Molecular Biology 5thRobert F WeaverChap 13

40 11 0
Molecular Biology 5thRobert F WeaverChap 13

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Effects of Histones on Transcription of Class II Genes • Core histones assemble nucleosome cores on naked DNA • Transcription of reconstituted chromatin with an average of 1 nucleosome /[r]

(1)Lecture PowerPoint to accompany Molecular Biology Fifth Edition Robert F Weaver Chapter 13 Chromatin Structure and Its Effects on Transcription Copyright © The McGraw-Hill Companies, Inc Permission required for reproduction or display (2) Chromatin Structure • Eukaryotic genes not exist naturally as naked DNA, or even as DNA molecules bound only to transcription factors • They are complexed with an equal mass of other proteins to form chromatin • Chromatin is variable and the variations play an enormous role in chromatin structure and in the control of gene expression 13-2 (3) 13.1 Histones • Eukaryotic cells contain kinds of histones – – – – – H1 H2A H2B H3 H4 • Histone proteins are not homogenous due to: – Gene reiteration – Posttranslational modification 13-3 (4) Properties of Histones • Abundant proteins whose mass in nuclei nearly equals that of DNA • Pronounced positive charge at neutral pH • Most are well-conserved from one species to another • Not single copy genes, repeated many times – Some copies are identical – Others are quite different – H4 has only had variants ever reported 13-4 (5) 13.2 Nucleosomes • Chromosomes are long, thin molecules that will tangle if not carefully folded • Folding occurs in several ways • First order of folding is the nucleosome, which have a core of histones, around which DNA winds – X-ray diffraction has shown strong repeats of structure at 100Å intervals – This spacing approximates the nucleosome spaced at 110Å intervals 13-5 (6) Histones in the Nucleosome • Chemical cross-linking in solution: – H3 to H4 – H2A to H2B • H3 and H4 exist as a tetramer (H3-H4)2 • Chromatin is composed of roughly equal masses of DNA and histones – Corresponds to histone octamer per 200 bp of DNA – Octamer composed of: • each H2A, H2B, H3, H4 • each H1 13-6 (7) H1 and Chromatin • Treatment of chromatin with trypsin or high salt buffer removes histone H1 • This treatment leaves chromatin looking like “beads-on-a-string” • The beads named nucleosomes – Core histones form a ball with DNA wrapped around the outside – DNA on outside minimizes amount of DNA bending – H1 also lies on the outside of the nucleosome 13-7 (8) Nucleosome Structure • Central (H3-H4)2 core attached to H2AH2B dimers • Grooves on surface define a left-hand helical ramp – a path for DNA winding – DNA winds almost twice around the histone core condensing DNA length by 6- to 7-X – Core histones contain a histone fold: • -helices linked by loops • Extended tail of abut 28% of core histone mass • Tails are unstructured 13-8 (9) Crystal Structure of a Nucleosomal Core Particle 13-9 (10) The 30-nm Fiber • Second order of chromatin folding produces a fiber 30 nm in diameter – The string of nucleosomes condenses to form the 30-nm fiber in a solution of increasing ionic strength – This condensation results in another six- to seven-fold condensation of the nucleosome itself • Four nucleosomes condensing into the 30nm fiber form a zig-zag structure 13-10 (11) Models for the 30-nm Fiber • The solenoid and the two-start double helix model each have experimental support • A technique called single-molecule force spectroscopy was employed to answer the question, ‘which model is correct?’ • Results suggested that most of the chromatin in a cell (presumably inactive) adopts a solenoid shape while a minor fraction (potentially active) forms a 30-nm fiber according to the two-start double helix 13-11 (12) Higher Order Chromatin Folding • 30-nm fibers account for most of chromatin in a typical interphase nucleus • Further folding is required in structures such as the mitotic chromosomes • Model favored for such higher order folding is a series of radial loops Source: Adapted from Marsden, M.P.F and U.K Laemmli, Metaphase chromosome structure: Evidence of a radial loop model Cell 17:856, 13-12 1979 (13) Relaxing Supercoiling in Chromatin Loops • When histones are removed, 30-nm fibers and nucleosomes disappear • Leaves supercoiled