Xu hướng phát triển và ứng dụng của cảm biến quán tính vi cơ điện ( con quay, gia tốc kế)

8 923 4
Xu hướng phát triển và ứng dụng của cảm biến quán tính vi cơ điện ( con quay, gia tốc kế)

Đang tải... (xem toàn văn)

Thông tin tài liệu

1 Xu hớng phát triển ứng dụng của cảm biến quán tính vi điện (con quay, gia tốc kế) Tác giả: Nguyễn Văn Chúc, Trần Tiến Đạt, Lê Anh Tuấn, Nguyễn Phú Thắng, Trần Ngọc Thanh Trung tâm Khoa học Kỹ thuật - Công nghệ Quân sự Tóm tắt: Bài báo trình bày tổng quan việc ứng dụng của các công nghệ cảm biến quán tính, đánh giá hớng phát triển của các công nghệ này trong tơng lai, đa ra nguyên lý làm việc sơ đồ kết cấu của một số cảm biến quán tính vi điện, phân tích một số vấn đề liên quan tới thiết kế, công nghệ ứng dụng các cảm biến quán tính vi điện trong điều kiện ở nớc ta. 1. Mở đầu Việc ứng dụng các hệ thống vi điện (MicroElectroMechanical System -MEMS) sẽ tạo ra sự thay đổi lớn trong công nghệ chế tạo các cảm biến quán tính (con quay, gia tốc kế). Trớc đây công nghệ này là độc quyền của một số cờng quốc quân sự (Mỹ, Nga .) Các cảm biến quán tính MEMS cha đạt độ chính xác của các cảm biến học cổ điển, nhng những u điểm hơn hẳn: Về kích thớc biên dạng (vài milimét); công suất tiêu thụ (dới 1W); giá thành hạ (10ữ20 lần). Chính nhờ những u điểm trên mà các cảm biến quán tính vi điện đợc ứng dụng rộng rãi trong cả các lĩnh vực của dân sự, quân sự. Trong số các ứng dụng ngày càng mở rộng của cảm biến quán tính vi điện thể kể đến các ứng dụng sau: +Công nghiệp ô tô. Hiện nay các ô tô hiện đại sử dụng 50-80 cảm biến khác nhau cho hệ thống an toàn dẫn đờng. +Các thiết bị dẫn đờng kỹ thuật quân sự. Nhờ thành tựu tạo ra các hệ thống dẫn đờng kiều không platform (các cảm biến không cần lắp trên một platform ổn định, mà lắp trực tiếp lên đối tợng) với hiệu chỉnh bằng hệ thống định vị vệ tinh toàn cầu (GPS) cho phép ứng dụng các cảm biến vi trong việc ổn định ăng ten vệ tinh, điều khiển khí cụ bay tự động, cũng nh các vũ khí trang bị hiện đại. +Kỹ thuật robot. Dẫn đờng các robot dịch chuyển, điều khiển tay máy công nghiệp là lĩnh vực nhu cầu ứng dụng các cảm biến vi gọn nhẹ, giá thành hạ. Trong bài báo này đa ra tổng quan về các gia tốc kế con quay chế tạo bằng công nghệ vi cơ, đa ra những vấn đề trong thiết kế, chế tạo các cảm biến quán tính, đa ra xu hớng phát triển của các cảm biến này. Do khuôn khổ của bài báo , các vấn đề sâu hơn về mô phỏng, thiết kế công nghệ chế tạo thể tham khảo các tài liệu [1 - 5]. 2. Gia tốc kế vi Gia tốc kế là một cảm biến gia tốc chuyển động của đối tợng (gia tốc các lực không bản chất trờng gây ra). Hình 1: Sơ đồ cấu trúc mô hình của gia tốc kế vi kiểu điện dung Một gia tốc kế gồm một khối lợng M treo trên các dầm một hằng số đàn hồi K một hệ số giảm chấn (D. Gia tốc kế thể đợc mô hình bởi một hệ thống khối trọng - giảm chấn - lò xo (Hình 1. Mô hình gia tốc kế trên phơng trình hàm truyền: 2 22 2 11 )( )( )( r r s Q s M K s M D s s sx sH ++ = ++ == (1) trong đó là gia tốc bên ngoài, x là chuyển dịch của khối trọng, M/K r = là tần số cộng hởng tự nhiên, D/KMQ = là hệ số phẩm chất. Độ nhạy tĩnh của gia tốc kế đợc chỉ ra là: 2 r static 1 K Mx == (2) Rõ ràng là tần số cộng hởng của cấu trúc thể đợc tăng bằng cách tăng hằng số lò xo giảm khối trọng, trong khi hệ số phẩm chất của thiết bị thể đợc tăng bằng cách giảm độ giảm chấn tăng khối trọng. Cuối cùng, phản ứng tĩnh của thiết bị thể đợc nâng cao bằng cách giảm tần số cộng hởng. Nguồn nhiễu tạp học chính cho thiết bị là do chuyển động Brown của các phần tử khí bao quanh khối trọng chuyển động Brown của hệ treo khối trọng. Nhiễu tạp tổng cộng tỉ lệ với gia tốc (TNEA) [m/s 2 / Hz] là [2] QM TK4 M TDK4 TNEA rB B == (3) trong đó K B là hằng số Boltzman T là nhiệt độ K. Công thức (3) chỉ rõ rằng để giảm nhiễu tạp học, hệ số phẩm chất khối trọng cần phải đợc tăng. Chỉ tiêu chất lợng của gia tốc kế thờng đợc đánh giá bằng độ nhậy, dải đo, độ trôi không, độ trôi do nhiệt độ, cũng nh khả năng chịu tác động của môi trờng (khả năng chịu va đập, quá tải .) Bảng 1 đa ra tóm tắt các tham số chất lợng của gia tốc kế cho các ứng dụng khác nhau. Bảng 1 Thông số Trong công nghiệp ô tô Dùng cho dẫn đờng Giải 50g (gối khí) 2g (hệ thống ổn định xe) 1g Giải tần số DC 400 Hz DC 100Hz Độ phân giải <100mg (gối khí) <10mg (hệ thống ổn định xe) <4 à g Độ nhạy lệch trục <5% <0,1% Độ không tuyến tính <2% <0,1% Chịu va đập tối đa trong 1 ms >2000g >10g Nhiệt độ làm việc -40 0 C tới 85 0 C -40 0 C tới 80 0 C Bù trừ nhiệt độ trôi <60mg/ 0 C <50 à g/ 0 C Bù trừ nhiệt độ của độ nhạy <900 phần triệu/ 0 C 50 phần triệu/ 0 C Tuỳ thuộc vào nguyên lý lấy tín hiệu ra, gia tốc kế vi thờng đợc chế tạo theo kiểu áp trở kiểu điện dung. 3 1)Các thiết bị áp điện trở. (hình vẽ 2.) Một trong các gia tốc kế vi thơng mại đầu tiên, chế tạo bằng công nghệ vi [7] là áp điện trở. Các gia tốc kế này các áp điện trở bán dẫn trên dầm đỡ của chúng. Khi khung đỡ chuyển dịch tơng đối so với khối trọng, các dầm treo sẽ kéo dài ra hay ngắn lại, điều này sẽ thay đổi hình dạng áp lực của chúng do đó đến độ trở xuất của các áp điện trở nhúng của chúng. Các áp điện trở này thờng đợc đặt ở mép của vành đỡ khối trọng, chỗ sự thay đổi áp lực là lớn nhất. Do đó, một mạch bán cầu hay cả mạch cầu thể đợc tạo ra bằng cách sử dụng 2 hay 4 áp trở. Lợi thế chính của các gia tốc kế áp trở là sự đơn giản trong cấu trúc quy trình chế tạo, cũng nh mạch đọc đầu ra, do cầu điện trở tạo ra một trở kháng ra thấp. Tuy nhiên, các gia tốc kế áp trở độ nhạy nhiệt độ cao, độ nhạy toàn bộ thấp hơn so với các thiết bị cảm biến điện dung, do đó thờng phải sử một khối trọng lớn. Sự phát triển sớm của công nghệ vi khối kinh nghiệm thu đợc bởi nhiều công ty trong việc phát triển thơng mại hoá các cảm biến áp xuất dựa trên áp trở, đã giúp cho sự phát triển ban đầu của các gia tốc kế áp trở vi sử dụng công nghệ vi khối công nghệ hàn tấm bán dẫn [7 11]. Thiết bị đợc thông báo trong [7] sử dụng một tấm bán dẫn trung bình để tạo thành khối trọng các dầm, trong khi 2 tấm thuỷ tinh đợc hàn gắn trên dới che cấu trúc cung cấp khả năng chống va đập giảm chấn. Các thiết bị khác [8], [9] sử dụng một tấm sở thuỷ tinh hàn bên dới một tấm bán dẫn bên trên để chống va đập, đợc tạo ra bởi hàn khuyếch tán bán dẫn ăn mòn sở. Mới đây, việc chế tạo gia tốc kế vi