slide cơ học vật chất rắn chapter 8 1 new two dimensional problem solution

23 3 0
slide cơ học vật chất rắn chapter 8 1 new two dimensional problem solution

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

.c om ng co an cu u du o ng th Chapter 8: Two-dimensional problem solution (Part 1) TDT  University  -­‐  2015 CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science c om 8.1 Two-dimensional problem solution ng 8.2 Cartesian Coordinate Solutions Using Polynomials cu u du o ng th an co 8.3 Cartesian Coordinate Solutions Using Fourier Methods CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science c om 8.1 Two-dimensional problem solution ng 8.2 Cartesian Coordinate Solutions Using Polynomials cu u du o ng th an co 8.3 Cartesian Coordinate Solutions Using Fourier Methods CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.1 Two-dimensional problem solution c om Using the Airy Stress Function approach, it was shown that the plane elasticity formulation with zero body forces reduces to a single governing co ng biharmonic equation In Cartesian coordinates it is given by ng th an ∂ 4ϕ ∂ 4ϕ ∂ 4ϕ + 2 + = ∇ 4ϕ = ∂x ∂x ∂y ∂y du o and the stresses are related to the stress function by cu u ∂ 2ϕ ∂ 2ϕ ∂ 2ϕ σ x = , σ y = , τ xy = − ∂y ∂x ∂x∂y We now explore solutions to several specific problems in both Cartesian and Polar coordinate systems CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science c om 8.1 Two-dimensional problem solution ng 8.2 Cartesian Coordinate Solutions Using Polynomials cu u du o ng th an co 8.3 Cartesian Coordinate Solutions Using Fourier Methods CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.2 Cartesian Coordinate Solutions Using Polynomials ∂ 4ϕ ∂ 4ϕ ∂ 4ϕ + 2 + = ∇ 4ϕ = ∂x ∂x ∂y ∂y ng c om The biharmonic equation co In Cartesian coordinates we choose Airy stress function solution of polynomial form ∞ ∞ m=0 n =0 ng th an ϕ ( x, y ) = ∑∑ Amn x m y n du o where Amn are constant coefficients to be determined This method produces polynomial stress distributions, and thus would not satisfy general boundary conditions However, we can cu u modify such boundary conditions using Saint-Venant’s principle and replace a non-polynomial condition with a statically equivalent loading This formulation is most useful for problems with rectangular domains, and is commonly based on the inverse solution concept where we assume a polynomial solution form and then try to find what problem it will solve CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science ∞ ∞ ϕ ( x, y ) = ∑∑ Amn x y m c om 8.2 Cartesian Coordinate Solutions Using Polynomials ∂ 4ϕ ∂ 4ϕ ∂ 4ϕ + + = ∇ ϕ =0 2 ∂x ∂x ∂y ∂y n ng m=0 n =0 co Noted that the three lowest order terms with m + n ≤ not contribute to the stresses and an will therefore be dropped It should be noted that second order terms will produce a constant th stress field, third-order terms will give a linear distribution of stress, and so on for higher-order ng polynomials du o Terms with m + n ≤ will automatically satisfy the biharmonic equation for any choice of cu u constants Amn However, for higher order terms, constants Amn will have to be related in order to have the polynomial satisfy the biharmonic equation For example, the 4th-order polynomial terms A40x4+A22x2y2+A04y4 will not satisfy the biharmonic equation unless 3A40+A22+3A04=0 This condition specifies one constant in terms of the other two, thus leaving two constants to be determined by the boundary conditions CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.2 Cartesian Coordinate Solutions Using Polynomials ∞ ∑∑ m(m − 1)(m − 2)(m − 3) A mn m= n =0 ∞ x m−4 ∞ ∞ y + ∑∑ m(m − 1)n(n − 1) Amn x m − y n − n m=2 n=2 ∞ co + ∑∑ n(n − 1)(n − 2)(n − 3) Amn x m y n − = ng ∞ c om Considering the general case, substituting the series into the governing biharmonic equation yields an m=0 n =4 ∞ th Collecting like powers of x and y, the preceding equation may be written as ∞ ng ∑∑ ⎡⎣(m + 2)(m + 1)m(m − 1) A m=2 n=2 m + 2, n − + 2m(m − 1)n(n − 1) Amn + du o +(n + 2)(n + 1)n(n − 1) Am − 2,n + ⎤⎦ x m − y n − = cu u Because this relation must be satisfied for all values of x and y, the coefficient in brackets must vanish, giving the result (m + 2)(m + 1)m(m − 1) Am + 2,n − + 2m(m − 1)n(n − 1) Amn + (n + 2)(n + 1)n(n − 1) Am − 2,n + = For each m, n pair, this equation is the general relation that must be satisfied to ensure that the polynomial grouping is biharmonic CuuDuongThanCong.com https://fb.com/tailieudientucntt   h"p://incos.tdt.edu.vn   Institute for computational science 8.2 Cartesian Coordinate Solutions Using Polynomials y   T   c om Example 8.1 Uniaxial Tension of a Beam Stress  Field     th an ⎧⎪σ x (±l , y ) = T , σ y ( x, ±c) = Boundary Conditions: ⎨ ⎪⎩τ xy (±l , y ) = τ xy ( x, ±c) = co 2l   u du o ng Since the boundary conditions specify constant stresses on all boundaries, try a second-order stress function of the form σ x = A02 , σ y = τ xy = ϕ = A02 y T   x   ng 2c   Displacement  Field  (Plane  Stress)     ∂u T = ex = (σ x −νσ y ) = ∂x E E ∂v T = ey = (σ y −νσ x ) = −ν ∂y E E u= T T x + f ( y ) , v = −ν y + g ( x) E E τ ∂u ∂v + = 2exy = xy = ⇒ f ′( y ) + g ′( x) = ∂y ∂x µ cu The first boundary condition implies that A02 = T/2, and all other boundary conditions are f ( y ) = −ωo y + uo identically satisfied Therefore the stress field g ( x) = ωo x + vo Rigid-Body Motion solution is given by “Fixity conditions” needed to determine RBM terms σ x = T , σ y = τ xy = CuuDuongThanCong.com u (0, 0) = v(0, 0) = u (0, c) = ⇒ f ( y ) = g ( x) = https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.2 Cartesian Coordinate Solutions Using Polynomials Example 8.2 Pure Bending of a Beam c om y   2l   Boundary Conditions: ∫ c −c σ x (±l , y ) ydy = − M ng −c σ x (±l , y )dy = , du o ∫ c th σ y ( x, ±c) = , τ xy ( x, ±c) = τ xy ( ±l , y ) = an co Stress Field   σ x = A03 y , σ y = τ xy = cu ϕ = A03 y u Expecting a linear bending stress distribution, try 2nd- stress function of the form Moment boundary condition implies that A03 = -M/4c3, and all other boundary conditions are identically satisfied Thus the stress field is 3M σ x = − y , σ y = τ xy = 2c CuuDuongThanCong.com M   x   ng 2c   M   Displacement Field (Plane Stress) ∂u 3M 3M =− y ⇒u=− xy + f ( y ) ∂x Ec Ec3 ∂v 3M 3Mν =ν y ⇒v= y + g ( x) ∂y Ec Ec3 ∂u ∂v 3M + =0⇒ − x + f ′( y ) + g ′( x) = ∂y ∂x Ec3 ⎧ f ( y ) = −ω0 y + u0 ⎪ ⎨ 3M g ( x ) = x + ω0 x + v0 ⎪⎩ Ec3 “Fixity conditions” to determine RBM terms: v(±l , 0) = and u (−l , 0) = u0 = ω0 = , v0 = −3Ml /16 Ec3 https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.2 Cartesian Coordinate Solutions Using Polynomials Solution Comparison of Elasticity with Elementary Mechanics of Materials c om y   2c   M   x   co ng M   2l   an   th Elasticity Solution M y , σ y = τ xy = I Mxy M u=− ,v= [4ν y + x − l ] EI 8EI cu u du o ng σx = − I = 2c / Mechanics of Materials Solution Uses Euler-Bernoulli beam theory to find bending stress and deflection of beam centerline M y , σ y = τ xy = I M v = v( x, 0) = [4 x − l ] EI σx = − Two solutions are identical, with the exception of the x-displacements CuuDuongThanCong.com https://fb.com/tailieudientucntt   Institute for computational science h"p://incos.tdt.edu.vn   8.2 Cartesian Coordinate Solutions Using Polynomials Example 8.3 Bending of a Beam by Uniform Transverse Loading co ng 2c   w   wl   y   2l   ng th an wl   Boundary Conditions: c ⎧τ (x,±c) = 0; ∫ −c τ xy (±l, y)d y = ∓wl ⎪ xy ⎪⎪ c σ (x,c) = 0; ⎨ y ∫ −cσ x (±l, y) y d y = ⎪ c ⎪σ (x,−c) = −w; σ (±l, y)d y = ∫ −c x ⎪⎩ y c om Stress Field du o ϕ = A20 x + A21 x y + A03 y + A23 x y − cu u ⎧ σ = A y + A ( x y − y ) 03 23 ⎪ x ⎪⎪ ⎨σ y = A20 + A21 y + A23 y ⎪ ⎪τ xy = −2 A21 x − A23 xy ⎪⎩ CuuDuongThanCong.com BC’s     A23 y ⎧ 3w ⎛ l 2 ⎞ 3w 2 ⎪σ x = ⎜ − ⎟ y − (x y − y ) 4c ⎝ c ⎠ 4c ⎪ ⎪⎪ w 3w w y − y3 ⎨σ y = − + 4c 4c ⎪ 3w 3w ⎪ τ = − x + xy ⎪ xy c c ⎪⎩ https://fb.com/tailieudientucntt x     h"p://incos.tdt.edu.vn   Institute for computational science 8.2 Cartesian Coordinate Solutions Using Polynomials Example 8.3 Bending of a Beam by Uniform Transverse Loading c om w   wl   x   co y   ng 2c   wl   th Elasticity Solution an 2l   u du o ng w w y3 c2 y σ x = (l − x ) y + ( − ) 2I I w ⎛ y3 ⎞ σ y = − ⎜ − c y + c3 ⎟ 2I ⎝ 3 ⎠ cu w τ xy = − x(c − y ) 2I Mechanics of Materials Solution My w = (l − x ) y I 2I σy = σx = τ xy = VQ w = − x (c − y ) It 2I Shear stresses are identical, while normal stresses are not CuuDuongThanCong.com https://fb.com/tailieudientucntt   Institute for computational science h"p://incos.tdt.edu.vn   c om 8.2 Cartesian Coordinate Solutions Using Polynomials σx  –  Stress  at  x=0   co ng σy  -­‐  Stress   an l/c  =  2   ng σx/w  -­‐  Elasticity     σx/w  -­‐  Strength  of  Materials   du o l/c  =  4   th l/c  =  3   cu u Maximum differences between the two theories exist at top and bottom of beam, and actual difference in stress values is w/ For most beam problems where l >> c, the bending stresses will be much greater than w, and thus the differences between elasticity and strength of materials will be relatively small CuuDuongThanCong.com  σy/w  -­‐  Elasticity      σy/w  -­‐  Strength  of  Materials   Maximum difference between the two theories is w and this occurs at the top of the beam Again this difference will be negligibly small for most beam problems where l >> c These results are generally true for beam problems with other transverse loadings https://fb.com/tailieudientucntt   h"p://incos.tdt.edu.vn   Institute for computational science 8.2 Cartesian Coordinate Solutions Using Polynomials Example 8.3 Bending of a Beam by Uniform Transverse Loading c om w   wl   wl   2c   2l   co y   ng x   du o ng th an ⎧ w x3 y 2c y y3 2c 2 u= [(l x − ) y + x( − ) +ν x( − c y + )] + f ( y ) Displacement  Field   ⎪⎪ EI 3 3 ⎨ 2 2  (Plane  Stress)     ⎪v = − w [( y − c y + 2c y ) + ν (l − x ) y + ν ( y − c y )] + g ( x) ⎪⎩ EI 12 cu u f ( y ) = ω0 y + u , g ( x ) = Choosing Fixity Conditions w w x − [l − ( + ν )c ]x − ω0 x + v0 24 EI EI u (0, y ) = v(±l , 0) = 5wl u0 = ω0 = 0, v0 = 24 EI CuuDuongThanCong.com ⎡ 12 ⎛ ν ⎞ c ⎤ ⎢1 + ⎜ + ⎟ l ⎥ ⎝ ⎠ ⎦ ⎣ https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.2 Cartesian Coordinate Solutions Using Polynomials c om Example 8.3 Bending of a Beam by Uniform Transverse Loading ⎡⎛ ⎛ y 2c y ⎞ ⎛ y3 x3 ⎞ 2c ⎞ ⎤ − ⎢⎜ l x − ⎟ y + x ⎜ ⎟ +ν x ⎜ − c y + ⎟⎥ 3 3 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦ ⎣ ⎧ y c y 2c y ⎡ y4 c2 y ⎤ ⎫ y + + ν ⎢( l − x ) + − ⎪ − ⎥⎪ 12 ⎦⎪ w ⎪ ⎣ v=− ⎨ ⎬ EI ⎪ x ⎡ l ⎛ ν ⎞ ⎤ ⎪ − + + + c x ⎜ ⎟ ⎢ ⎥ ⎪ 12 ⎪ ⎣2 ⎝5 2⎠ ⎦ ⎩ ⎭ co ng th an Displacement  Field    (Plane  Stress)     ng w u= EI ⎡ 12 ⎛ ν ⎞ c ⎤ ⎢1 + ⎜ + ⎟ l ⎥ ⎝ ⎠ ⎦ ⎣ u du o 5wl + 24 EI cu v(0, 0) = vmax 5wl = 24 EI Strength of Materials: vmax CuuDuongThanCong.com ⎡ 12 ⎛ ν ⎞ c ⎤ ⎢1 + ⎜ + ⎟ l ⎥ ⎝ ⎠ ⎦ ⎣ 5wl = 24 EI Good match for beams where l >> c https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science c om 8.1 Two-dimensional problem solution ng 8.2 Cartesian Coordinate Solutions Using Polynomials cu u du o ng th an co 8.3 Cartesian Coordinate Solutions Using Fourier Methods CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   Institute for computational science 8.3 Cartesian Coordinate Solutions Using Fourier Methods c om A more general solution scheme for the biharmonic equation may be found using Fourier methods Such techniques generally use separation of variables along with Fourier series or Fourier integrals ∂ 4ϕ ∂ 4ϕ ∂ 4ϕ +2 2 + =0 ∂x ∂x ∂y ∂y α = ±i β an αx βy Choosing X = e , Y = e co ng ϕ ( x, y ) = X ( x)Y ( y ) th φ = sin β x ⎡⎣( A + C β y ) sinh β y + ( B + Dβ y ) cosh β y ⎤⎦ ng + cos β x ⎡⎣( A′ + C ′β y ) sinh β y + ( B′ + D′β y ) cosh β y ⎤⎦ du o + sin α y ⎡⎣( E + Gα x ) sinh α x + ( F + H α x ) cosh α x ⎤⎦ cu + φα =0 + φβ =0 e x − e− x sinh( x) = = −i sin(ix) x e + e− x cosh( x) = = cos ix u + cos α y ⎡⎣( E ′ + G′α x ) sinh α x + ( F ′ + H ′α x ) cosh α x ⎤⎦ The general solution includes the superposition of the general roots plus the zero root cases (zero root solutions) ⎧⎪φβ =0 = C0 + C1 x + C2 x + C3 x where ⎨ 2 ⎪⎩φα =0 = C4 y + C5 y + C6 y + C7 xy + C8 x y + C9 xy CuuDuongThanCong.com https://fb.com/tailieudientucntt   h"p://incos.tdt.edu.vn   Institute for computational science 8.3 Cartesian Coordinate Solutions Using Fourier Methods qosinπx/l   qol/π   2c   th (2) σ y ( x, − c ) = (3) u cu ∫ −c c −c σ x = β sin β x ⎡⎣ A sinh β y + C ( β y sinh β y + cosh β y ) du o (1) ng σ x (0, y ) = σ x (l , y ) = τ xy ( x, ±c) = σ y ( x, c) = −qo sin(π x / l ) l   ϕ = sin β x ⎡⎣( A + C β y ) sinh β y + ( B + D β y ) cosh β y ⎤⎦ Boundary Conditions: ∫ x   an co Stress Field c qol/π   ng Example 8.4 Beam with Sinusoidal Loading c om y   (4) τ xy (0, y )dy = −qol / π (5) τ xy (l , y )dy = qol / π (6) CuuDuongThanCong.com + B cosh β y + D ( β y cosh β y + 2sinh β y )⎤⎦ σ y = − β sin β x ⎡⎣( A + C β y ) sinh β y + ( B + Dβ y ) cosh β y ⎤⎦ τ xy = − β cos β x ⎡⎣ A cosh β y + C ( β y cosh β y + 2sinh β y ) + B sinh β y + D ( β y sinh β y + cosh β y )⎤⎦ https://fb.com/tailieudientucntt   h"p://incos.tdt.edu.vn   Institute for computational science 8.3 Cartesian Coordinate Solutions Using Fourier Methods qosinπx/l   qol/π   Example 8.4 Beam with Sinusoidal Loading c om y   qol/π   2c   co ng x   an th du o ng Condition (2) gives ⎧⎪ A = − D ( β c β c + 1) ⎨ ⎪⎩ B = −C ( β c coth β c + 1) cu β= π l πc l π ⎡π c πc πc⎤ 2 ⎢ + sinh cosh ⎥ l ⎣ l l l ⎦ u Condition (3) gives C = −qo sinh l   D= −qo sinh l π ⎡π c πc πc⎤ 2 ⎢ − sinh cosh ⎥ l ⎣ l l l ⎦ Condition (1) and condition (5,6) will be satisfied CuuDuongThanCong.com πc https://fb.com/tailieudientucntt   h"p://incos.tdt.edu.vn   Institute for computational science 8.3 Cartesian Coordinate Solutions Using Fourier Methods qosinπx/l   qol/π   Example 8.4 Beam with Sinusoidal Loading qol/π   x   ng 2c   c om y   co Displacement Field l   β β } th an cos β x { A (1 + ν ) sinh β y + B (1 + ν ) cosh β y v = − sin β x { A (1 + ν ) cosh β y + B (1 + ν ) sinh β y E E + C ⎡⎣(1 + ν ) β y sinh β y + cosh β y ⎤⎦ + C ⎡⎣(1 + ν ) β y cosh β y − (1 +ν ) sinh β y ⎤⎦ u=− ng + D ⎡⎣(1 +ν ) β y cosh β y + 2sinh β y ⎤⎦ − ωo y + uo du o u (0, 0) = v(0, 0) = v(l , 0) = } + D ⎡⎣(1 +ν ) β y sinh β y − (1 +ν ) cosh β y ⎤⎦ + ωo y + vo ω0 = v0 = , u0 = β ⎡ B (1 + ν ) + 2C ⎤⎦ E⎣ cu u Dβ sin β x ⎡⎣ + (1 +ν ) β c β c ⎤⎦ E 3q0l π x ⎡ +ν π c πc⎤ 3q0l v( x, 0) = − sin + D≈− For the case l >> c 2c π E l ⎢⎣ l l ⎥⎦ 4c π 3q0l πx v ( x , 0) = − sin Strength of Materials 2c3π E l v( x, 0) = CuuDuongThanCong.com https://fb.com/tailieudientucntt   Institute for computational science h"p://incos.tdt.edu.vn   Must use series representation for Airy stress function to handle general boundary loading βn = n =1 ∞ th m =1 ∞ du o ∞ ng σ x = ∑ β n2 cos β n x ⎡⎣ Bn cosh β n y + Cn ( β n y sinh β n y + cosh β n y )⎤⎦ n =1 − ∑ α m2 cos α m y [ Fm cosh α m x + Gmα m x sinh α m x ] m =1 ∞ x    p(x)   Boundary Conditions σ x ( ± a, y ) = τ xy (± a, y ) = τ xy ( x, ±b) = σ y ( x, ± b ) = − p ( x ) cu u σ y = −∑ β n2 cos β n x [ Bn cosh β n y + Cn β n y sinh β n y ] + 2C0 a   b   an + ∑ cos α m y [ Fm cosh α m x + Gmα m x sinh α m x ] + C0 x nπ l a   ng ϕ = ∑ cos β n x [ Bn cosh β n y + Cn β n y sinh β n y ] b    p(x)   co ∞  y   c om 8.3 Cartesian Coordinate Solutions Using Fourier Methods Example 8.5 Rectangular Domain with Arbitrary Boundary Loading Use Fourier series theory to handle + ∑ α m2 cos α m y ⎡⎣ Fm cosh α m x + Gm (α m x sinh α m x + cosh α m x )⎤⎦ general boundary conditions, and this m =1 generates a doubly infinite set of ∞ τ xy = ∑ β n sin β n x ⎡⎣ Bn sinh β n y + Cn ( β n y cosh β n y + sinh β n y )⎤⎦ equations to solve for unknown n =1 constants in stress function form See ∞ + ∑ α m sin α m y ⎡⎣ Fm sinh α m x + Gm (α m x cosh α m x + sinh α m x )⎤⎦ text for details m =1 n =1 ∞ CuuDuongThanCong.com https://fb.com/tailieudientucntt h"p://incos.tdt.edu.vn   cu u du o ng th an co ng c om Institute for computational science CuuDuongThanCong.com https://fb.com/tailieudientucntt ... computational science c om 8. 1 Two- dimensional problem solution ng 8. 2 Cartesian Coordinate Solutions Using Polynomials cu u du o ng th an co 8. 3 Cartesian Coordinate Solutions Using Fourier Methods... computational science c om 8. 1 Two- dimensional problem solution ng 8. 2 Cartesian Coordinate Solutions Using Polynomials cu u du o ng th an co 8. 3 Cartesian Coordinate Solutions Using Fourier Methods... computational science c om 8. 1 Two- dimensional problem solution ng 8. 2 Cartesian Coordinate Solutions Using Polynomials cu u du o ng th an co 8. 3 Cartesian Coordinate Solutions Using Fourier Methods

Ngày đăng: 26/06/2021, 12:39

Tài liệu cùng người dùng

Tài liệu liên quan