DNA duplex • Helical turns are superhelices, not ordinary double helix • DNA is nicked to relax 13-13 (14) 13.3 Chromatin Structure and Gene Activity • Histones, especially H1, have a repressive effect on gene activity in vitro • Histones play a predominant role as regulators of genetic activity and are not just purely structural • The regulatory functions of histones have recently been elucidated 13-14 (15) Effects of Histones on Transcription of Class II Genes • Core histones assemble nucleosome cores on naked DNA • Transcription of reconstituted chromatin with an average of nucleosome / 200 bp DNA exhibits 75% repression relative to naked DNA • Remaining 25% is due to promoter sites not covered by nucleosome cores 13-15 (16) Histone H1 and Transcription • Histone H1 causes further repression of template activity, in addition to that of core histones • H1 repression can be counteracted by transcription factors • Sp1 and GAL4 act as both: – Antirepressors preventing histone repressions – Transcription activators • GAGA factor: – Binds to GA-rich sequences in the Krüppel promoter – An antirepressor – preventing repression by histones 13-16 (17) A Model of Transcriptional Activation 13-17 (18) Nucleosome Positioning • Model of activation and antirepression asserts that transcription factors can cause antirepression by: – Removing nucleosomes that obscure the promoter – Preventing initial nucleosome binding to the promoter • Both actions are forms of nucleosome positioning – activators force nucleosomes to take up positions around, not within, promoters 13-18 (19) Nucleosome-Free Zones • Nucleosome positioning would result in nucleosome-free zones in the control regions of active genes • Assessment in SV40 DNA, a circular minichromosome, was performed to determine the existence of nucleosome-free zones - with the use of restriction sites it was found that the late control region is nucleosome free 13-19 (20) Detecting DNase-Hypersensitive Regions • Active genes tend to have DNase-hypersensitive control regions • Part of this hypersensitivity is due to absence of nucleosomes 13-20 (21) Histone Acetylation • Histone acetylation occurs in both cytoplasm and nucleus • Cytoplasmic acetylation carried out by HAT B (histone acetyltransferase, HAT) – Prepares histones for incorporation into nucleosomes – Acetyl groups later removed in nucleus • Nuclear acetylation of core histone N-terminal tails – Catalyzed by HAT A – Correlates with transcription activation – Coactivators of HAT A found which may allow loosening of association between nucleosomes and gene’s control region – Attracts bromodomain proteins, essential for transcription 13-21 (22) Histone Deacetylation • Transcription repressors bind to DNA sites and interact with corepressors which in turn bind to histone deacetylases – Repressors • Mad-Max – Corepressors • NCoR/SMRT • SIN3 – Histone deacetylases - HDAC1 and 13-22 (23) Model for participation of HDAC in transcription repression • Assembly of complex brings histone deacetylases close to nucleosomes • Deacetylation of core histones allows – Histone basic tails to bind strongly to DNA, histones in neighboring nucleosomes – This inhibits transcription 13-23 (24) Model for Activation and Repression 13-24 (25) Chromatin Remodeling • Activation of many eukaryotic genes requires chromatin remodeling • Several protein complexes carry this out – All have ATPase harvesting energy from ATP hydrolysis for use in remodeling – Remodeling complexes are distinguished by ATPase component 13-25 (26) Remodeling Complexes • SWI/SNF – In mammals, has BRG1 as ATPase – 9-12 BRG1-associated factors (BAFs) • A highly conserved BAF is called BAF 155 or 170 • Has a SANT domain responsible for histone binding • This helps SWI/SNF bind nucleosomes • ISWI – Have a SANT domain – Also have SLIDE domain involved in DNA binding 13-26 (27) Models for SWI/SNF Chromatin Remodeling 13-27 (28) Mechanism of Chromatin Remodeling • Mechanism of chromatin remodeling involves: – Mobilization of nucleosomes – Loosening of association between DNA and core histones • Catalyzed remodeling of nucleosomes involves formation of distinct conformations of nucleosomal DNA/core histones when contrasted with: – Uncatalyzed DNA exposure in nucleosomes – Simple nucleosome sliding along a DNA stretch 13-28 (29) Remodeling in Yeast HO Gene Activation • Chromatin immunoprecipitation (ChIP) can reveal the order of binding of factors to a gene during activation • As HO gene is activated: – First factor to bind is Swi5 – Followed by SWI/SNF and SAGA containing HAT Gcn5p – Next general transcription factors and other proteins bind • Chromatin remodeling is among the first steps in activation of this gene • Order could be different in other genes 13-29 (30) Remodeling in the Human IFN- Gene: The Histone Code The Histone Code: – The combination of histone modifications on a given nucleosome near a gene’s control region affects efficiency of that gene’s transcription – This code is epigenetic, not affecting the base sequence of DNA itself • Activators in the IFN- enhanceosome can recruit a HAT (GCN5) – HAT acetylates some Lys on H3 and H4 in a nucleosome at the promoter – Protein kinase phosphorylates Ser on H3 – This permits acetylation of another Lys on H3 13-30 (31) Remodeling in the Human IFN- Gene: TF Binding • Remodeling allows TFIID to bind acetylated lysines in the nucleosome through the dual bromodomain in TAF1 • TFIID binding – Bends the DNA – Moves remodeled nucleosome aside – Paves the way for transcription to begin 13-31 (32) Heterochromatin • Euchromatin: relatively extended and open chromatin that is potentially active • Heterochromatin: very condensed with its DNA inaccessible – Microscopically appears as clumps in higher eukaryotes – Repressive character able to silence genes as much as kb away 13-32 (33) Heterochromatin and Silencing • Formation at the tips of yeast chromosomes (telomeres) with silencing of the genes is the telomere position effect (TPE) • Depends on binding of proteins – RAP1 to telomeric DNA – Recruitment of proteins in this order: • SIR3 • SIR4 • SIR2 13-33 (34) SIR Proteins • Heterochromatin at other locations in chromosome also depends on the SIR proteins • SIR3 and SIR4 interact directly with histones H3 and H4 in nucleosomes – Acetylation of Lys 16 on H4 in nucleosomes prevents interaction with SIR3 – Blocks heterochromatin formation • Histone acetylation also works in this way to promote gene activity 13-34 (35) Histone Methylation • Methylation of Lys in N-terminal tail of H3 attracts HP1 • This recruits a histone methyltransferase – Methylates Lys on a neighboring nucleosome – Propagates the repressed, heterochromatic state • Methylation of Lys and Arg side chains in core histones can have either repressive or activating effects 13-35 (36) Histone Methylation • Methylation of Lys in N-terminal tail of H3 is generally tri-methylated (H3K4Me3) and is usually associated with the 5’-end of an active gene • This modification appears to be a sign of transcription initiation • Genome-wide ChIP analysis suggests that this may also play a role in controlling gene expression by controlling the re-starting of paused RNA polymerases 13-36 (37) Summary • Histone modifications can affect gene activity by two mechanisms: • By altering the way histone tails interact with DNA and with histone tails in neighboring nucleosomes, and thereby altering nucleosome cross-linking • By attracting proteins that can affect chromatin structure and activity 13-37 (38) Modification Combinations • Methylations occur in a given nucleosome in combination with other histone modifications: – Acetylations – Phosphorylations – Ubiquitylations • Each particular combination can send a different message to the cell about activation or repression of transcription • One histone modification can also influence other, nearby modifications 13-38 (39) Nucleosomes and Transcription Elongation • An important transcription elongation facilitator is FACT (facilitates chromatin transcription) – Composed of subunits: • Spt16 – Binds to H2A-H2B dimers – Has acid-rich C-terminus essential for these nucleosome remodeling activities • SSRP1 binds to H3-H4 tetramers 13-39 (40) Nucleosomes and Transcription Elongation • FACT facilitates transcription through a nucleosome by promoting loss of at least one H2A-H2B dimer from the nucleosome • Also acts as a histone chaperone promoting readdition of H2A-H2B dimer to a nucleosome that has lost such a dimer 13-40 (41)

Ngày đăng: 16/10/2021, 07:57

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan