), Synthesis and gas sorption study of microporous metal organic frameworks for hydrogen and methane storage, PhD thesis, The State University of New Jersey 54 Jesse L C R., Omar M Y (2005), “Strategies for hydrogen storage in metal- organic frameworks”, Angewandte Chemie-International Edition, 44, pp 4670-4679 55 Jia J., Fujian X., Zhou L., Xiandeng H and Michael J S (2013), “Metal– organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg+”, Chemical Communications, 49, pp 4670-4672 56 Jiangfeng Y., Jinping L., Jinxiang D., Qiang Z (2009), “Synthesis of metal– organic framework MIL-101 in TMAOH-Cr(NO 3)3-H2BDC-H2O and its hydrogen-storage behaviour”, Microporous and Mesoporous Materials, 130, pp 174–179 57 Joshi U D., Joshi P N., Tamhankar S S., Joshi V V., Shiralkar V P (2002), “Effect of nonframework cations and crystallinity on the basicity of NaX zeolites”, Applied catalysis, 235, p.135 58 Kathryn M L T P., Joseph D R., Zhigang X., Sylvie T., and Wenbin L (2009), “Postsynthetic modifications of Iron-carboxylate nanoscale metalorganic frameworks for imaging and drug delivery”, Journal of the American Chemical Society, 131, pp 14261–14263 59 Kitagawa S., Kitaura R., Noro S I (2004), “Functional porous coordination polymers”, Angewandte Chemie-International Edition, 43, pp 2334-2375 60 Koh K., Wong-Foy A G & Matzger A J (2009), “A porous coordination copolymer with over 5000 m2/g BET surface area”, Journal of the 133 American Chemical Society, 131, pp.4184-4185 61 Latroche M., Surblé S., Serre C., Mellot-Darznieks C., Llewellyn P L., Lee J H., Chang J S., Jhung S H., Férey G (2006), “Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101”, Angewandte Chemie-International Edition, 118, pp 8407-8411 62 Lebedev O I., Millange F., Serre C., Van Tendeloo G., and Férey G (2005), “First direct imaging of giant pores of the metal−organic framework MIL-101, Chemistry of Materials, 17 (26), pp 6525–6527 63 Leonard R MacGillivray, Metal-organic frameworks: Design and application, John Wiley & Sons, Inc., Hoboken, New Jersey, Canada 64 Li J.R., Kuppler R.J., Zhou H.C (2009), “Selective gas adsorption and separation in metal–organic frameworks”, Chemical Society Reviews, 38, pp 1477-1504 65 Liu J., Chen L., Cui H., Zhang J., Zhang L., and Su C.-Y (2014), “Applications of metal–organic frameworks in heterogeneous supramolecular catalysis”, Chemical Society Reviews, 43, pp 6011-6062 66 Llewellyn P L., Bourrelly S., Serre C., Vimont A., Daturi M., Hamon L., De Weireld G., Chang J S., Hong D Y., Hwang Y K., Jhung S H., Férey G (2008), “High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101”, Langmuir, 24, pp 7245-7250 67 Llewellyn P L., Horcajada P., Maurin G., Devic T., Rosenbach N., Bourrelly S., Serre C., Vincent D., Loera-Serna S., Filinchuk Y., and Férey G (2009), “Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe)”, Journal of the American Chemical Society, 131, pp.13002–13008 68 Loiseau T., Serre C., Huguenard C., Fink G., Taulelle F., Henry M., Bataille T., Ferey G (2004), “A Rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration”, Chemical Engineering Journal, 10 (6), pp 1373–1382 134 69 Lorena P., Beatriz S., Daniel J., Víctor S., Carlos T., and Joaquín C (2013), “Accelerating the controlled synthesis of metal−organic frameworks by a microfluidic approach: A nanoliter continuous reactor”, ACS Applied Materials & Interfaces, 5, pp 9405−9410 70 Lunhong A., Caihong Z., Lili L., Jing J (2014), “Iron terephthalate metal– organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation”, Applied Catalysis B: Environmental 148–149, pp 191–200 71 Lunhong A., Lili L., Caihong Z., Jian F., and Jing J (2013), “MIL-53(Fe): A metal–organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing”, Chemical Engineering Journal, 19, pp.15105 – 15108 72 Maksimchuk N.V., Timofeeva M.N., Melgunov M.S., Shmakov A.N., Chesalov Yu.A., Dybtsev D.N., Fedin V.P., Kholdeeva O.A (2008), “Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates”, Journal of Catalysis, 257, pp 315–323 73 McKinlay A C., Eubank J F., Wuttke S., Xiao B., Wheatley P S., Bazin P., Lavalley J.-C., Daturi M., Vimont A., De Weireld G., Horcajada P., Serre C., and Morris R E (2013), “Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal−organic frameworks”, Chemistry of Materials, 25, 1592−1599 74 Michael O’Keeffe (2006), “Tetrahedral frameworks TX2 with T–X–T angle = 1800 Rationalization of the structures of MOF-500 and of MIL-100 and MIL-101”, Materials Research Bulletin, 41, pp 911–915 75 Millange F., Férey G., Morcrette M., Serre C., Doub.et M-L., Grenèche JM., Tarasconb M (2007), “Towards the reactivity of MIL-53 or FeIII(OH)0.8F0.2[O2C-C6H4-CO2] versus lithium”, from zeolites to porous MOF Materials – the 40th Anniversary of International Zeolite Conference, pp 2037-2041 135 76 Mingyan M., Angélique B., Irene W., Noura S A.H., Roland A F and Nils M.N (2013), “Iron-based metal−organic frameworks MIL-88B and NH2-MIL-88B: high quality microwave synthesis and solvent-Induced lattice “Breathing””, Crystal Growth & Design, 13, pp 2286−2291 77 Minh Thuy H N., Quoc Thiet N (2014), “Efficient refinement of a metal– organic framework MIL-53(Fe) by UV–vis irradiation in aqueous hydrogen peroxide solution”, Journal of Photochemistry and Photobiology A: Chemistry, 288, pp 55–59 78 Minh-Hao P., Gia-Thanh V., Anh-Tuan V., and Trong-On D (2011), “Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework Nanocrystals”, Langmuir, 27, pp 15261–15267 79 Müller U., Schubert F., Teich F., Pütter H., Schierle-Arndt K., Pastré J (2006), “Metal-organic frameworks-prospective industrial applications”, Journal of Materials Chemistry, 16, pp 626-636 80 Naseem A R., Thuy Khuong Trung, Lorna S., Farid N., Thomas D., Patricia H., Emmanuel M., Olivier D., Christian S., and Philippe (2013), “Impact of the flexible character of MIL-88 Iron(III) dicarboxylates on the adsorption of n-alkanes”, Chemistry of Materials, 25, pp 479−488 81 Nathalie G.I., Richard I W and Franck M (2010), “MIL-53(Fe): a good example to illustrate the power of powder diffraction in the field of MOFs”, Zeitschrift für Kristallographie, 225, pp 552–556 82 Nazmul A K., Zubair H., Sung H J (2013), “Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review”, Journal of Hazardous Materials, 244–245, pp 444–456 83 Nazmul A K., Jong W J., Sung H J (2010), “Effect of water concentration and acidity on the synthesis of porous chromium benzenedicarboxylates”, European Journal of Inorganic Chemistry, 10, pp 1043–1048 84 Nazmul A K., Sung H J (2010), “Phase-transition and phase-selective synthesis of porous chromium-benzenedicarboxylates”, European Journal of Inorganic Chemistry, 10, pp 1860-1865 136 85 Nazmul A K., Sung H J (2013), “Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel”, Journal of Hazardous Materials, 260, pp 1050–1056 86 Ni Z Masel R I (2006), “Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis”, Journal of the American Chemical Society, 128, pp 12394-12395 87 Olga V Z., Konstantin A K., Yurii A C., Maxim S M., Vladimir I Z.i, Vasily V K., Alexander B S., Oxana A K and Vladimir P F (2011), “Iron tetrasulfophthalocyanine immobilized on metal organic framework MIL-101: synthesis, characterization and catalytic properties”, Dalton Transactions, 40, pp 1441-1444 88 Patricia H., Fabrice S., Stefan W., Thomas D., Daniela H., Guillaume M., Alexandre V., Marco D.i, Olivier D., Emmanuel M., Norbert S., Yaroslav F., Dmitry P., Christian R.l, Gerard F., and Christian S (2011), “How linker’s modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88”, Journal of the American Chemical Society, 133, pp 17839–17847 89 Patricia H., Christian S., Guillaume M., Naseem A R., Francisco B., Marıa V.R., Muriel S., Francis T., Gerard F (2008), “Flexible porous metal-organic frameworks for a controlled drug delivery”, Journal of the American Chemical Society, 130, pp 6774–6780 90 Petra Á S., Pablo S C., Iulian D., Jorge G., Hans G and Bernard D (2013), “Post-synthetic cation exchange in the robust metal–organic framework MIL-101(Cr)”, Crystal Engineering Communications, 15, pp 1017510178 91 Pichon A., Lazuen G A., James S L (2006), “Solvent-free synthesis of a microporous metal-organic framework”, Crystal Engineering Communications, 8, pp 211-214 92 Qiu L G (2008), “Hierarchically micro-and mesoporous metal-organic 137 frameworks with tunable porosity”, Angewandte Chemie-International Edition, 7, pp 9487-9491 93 Qiuqiang C., Pingxiao W., Zhi D., Nengwu Z., Ping L., Jinhua W., Xiangde W (2010), “Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant orange X-GN”, Separation and Purification Technology, 71 (3), pp 315–323 94 Racha E O., Abel C S., Nathalie G., Richard I W., Frederik V., Michaël M., Dirk de V., and Franck M (2012), “Liquid-phase adsorption and separation of xylene isomers by the flexible porous metal−organic framework MIL-53(Fe)”, Chemistry of Materials, 24, pp 2781−2791 95 Rahmani A R., Zarrabi M., Samarghandi M R., Afkhami A., Ghaffari H R (2010), “Degradation of azo dye reactive Black and acid Orange by Fenton-like mechanism”, Iranian Journal of Chemical Engineering, 7, (1) , IACHE 96 Sabine A., Gunter H., Jaroslaw K., Itamar M M., Christoph K and Ralf M (2009), “Metal-organic frameworks for sensing applications in the gas phase”, Sensors, 9, pp 1574-1589 97 Serre C., Millange F., Thouvenot C., Nogueốs M., Marsolier G., Loueăr D., Fe´rey G nanoporous (2002), “Very chromium large (III) - breathing based effect solids: in the MIL-53 first or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy”, Journal of the American Chemical Society, 124, pp 13519–13526 98 Shekhah O., Wang H., Zacher D., Fischer R A., Wöll C (2009), “Growth mechanism of metal–organic frameworks: insights into the nucleation by employing a step-by-step route”, Angewandte Chemie-International Edition, 48, pp.5038 –5041 99 Suzy S., Christian S., Caroline M D., Franck M and Gerard F (2006), “A new isoreticular class of metal-organic-frameworks with the MIL-88 topology”, Chemical Communications, pp 284–286 138 100 Tabatha R W., Wang X., Lumei L., Allan J J (2005), “Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions”, Solid State Sciences, 7, pp 1096–1103 101 Thuy K T., Naseem A R., Philippe T., Nathalie T., Christian S., Franỗois F., Gộrard F (2010), Adsorption of C5–C9 hydrocarbons in microporous MOFs MIL-100(Cr) and MIL-101(Cr): A manometric study”, Microporous and Mesoporous Materials, 134, pp.134–140 102 Tranchemontagne D.J., Mendoza C J L., O’Keeffe M., Yaghi O.M (2009), “Secondary building units, nets and bonding in the chemistry of metal– organic frameworks”, Chemical Society Reviews, 38, pp 1257-1283 103 Tuba S., Yasemin K., Selcan K (2010), “Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite”, Journal of Hazardous Materials, 184, pp.164–169 104 Velivckovic Z., Vukovic G D., Marinkovic A D., Moldovan M S., Peric-Grujic A A., Uskokovic P S and Ristic M D (2012), “Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes”, Chemical Engineering Journal, 181, pp 174–181 105 Xiao Y C., Hoang V T., Denis R., and Serge K (2012), “Amine-functionalized MIL-53 metal−organic framework in polyimide mixed matrix membranes for CO2/CH4 separation”, Industrial & Engineering Chemistry Research, 51, pp 6895−6906 106 Xiaojun Guo (2015), “Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst”, Journal of the Taiwan Institute of Chemical Engineers, 000, pp 1–11 107 Yaghi O M., O'Keeffe M., Ockwig N W., Chae H K., Eddaoudi M., Kim J (2003), “Reticular synthesis and the design of new materials”, Nature, 423, pp 705-714 108 Yan W., Hanjin L., and Hou W (2014), “Synthesis of iron(III)-based metal–organic framework/graphene oxide composites with increased 139 photocatalytic performance for dye degradation”, The Royal Society of Chemistry Advances, 4, pp 40435–40438 109 Yan-Xi T., Fei W., Yao K., and Jian Z (2011), “Dynamic microporous indium(III)-4,40-oxybis(benzoate) framework with high selectivity for the adsorption of CO2 over N2”, Chemical Communications, 47, pp 770–772 110 Yao J T., Chen F Y., Chien K C., Shan L W., Ting S C (2012), “Arsenate adsorption from water using a novel fabricated copper ferrite”, Chemical Engineering Journal, 198-199, pp.440–448 111 Ye Y W., Cheng X., Xiu P Y (2014), “Fabrication of metal–organic framework MIL-88B films on stainlesssteel fibers for solid-phase microextraction of polychlorinatedbiphenyls”, Journal of Chromatography A, 1334, pp 1–8 112 Ying Y L., Ju L Z., Jian Z., Fen X., Li X S (2007), “Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect”, International Journal of Hydrogen Energy, 32, pp 4005 – 4010 113 Young K H., Do Y H., Jong S Ch., Hyejin S., Minji Y., Jinheung K., Sung H J., Christian S., Gérard F (2009), “Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101”, Applied Catalysis A: General, 358, pp 249–253 114 Zhao S., Feng C., Huang X., Li B., Niu J and Shen Z (2012), “Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite”, Journal of Hazardous Materials, 203–204, pp 317–325 115 Zhi-Yuan G Xiu-Ping Y (2010), “Metal–organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and Ethylbenzene”, Angewandte Chemie-International Edition, 49, pp 1477 – 1480 140 ... thực vật Để nghiên cứu cách có hệ thống q trình tổng hợp khả hấp phụ đặc biệt vật liệu MOFs, chọn đề tài ? ?Nghiên cứu tổng hợp ứng dụng số vật liệu khung kim loại - hữu cơ” Nhiệm vụ luận án: - Nghiên. .. liệu tổng hợp 2.2 Nội dung Tổng hợp vật liệu Cr-MIL-101 2.2.1 2.2.2 Tổng hợp vật liệu MIL-53(Fe) 2.2.3 Tổng hợp vật liệu MIL-88B 2.2.4 Tổng hợp vật liệu đồng hình Cr Fe MIL-101 2.2.5 Nghiên cứu. .. khí (CO2, H2) vật liệu MOFs, số lượng công bố khoa học tổng hợp ứng dụng làm xúc tác, hấp phụ MOFs cịn Ở Việt Nam, việc nghiên cứu vật liệu khung kim loại- hữu cịn mẻ, có số sở nghiên cứu khoa học

Ngày đăng: 21/12/2021, 14:09

Mục lục

  • TỔNG QUAN TÀI LIỆU

  • 1.1. Giới thiệu chung về vật liệu khung kim loại - hữu cơ (Metal-Organic-Frameworks- MOFs)

  • 1.2. Các phương pháp tổng hợp MOFs

  • 1.3. Giới thiệu về các vật liệu nghiên cứu

    • 1.3.3.1. Làm chất hấp phụ

    • 1.3.3.2. Làm chất xúc tác

    • 1.4. Giới thiệu về quá trình hấp phụ 

      • 1.4.2.1. Đẳng nhiệt hấp phụ Langmuir

      • Phương trình đẳng nhiệt hấp phụ Langmuir cho sự hấp phụ chất tan trong dung dịch trên chất hấp phụ rắn có dạng sau [6]

      • 1.4.2.2. Đẳng nhiệt hấp phụ Freundlich

      • 1.5. Phản ứng Fenton [21], [95]

        • 1.5.1. Quá trình oxi hóa Fenton dị thể

        • 1.5.2. Quá trình quang Fenton

        • 1.5.3. Ứng dụng của Fenton trong xử lý nước thải dệt nhuộm

        • 1.6. Hấp phụ asen

          • 1.6.1. Tính độc hại của asen

          • 1.6.2. Cơ chế của quá trình hấp phụ asen

          • MỤC TIÊU, NỘI DUNG, PHƯƠNG PHÁP NGHIÊN CỨU

          • VÀ THỰC NGHIỆM

          • 2.3. Phương pháp nghiên cứu

            • 2.3.1. Phương pháp phổ hồng ngoại FT-IR [1], [8]

            • 2.3.2. Phương pháp nhiễu xạ Rơnghen (X-ray diffraction, XRD) [3], [4], [5]

            • 2.3.3. Phương pháp phổ quang điện tử tia X (XPS)

            • 2.3.4. Phương pháp phổ tán sắc năng lượng tia X (EDX)

            • 2.3.5. Phương pháp phân tích nhiệt (TGA)

Tài liệu cùng người dùng

Tài liệu liên quan