áp trở với mạch giao diện CMOS đợc trình bày [10], [11], dựa trên sử dụng một quy trình chế tạo CMOS tiêu chuẩn thay đổi một ít để thiết kế mạch bù trừ nhiệt độ đọc đầu ra, ăn mòn khối tấm bán dẫn từ mặt sở để tạo ra cấu trúc thiết bị. Khả năng tự kiểm tra của các gia tốc kế vi áp trở là thể, bằng cách sử dụng lực phát động nhiệt [15] hay tĩnh điện [16]. Độ nhạy của tất cả các thiết bị này thông thờng trong khoảng 1-2mV/g trong giải 20-50g với một hệ số nhạy nhiệt độ không bù trừ (TCS) <0,2%/ 0 C. 2). Các thiết bị cảm biến điện dung.(Hình vẽ 3). Trong sự hiện diện của gia tốc bên ngoài, khung đỡ của một gia tốc kế chuyển dịch khỏi vị trí nghỉ của nó, qua đó thay đổi điện dung giữa khối trọng một điện cực cảm ứng cố định cách nó một khe hở nhỏ. Tụ xuất này thể đợc đo đợc bằng mạch điện tử. Các gia tốc kế tụ bán dẫn nhiều u điểm là do chúng rất hấp dẫn với nhiều ứng dụng, từ các gia tốc kế giá rẻ, số lợng sản xuất lớn trong ô tô [16], [17], tới các thiết bị đo vi gia tốc chính xác cao cấp quán tính [18]. Chúng độ nhạy cao, tính năng phản ứng với điện áp một chiều tốt ít nhiễu tạp, độ trôi nhỏ, ít nhạy cảm nhiệt độ, tiêu hao ít năng lợng cấu trúc đơn giản. Tuy Hình 2. Gia tốc kế kiểu áp điện Hình3. Gia tốc kế kiểu điện dung 4 nhiên các gia tốc kế tụ thể dễ bị ảnh hởng bởi nhiễu tạp điện từ (EMI), do cực cảm biến của chúng trở xuất lớn. Vấn đề này thể khắc phục đợc bằng bao gói đúng đắn che chắn gia tốc kế mạch giao diện của nó. 3.Con quay vi Hai thanh của âm thoa thực hiện dao động theo phơng Oy với tôc độ v(t)=A 0 sin( t), nếu đế của âm thoa quay theo trục Oz vơí tốc độ thì thanh chịu tác động của lực Coriolis biến thiên theo thời gian Fc(t)=2*v(t)* làm các thanh dao động theo phơng Ox, biên độ của dao động này tỷ lệ với tốc độ quay của đế . Hầu hết các con quay vi đều dựa trên nguyên lý này. Những chỉ tiêu chất lợng bản của con quay là: Độ phân giải, độ trôi,và độ ổn định của hệ số chuyển đổi. Một số yêu cầu tính năng của các con quay cho các mục đích khác nhau đợc đa ra ở bảng 2. Bảng 2 Thông số cấp độ đo cấp độ chiến thuật cấp độ quán tính Bớc góc ngẫu nhiên, 0 / h >0,5 0,5-0,05 <0,001 Độ trôi, 0 /h 10-1000 0,1-10 <0,01 Độ chính xác hệ số đo, % 0,1-1 0,01-0,1 <0,001 Dải đo toàn bộ ( 0 /s) 50-1000 500 400 Chịu va đập tối đa trong 1ms, gs 10 3 10 3 - 10 4 10 3 Độ rộng băng, Hz >70 -100 -100 Nói chung con quay thể đợc phân loại thành 3 nhóm khác nhau dựa trên tính năng của chúng: cấp độ quán tính, cấp độ chiến thuật cấp độ đo. Bảng 2 tóm tắt các yêu cầu cho mỗi cấp trong các nhóm này. Trong vài năm gần đây, hầu hết cố gắng trong phát triển con quay bán dẫn gia công vi tập trung vào các thiết bị cấp độ đo, chủ yếu do việc sử dụng chúng trong các ứng dụng ô tô. ứng dụng này đòi hỏi một dải đo toàn bộ ít nhất là 50 0 /s một độ phân giải khoảng 0,1 0 /s trong một độ rộng băng 50Hz, tất cả với giá thành từ 10-20USD. Nhiệt độ làm việc trong khoảng -40 đến 85 0 C. Đây Hầu hết tất cả các con quay gia công vi đợc thông báo đều sử dụng các phần t ử dao động khí để cảm nhận sự quay. Chúng không các phần quay đòi hỏi vòng bi, do đó thể dễ dàng thu nhỏ sản xuấ t hàng loạt sử dụng kỹ thuật gia công vi cơ. Tất cả các con quay dao động dựa trên chuyển đổi năng lợng giữ a hai chế độ dao động của một cấu trúc gây ra bởi gia tốc Coriolis. (Hình 4.) Hình 4. Minh hoạ hiệu ứng gia tốc Coriolis trong con quay dao động 5 cũng nhiều ứng dụng khác đòi hỏi các tính năng nâng cao, bao gồm định vị quán tính, dẫn đờng, ngời máy vài thiết bị điện tử dân dụng. Ngày nay các con quay quang học là những con quay chính xác nhất trên thị trờng. Trong chúng con quay laser mạch vòng thể hiện tính năng cấp độ quán tính, trong khi các con quay sợi quang đợc sử dụng chủ yếu trong các ứng dụng chiến thuật. Con quay cộng hởng bán cầu HRG của Delco là một con quay dao động đã đạt đợc tính năng cấp độ quán tính [15]. Mặc dù rất chính xác, các thiết bị này quá đắt cồng kềnh đối với nhiều ứng dụng giá thành thấp. Đạt các mức tính năng cấp độ quán tính cấp độ chiến thuật là một thách thức lớn với con quay gia công vi cơ, hiện nay nhiều công nghệ cách tiếp cận mới đang đợc phát triển. Do độ tơng thích lớn của chúng với các công nghệ chế tạo loạt, bài báo này chỉ tổng quan các con quay dao động bán dẫn gia công vi cơ. Phụ thuộc vào công nghệ chế tạo phần tử cảm biến, con quay vi thờng đợc chế tạo từ thạch anh silic. Đầu những năm 1980 một số hãng nh Systron Donner, Watson Industries ứng dụng thạch anh để chế tạo bộ cộng hởng của con quay vi (Hình 4). F kích thích coriolis F Hình 4: Con quay QRS11 của hãng Systron Donner (Mỹ) Con quay QRS11 khối lợng nhỏ (60g), độ trôi nhỏ hơn 10 0 /h. Những con quay nh thế này đã đợc ứng dụng trong hệ thống quán tính hiệu chỉnh GPS. Các con quay vi bằng thạch anh nhợc điểm kích thớc lớn, giá thành cao so với các thiết bị tơng đơng làm bằng silic. Silic không chỉ là vật liệu cho công nghiệp điện tử, mà là vật liệu kết cấu nhiều tính chất nổi trội: độ bền riêng cao, ma sát trong thấp, cho phép tạo ra các bộ cộng hởng học hệ số phẩm chất cao (50000 ữ 80000). Sau mẫu con quay vi đầu tiên của phòng thí nghiệm Draper với độ trôi 1000 0 /h, hiện nay phòng thí nghiệm Draper đã thiết kế, chế tạo đợc mẫu con quay vi độ chính xác cao tới 1 0 /h. Phát triển con quay vi kiểu quay-quay (R-R): một số hãng nh Silicon Sensing (Nhật), Trờng đại học IMIT (Đức) đã đa ra con quay vi bộ cộng hởng kiểu vòng kín. 6 Con quay là một vòng kín đợc liên kết đàn hồi với trụ đỡ bên trong. Dao động kích thích đợc tạo bởi cặp tụ điện. Khi tốc độ quay dọc trục đỡ, xuất hiện dao động thứ hai theo hớng y-y lệch so với trục dao động kích thích x-x một góc 45 0 với biên độ: zdrivegsense q Q Aq = 0 4 (4) ở đây: A g 0,37 - hằng số kết cấu Q - hệ số phẩm chất dao động 0 - tần số cộng hởng góc q drive - biên độ dao động kích thích z - tốc độ quay của đế Với kết cấu này hãng BAE đã chế tạo con quay dải đo 100 0 /s với độ nhậy là 0,05 0 /s (180 0 /h). Hãng Murata (Nhật bản) áp dụng kỹ thuật tạo lò xo âm cho một con quay vi theo kiểu tịnh tiến - tịnh tiến (L-L) đạt đợc độ trôi 0,013 0 /s (50 0 /h). Một số vấn đề chính trong việc thiết kế cảm biến quán tính MEMS: Bài toán đảm bảo chất lợng các cảm biến quán tính MEMS rất đa dạng, đòi hỏi giải quyết các vấn đề thuộc về học, điện tử, điều khiển-tin học công nghệ vật liệu. Dới đây là ra một số vấn đề những sai số chính của cảm biến quán tính MEMS cần chú ý giải quyết trong quá trình thiết kế: + Việc đảm bảo độ chính xác về phân bố khối lợng, quán tính của phần chuyển động dẫn đến mất cân bằng, độ cứng vững không đều kết quả không nhận đợc đặc trng dao động mong muốn, lệch tần số cộng hởng giữa dao động kích thích dao động cảm biến. + các cảm biến quán tính làm việc ở chế độ cộng hởng do vậy cần giải quyết vấn đề độ nhậy tỷ lệ 2 / 3 hằng số thời gian tỷ lệ với 2 / [19], cũng nh vấn đề độ rộng Hình 5: Cấu trúc con quay rung động vòng kín Hình 6: Mô hình con quay vi theo kiểu tịnh tiến - tịnh tiến 7 giải thông. Vấn đề này liên quan tới việc chọn các tham số kết cấu hợp lý nguyên lý xử lý tín hiệu ra ở chế độ mạch kín, hoặc hở; vấn đề tách tín hiệu trong nền nhiễu cùng tần số. + Vấn đề đảm bảo độ ổn định các tham số cơ, điện, điện tử dới tác động của quá tải, nhiệt độ. Giải quyết vấn đề này liên quan tới việc lựa chọn vật liệu độ ổn định cao, đồng thời hệ thống tự động bù trừ sai lệch trên. + Để giải quyết các vấn đề trên cần thiết đảm bảo độ chính xác kích thớc hình học cao (từ 1 à m ữ 10 -3 à m). Tuy nhiên, nếu chỉ bằng biện pháp công nghệ để đảm bảo độ chính xác của các cảm biến quán tính là rất khó khăn. Vấn đề đảm bảo chất lợng thể đạt đợc bằng các biện pháp thiết kế, tạo khâu bù trừ sai số công nghệ bằng lò xo điện âm hệ thống tự động bù trừ tham số. 4. Triển vọng xu hớng phát triển của cảm biến quán tính MEMS: Do việc giảm giá thành kích thớc, các cảm biến quán tính MEMS không ngừng phát triển vài năm lại đây. Tính từ năm 1991, đặc trng độ chính xác cảm biến quán tính MEMS tăng 10 lần trong 2 năm (Hình 7). Trong tơng lai gần, dự kiến xu hớng phát triển của các cảm biến quán tính MEMS của phòng thí nghiệm Draper nh trong Hình 7. Tơng lai xa hơn các cảm biến quán tính MEMS các cảm biến quán tính vi-cơ-quang-điện tử mới xuất hiện sẽ thay thế các cảm biến quán tính cổ điển điện ở cấp chính xác thấp trung bình. Tại nớc ta, trong thời gian gần đây cũng đã bắt đầu các nghiên cứu hớng tới chế tạo ứng dụng các cảm biến quán tính MEMS trong thực tế, cụ thể ngiên cứu chế tạo con quay vi tại Viện Tên Lửa thuộc Trung tâm KHKT CNQS chế tạo gia tốc kế vi tại trung tâm ITIMS của trờng ĐHBK. Các mẫu đầu tiên đang đợc thiết kế thử nghiệm. Những cố gắng này thể hiện sự cố gắng của các nhà khoa học nớc ta cố gắng khắc phục khó khăn để đa nền khoa học nớc nhà vơn lên kịp với sự phát triển khoa học trên thế giới. Tài liệu tham khảo: 1. Navid Yazdi, Farrokh Ayazi, Khalil Najafi: Micromachined Inertial Sensors, Proceeding of the IEEE, Vol. 86, No. 8, August 1998 2. Neil Barbour, George Schmidt: Inertial Sensor Technology Trends, Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles, 20-21 August 1998, Cambridge, MA, pp. 55-62 3. John R. Dowdle, Karl W. Fluekiger: A GPS/INS Guidance System for Navy 5 Projectiles, paper presented at the Institute of Navigations 52nd Annual Meeting, Cambridge, MA, 19-21 June 1996. 4. Hiroshi Kawai, Ken-Ichi Atsuchi, Masaya Tamura, Kuniki Ohwada: High-resolution microgyroscope using vibratory motion adjustment technology, Sensors and Actuators A 90 (2001) 153-159 5. Farrkh Ayazi, Khalil Najafi: A HARPSS Polysilicon Vibrating Ring Gyroscope 1 , Journal of Microelectromechanical Systems, Vol. 10, No. 2, June 2001 169 Hình 7 : Dự kiến xu hớng phát triển của cảm biến quán tính MEMS 8 6. L. M. Roylance and J. A. Angell, “A batch-fabricated silicon accelerometer,” IEEE Trans. Electron Devices, vol. ED-26, pp. 1911–1917, Dec. 1979. 7. P. W. Barth, F. Pourahmadi, R. Mayer, J. Poydock, and K. Petersen, “A monolithic silicon accelerometer with integral air damping and overrange protection,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1988, pp. 35–38. 8. F. Pourahmadi, L. Christel, and K. Petersen, “Silicon ac-celerometer with new thermal self-test mechanism,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1992, pp. 122–125. 9. H. Allen, S. Terry, and D. De Bruin, “Accelerometer system with self-testable features,” Sensors Actuators, vol. 20, pp. 153–161, 1989. 10. W. Reithmuller, W. Benecke, U. Schnakenberg, and B. Wagner, “A smart accelerometer with on-chip electronics fabricated by a commercial CMOS process,” Sensors Actuators, vol. A-31, pp. 12–124, 1992. 11. H. Seidel, U. Fritsch, R. Gottinger, and J. Schalk, “A piezoresistive silicon accelerometer with monolithically integrated CMOS-circuitry,” in Tech. Dig. 8th Int. Conf. Solid-State Sensors and Actuators (Transducers’95), Stockholm, Sweden, June 1995, pp. 597–600. 12. H. Lefevre, The Fiber-Optic Gyroscope. Norwood, MA: Artech House, 1993. 13. A. Lawrence, Modern Inertial Technology: Navigation, Guid-ance, and Control, New York: Springer-Verlag, 1993. 14. M. W. Putty and K. Najafi, “A micromachined vibrating ring gyroscope,” in Tech. Dig. Solid-State Sensor and Actuator Work-shop, Hilton Head Island, SC, June 1994, pp. 213–220. 15. R. R. Ragan and D. D. Lynch, “Inertial technology for the future, Part X: Hemispherical resonator gyro,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-20, p. 432, July 1984. 16. S. J. Sherman, W. K. Tsang, T. A. Core, R. S. Payne, D. E. Quinn, K. H. Chau, J. A. Farash, and S. K. Baum, “A low-cost monolithic accelerometer: Product/technology update,” in Tech. Dig. IEEE Electron Devices Meeting (IEDM’92), Dec. 1992, pp. 160–161. 17. L. Ristic, R. Gutteridge, J. Kung, D. Koury, B. Dunn, and H. Zunino, “A capacitive type accelerometer with self-test feature based on a double-pinned polysilicon structure,” in Tech. Dig. 7th Int. Conf. Solid-State Sensors and Actuators (Transducers’93), Yokohama, Japan, June 1993, pp. 810–812. 18. F. Rudolf, A. Jornod, and P. Bencze, “Silicon microaccelerom-eters,” in Tech. Dig. 4th Int. Conf. Solid-State Sensors and Actuators (Transducers’87), Tokyo, Japan, June 1987, pp. 376–379. 19. M. W. Putty, “A micromachined vibrating ring gyroscope,” PhD. Dissertation, Univ. Michigan, Ann Arbor, Mar. 1995. . 1 Xu hớng phát triển và ứng dụng của cảm biến quán tính vi cơ điện (con quay, gia tốc kế) Tác giả: Nguyễn Văn Chúc, Trần. kết cấu của một số cảm biến quán tính vi cơ điện, phân tích một số vấn đề liên quan tới thiết kế, công nghệ và ứng dụng các cảm biến quán tính vi cơ điện

Ngày đăng: 16/10/2013, 12:15

Hình ảnh liên quan

Hình 1: Sơ đồ cấu trúc và mô hình cơ của gia tốc kế vi cơ kiểu điện dung - Xu hướng phát triển và ứng dụng của cảm biến quán tính vi cơ điện ( con quay, gia tốc kế)

Hình 1.

Sơ đồ cấu trúc và mô hình cơ của gia tốc kế vi cơ kiểu điện dung Xem tại trang 1 của tài liệu.
2). Các thiết bị cảm biến điện dung.(Hình vẽ 3). Trong sự hiện diện của gia tốc bên - Xu hướng phát triển và ứng dụng của cảm biến quán tính vi cơ điện ( con quay, gia tốc kế)

2.

. Các thiết bị cảm biến điện dung.(Hình vẽ 3). Trong sự hiện diện của gia tốc bên Xem tại trang 3 của tài liệu.
(hình vẽ 2.) Một trong các gia tốc kế vi cơ th−ơng mại đầu tiên, chế tạo bằng công  nghệ vi cơ [7] là áp điện trở - Xu hướng phát triển và ứng dụng của cảm biến quán tính vi cơ điện ( con quay, gia tốc kế)

hình v.

ẽ 2.) Một trong các gia tốc kế vi cơ th−ơng mại đầu tiên, chế tạo bằng công nghệ vi cơ [7] là áp điện trở Xem tại trang 3 của tài liệu.
Hình 4. Minh hoạ hiệu ứng gia tốc - Xu hướng phát triển và ứng dụng của cảm biến quán tính vi cơ điện ( con quay, gia tốc kế)

Hình 4..

Minh hoạ hiệu ứng gia tốc Xem tại trang 4 của tài liệu.
Bảng 2 - Xu hướng phát triển và ứng dụng của cảm biến quán tính vi cơ điện ( con quay, gia tốc kế)

Bảng 2.

Xem tại trang 4 của tài liệu.
Hình 4: Con quay QRS11 của hãng Systron Donner (Mỹ) - Xu hướng phát triển và ứng dụng của cảm biến quán tính vi cơ điện ( con quay, gia tốc kế)

Hình 4.

Con quay QRS11 của hãng Systron Donner (Mỹ) Xem tại trang 5 của tài liệu.
Hình 5: Cấu trúc con quay rung động vòng kín - Xu hướng phát triển và ứng dụng của cảm biến quán tính vi cơ điện ( con quay, gia tốc kế)

Hình 5.

Cấu trúc con quay rung động vòng kín Xem tại trang 6 của tài liệu.
+ Để giải quyết các vấn đề trên cần thiết đảm bảo độ chính xác kích th−ớc hình học cao (từ 1àmữ10-3àm) - Xu hướng phát triển và ứng dụng của cảm biến quán tính vi cơ điện ( con quay, gia tốc kế)

gi.

ải quyết các vấn đề trên cần thiết đảm bảo độ chính xác kích th−ớc hình học cao (từ 1àmữ10-3àm) Xem tại trang 7 của tài liệu.

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan