Nghiên cứu tổn thất truyền âm qua tấm composite sandwich và ứng dụng vào giảm ồn tàu thủy

193 44 0
Nghiên cứu tổn thất truyền âm qua tấm composite sandwich và ứng dụng vào giảm ồn tàu thủy

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC NHA TRANG ĐINH ĐỨC TIẾN NGHIÊN CỨU TỔN THẤT TRUYỀN ÂM QUA TẤM COMPOSITE SANDWICH VÀ ỨNG DỤNG VÀO GIẢM ỒN TÀU THỦY LUẬN ÁN TIẾN SĨ KHÁNH HÒA – 2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC NHA TRANG ĐINH ĐỨC TIẾN NGHIÊN CỨU TỔN THẤT TRUYỀN ÂM QUA TẤM COMPOSITE SANDWICH VÀ ỨNG DỤNG VÀO GIẢM ỒN TÀU THỦY Ngành đào tạo: Kỹ thuật khí động lực Mã số: LUẬN ÁN TIẾN SĨ NGƯỜI HƯỚNG DẪN KHOA HỌC: GS TS TRẦN ÍCH THỊNH TS NGUYỄN VĂN ĐẠT KHÁNH HÒA – 2019 LỜI CAM ĐOAN Tôi xin cam đoan kết nghiên cứu luận án: “Nghiên cứu tổn thất truyền âm qua composite sandwich ứng dụng vào giảm ồn tàu thủy” cơng trình nghiên cứu cá nhân tơi Các số liệu, kết luận án trung thực chưa công bố công trình khoa học khác thời điểm Khánh Hòa, ngày 23 tháng 07 năm 2019 Tác giả luận án Đinh Đức Tiến iii LỜI CẢM ƠN Trong suốt thời gian thực đề tài, nhận giúp đỡ Ban Giám hiệu, quý Phòng, Khoa, Viện, Trung tâm Trường Đại học Nha Trang, tạo điều kiện tốt cho tơi hồn thành đề tài Đặc biệt hướng dẫn khoa học tận tình GS.TS Trần Ích Thịnh TS Nguyễn Văn Đạt giúp tơi hồn thành tốt đề tài Qua đây, xin gửi lời cảm ơn sâu sắc đến giúp đỡ Xin chân thành cảm ơn cán kỹ thuật Trung tâm thí nghiệm thực hành, Trường Đại học Nha Trang Trung tâm đo lường, Viện đo lường Việt Nam tạo điều kiện q trình thực nghiệm đề tài Tơi xin chân thành cảm ơn Quý Thầy Khoa Kỹ Thuật Giao Thông, Trường Đại học Nha Trang cung cấp thông tin đóng góp quý báu cho luận án Xin chân thành cảm ơn: - TS Mai Đức Nghĩa, Trường sỹ quan Không quân Nha Trang - Th.S Phạm Ngọc Thành, Trường Đại học Cơng nghiệp Việt Trì, Phú Thọ Tôi xin chân thành cảm ơn cán kỹ thuật, Viện nghiên cứu chế tạo Tàu thủy, Trường Đại học Nha Trang, hỗ trợ nhân lực trang thiết bị để q trình thực nghiệm hồn thành Tơi xin gửi lời cảm ơn đến gia đình, bạn bè đồng nghiệp giúp đỡ, động viên tơi suốt q trình học tập nghiên cứu thực luận án Xin chân thành cảm ơn! Khánh Hòa, ngày 23 tháng 07 năm 2019 Tác giả luận án Đinh Đức Tiến iv MỤC LỤC LỜI CAM ĐOAN iii LỜI CẢM ƠN iv MỤC LỤC v DANH MỤC KÝ HIỆU ix DANH MỤC CHỮ VIẾT TẮT xi DANH MỤC BẢNG xii DANH MỤC HÌNH xiv TÓM TẮT NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN xviii MỞ ĐẦU CHƯƠNG TỔNG QUAN VỀ ĐỀ TÀI NGHIÊN CỨU 1.1 Giới thiệu vật liệu composite sandwich 1.1.1 Khái niệm, cấu tạo 1.1.2 Phân loại 1.1.3 Phạm vi ứng dụng 10 1.2 Vật liệu composite sandwich dùng tàu thủy 10 1.2.1 Vật liệu lớp da 11 1.2.2 Vật liệu lõi 14 1.2.3 Đặc điểm công nghệ thi công 16 1.3 Lý thuyết truyền âm 17 1.3.1 Sóng âm 17 1.3.2 Tần số, bước sóng, biên độ 18 1.3.3 Mức áp suất âm, cường độ âm 19 1.4 Một số kết nghiên cứu liên quan đến luận án 23 1.4.1 Tình hình nghiên cứu tổn thất truyền âm vật liệu composite sandwich 23 1.4.2 Nhận xét chung chương 35 1.5 Kết luận chương 35 v CHƯƠNG NGHIÊN CỨU THỰC NGHIỆM XÁC ĐỊNH TỔN THẤT TRUYỀN ÂM QUA TẤM COMPOSITE SANDWICH 36 2.1 Khai triển công thức thực nghiệm theo phương pháp phân tích thống kê lượng 36 2.1.1 Giới thiệu 36 2.1.2 Giả thiết khái niệm 37 2.1.3 Công thức thực nghiệm xác định tổn thất truyền âm 40 2.2 Mục đích thực nghiệm 42 2.2.1 Mơ tả phòng thí nghiệm 42 2.2.2 Phương pháp chế tạo mẫu thử 46 2.2.3 Phương pháp đo 47 2.2.4 Quy trình số lượng điểm đo 47 2.2.5 Các thông số cần đo 48 2.2.6 Tiêu chuẩn áp dụng 48 2.2.7 Kiểm tra độ tin cậy 48 2.3 Kết thực nghiệm đo STL qua mẫu composite sandwich 50 2.3.1 Mẫu composite sandwich M2 50 2.3.2 Mẫu composite sandwich M3 52 2.3.3 Mẫu composite sandwich M4 53 2.3.4 Mẫu composite sandwich M5 55 2.3.5 Mẫu composite sandwich M6 56 2.3.6 Mẫu composite sandwich M7 58 2.3.7 Mẫu composite sandwich M8 59 2.3.8 Mẫu composite sandwich M9 61 2.3.9 Mẫu composite sandwich M10 62 2.3.10 Mẫu composite sandwich M11 64 2.3.11 Nhận xét chung chương 65 2.4 Kết luận chương 66 vi CHƯƠNG NGHIÊN CỨU TÍNH TỐN TỔN THẤT TRUYỀN ÂM QUA TẤM COMPOSITE SANDWICH DÙNG TRONG CHẾ TẠO KẾT CẤU TÀU THỦY 67 3.1 Lý thuyết composite sandwich 67 3.1.1 Trường chuyển vị, biến dạng ứng suất 68 3.1.2 Phương trình quan hệ nội lực biến dạng composite sandwich 68 3.2 Xây dựng mơ hình xác định tổn thất truyền âm qua composite sandwich 70 3.2.1 Mô tả lý thuyết 70 3.2.2 Tổn thất truyền âm composite sandwich 76 3.2.3 Xác định độ cứng uốn biểu kiến composite sandwich 77 3.2.4 Xác định tần số dao động riêng dầm composite sandwich 80 3.2.5 Xác định độ cứng uốn biểu kiến dầm dải tần số 1/3 Octave 89 3.3 Xác định tổn thất truyền âm A – K 97 3.4 So sánh kết tính tốn lý thuyết thực nghiệm 102 3.4.1 So sánh kết tính tốn lý thuyết thực nghiệm A 102 3.4.2 So sánh kết tính tốn lý thuyết thực nghiệm K 102 3.5 So sánh giá trị STL theo nhóm kết cấu 103 3.5.1 Tấm có khối lượng riêng lớp lõi khác nhau, chiều dày lớp da, chiều dày lớp lõi: Tấm A Tấm C; Tấm I Tấm K 103 3.5.2.Tấm có chiều dày lớp da khác nhau, chiều dày lớp lõi, khối lượng riêng lớp lõi: E F; G H 105 3.5.3.Tấm có chiều dày lớp lõi khác nhau, chiều dày lớp da, khối lượng riêng lớp lõi: Tấm E G; F H 108 3.6 Nhận xét chung chương 110 3.7 Kết luận chương 110 CHƯƠNG NGHIÊN CỨU ỨNG DỤNG GIẢM ỒN BUỒNG MÁY TÀU KHÁCH VỎ COMPOSITE 112 4.1 Đặt vấn đề 112 4.2 Các phương pháp giảm ồn động diesel (máy chính) lắp đặt tàu khách vỏ composite 113 vii 4.2.1 Tiếng ồn từ động 113 4.2.2 Các phương pháp giảm ồn động diesel tàu thủy 117 4.3 Một số nhận xét 119 4.4 Ứng dụng giảm ồn buồng máy tàu khách vỏ composite 120 4.4.1 Giới thiệu chung tàu nghiên cứu 121 4.4.2 Các thơng số 121 4.4.3 Thông số động 121 4.4.4 Bố trí chung tồn tàu 122 4.4.5 Nắp buồng máy 122 4.5 Kết đo độ ồn tàu GW01 hoạt động 123 4.5.1 Phương pháp, thiết bị, vị trí đo quy trình đo 123 4.5.2 Kết đo 124 4.6 Phương án xử lý độ ồn 128 4.6.1 Kết đo độ ồn tàu VQGNC hoạt động 129 4.6.2 So sánh kết đo độ ồn hai tàu 132 4.6.3 Nhận xét chung chương 135 4.7 Kết luận chương 135 KẾT LUẬN VÀ KHUYẾN NGHỊ 137 DANH MỤC CÁC CƠNG TRÌNH NGHIÊN CỨU ĐÃ CƠNG BỐ CỦA TÁC GIẢ CÓ LIÊN QUAN ĐẾN LUẬN ÁN 139 TÀI LIỆU THAM KHẢO 140 PHỤ LỤC viii DANH MỤC KÝ HIỆU CHỮ LA TINH Aij : Các thành phần ma trận độ cứng màng; A-K : Ký hiệu composite sandwich thứ tự từ A đến K AP Bs : Tạp âm nền; Bij : Các thành phần ma trận tương tác màng – uốn – xoắn; c : Vận tốc âm (m/s); cυ : Hệ số co dãn độ nhớt; Di : Các thành phần ma trận độ cứng uốn; j Dx Dy : Độ cứng uốn theo phương x (Nm); : Độ cứng uốn theo phương y (Nm); E : Mô đun Young (GPa); ƒ : Tần số (Hz); h : Chiều dày mẫu (m); I k : Cường độ âm (W/m ); : Số sóng; L1 : Mức áp suất âm trung bình đo tron L2 : Mức áp suất âm trung bình đo tron LP : Áp suất âm (dB); m : Khối lượng (kg); m* : Khối lượng bề mặt M2 : Mẫu composite sandwich M M3 : Mẫu composite sandwich M M4 : Mẫu composite sandwich M M5 : Mẫu composite sandwich M M6 : Mẫu composite sandwich M M7 : Mẫu composite sandwich M M8 : Mẫu composite sandwich M M9 : Mẫu composite sandwich M M10 : Mẫu composite sandwich M M11 : Mẫu composite sandwich M P0 : Áp suất âm đối chiếu (dB); PA PU1 PU2 PU3 PU4 : Áp suất âm tức thời (dB); : Foam PU có tỷ trọng 46,88kg/m3 ; : Foam PU có tỷ trọng 57,87kg/m3 ; PU5 S2 STL : Foam - PU có tỷ trọng 218,14kg/m3 ; T : Tổng diện tích bề mặt phía phòng thu (m2); T2 : Tổn thất truyền âm - Sound Transmission Loss (dB); t1 : Chu kỳ sóng (s); t2 : Thời gian vang phòng thu (s); tc : Chiều dày lớp da (m); : Chiều dày lớp da (m); : Chiều dày lớp lõi (m); u : Vận tốc dao động phần tử (m/s); W : Năng lượng lưu trữ nhiệt (J); w : Chuyển vị uốn (m); : Sợi thủy tinh dệt vng gó WR800 Z : Trở kháng âm; CHỮ HY LẠP s α2 ρ0 : Hệ số hấp thụ trung bình tr ζ : Tỷ số giảm chấn; λ : Bước sóng (m); Π : Năng lượng dao động (J); ρ : Tỷ trọng (kg/m ); 3 : Tỉ trọng khơng khí (kg/m ) τ : Hệ số truyền vách ngăn; υ : Hệ số Poisson; Φi : Hàm vận tốc trường âm thanh; ωn : Tần số góc (rad/s) x 139 TÀI LIỆU THAM KHẢO TIẾNG VIỆT [1] Nguyễn Chu Mộng Ngọc, 2005, Phân tích liệu nghiên cứu với SPSS Nhà xuất Thống kê [2] Nguyễn Tiến Khiêm, “Nghiên cứu biện pháp giảm rung cho tàu thuỷ loại nhỏ làm từ vật liệu composite” Đề tài cấp Bộ 2006 – 2007 [3] Nguyễn Văn Đạt, 2004, “Tính tần số dao động riêng cụm kết cấu bệ máy - đáy tàu vỏ composite” Hội nghị toàn quốc Cơ học vật rắn biến dạng lần thứ VII, Đồ Sơn 27-28/8/2004 [4] Nguyễn Văn Đạt, 2005, Nghiên cứu kết cấu hợp lý hệ thống bệ máy tàu cá vỏ composite toán chống rung, luận án tiến sĩ kỹ thuật Mã số 2.03.05 [5] Nguyễn Xuân Cường, 2012, Ô nhiễm tiếng ồn kiểm soát, Phân hiệu Đại học Huế Quảng Trị [6] Phạm Văn Thu, 2010, “Tính tốn giảm ồn cho tàu Catamaran – 01” Đề tài thực nghiệm Viện Nghiên cứu chế tạo Tàu thủy 2010 [7] Phòng Lab Viện nghiên cứu chế tạo Tàu thủy (3-2015), “Kết thử nghiệm tính vật liệu composite sandwich” [8] QCVN 80:2014/BGTVT, Quy chuẩn kỹ thuật Quốc gia kiểm soát tiếng ồn tàu biển [9] Tiêu chuẩn ISO 3382 (2009) [10] [11] Tiêu chuẩn ISO 717 – (2013) Tiêu chuẩn ISO 140 - 4: 1998 [12] Trần Ích Thịnh, 1994, Vật liệu composite – học tính tốn kết cấu, Nhà xuất Giáo Dục [13] Trần Minh Tú, Trần Ích Thịnh, 2016, Cơ học Vật liệu & Kết cấu composite Nhà xuất Xây dựng [14] [15] UNINSHIP (2015) “Hồ sơ thiết kế kỹ thuật tàu Green World 01” UNINSHIP (2016) “Hồ sơ thiết kế kỹ thuật tàu Vườn Quốc Gia Núi Chúa” TIẾNG ANH [16] Acoustics-Determination of sound power levels of noise sources— Precision methods for broad-band sources in reverberation rooms, International Standard ISO 3741-88 (E), 1998, International Organization of Standardization, Geneva, Switzerland [17] Allard, J.F., Bourdier, R., Depollier, C., 1986, “Biot waves in layered media”, JAppl Phys, vol 60, no 6, pp 1926–9 [18] American Bureau of Shipping, 1978, Rules for building and classing Reinforced plastic vessels [19] ASM International Metals Park, 1987, Engineered Materials Handbook Vol Composites Ohio: ASM International Metals Park 140 [20] ASTM standard method for laboratory measurement of airborne sound transmission loss of building partitions and elements using sound intensity, American Standard ASTM 2249-02(E), (2002) [21] ASTM standard method for laboratory measurement of airborne sound transmission loss of building partitions and elements, American Standard ASTM 90-02(E), (1990) [22] ASTM standard specification for reference specimen for sound transmission loss, American Standard ASTM 1289-91(E), (1991) [23] Backstrom, D., and Nilsson, A.C., 2007, “Modelling the Vibration of Sandwich Beams Using Frequency-Dependent Parameters”, J Sound Vib, 300, pp 589–611 [24] Barisciano, L.P., 1999, “Broadband transmission loss due to reverberant excitation”, NASA/CR, pp.209 - 687 [25] Barton, C.K., Mixon, J.S.,1981, “Noise Transmission and Control for Light Twin-Engine Aircraft”, Journal of Aircraft [26] Bart-Smith, H., Cote, F., Biagi, R., Deshpande, V.S., Structural response of pyramidal core sandwich columns, International Journal of Solid and Structures, May 2007 [27] Biot, M.A., Willis, D.G.,1957, “The elastic coefficients of the theory of consolidation”, J Appl Mech, vol 24, no 2, pp.594–601 [28] Blaise, A., Lesueur, C., 1994, “Acoustic transmission through a 3Dorthotropic multi-layered infinite cylindrical shell”, part II: validationandnumerical exploitation for large structures J Sound Vib, vol 171, no 5, pp.665–80 [29] Borelli, D., Gaggero, T., Rizzuto, E., Schenone, C., 2015, “Analysis of noise on board a ship during navigation and manoeuvres”, Ocean Engineering, Vol 105, pp 256-269 [30] Bosman, I., Mess, P., Vermeir, G., 1996, “Structure-borne sound transmission between thin orthotropic plates”: analytical solutions J Sound Vib, vol 191, no 1, p p.75–90 [31] Brouard, B., Lafarge, D., Allard, J.F., 1995, “Ageneralmethodofmodeling sound propagation in layered media”, J Sound Vib, vol, 183, no 1, pp.129–42 [32] Brown, K.T., 1984, “Measurement of modal density an improved technique for use on lightly damped structures”, Journal of Sound and Vibration, vol 96, pp 127-132 [33] Brown, K.T., and Norton, M.P., 1985, “Some comments on the experimental determination of modal densities and loss factors for statistical energy analysis application”, Journal of Sound and Vibration, vol 102, pp 588594 [34] Chandra, N., Raja, S., and Gopal, K.N., 2014, Vibro-acoustic response and sound transmission loss analysis of functionally graded plates Journal of Sound and Vibration, 333(22), p 5786-5802 141 [35] Cherif, R., And Atalla, N., 2015, “Experimental investigation of the accuracy of a vibroacoustic model for sandwich-composite panels”, The Journal of the Acoustical Society of America, vol 137, no 3, pp 1541-1550 [36] Clarkson, B.L., and Pope, R.J., 1981, “Experimental determination of modal densities and loss factors of flat plates and cylinders”, Journal of Sound and Vibration, vol 77, pp 535-549 [37] Clarkson, B.L., and Ranky, M.F., 1983, “Modal density of honeycomb plates”, Journal of Sound and Vibration, vol 91, pp 103-118 [38] Crane, S.P., Cunefare, K.A., Engelstad, S.P., Powell, E.A., 1997, “A Comparison of Optimization Formulations for Design Minimization of Aircraft Interior Noise”, Journal of Aircraft [39] Cremer, L., Heckl, M., and Ungar, E.E., 1973, Structure-borne sound, Springer-Verlag, New York [40] Crocker, M.J., and Price, A.J., 1969, “Sound transmission using statistical energy analysis”, Journal of Sound and Vibration, vol 9, pp 469-486 [41] D'Alessandro, V., 2013, “A review of the vibroacoustics of sandwich panels: Models and experiments”, Journal of Sandwich Structures and Materials, vol 15, no 5, pp 541 -582 [42] Desphande, V.S., Fleck, N.A., 2001, “Collapse of Truss Core Sandwich Beams in 3-Point Bending”, International Journal of Solid and Structures, April [43] Diesel Engine Noise [44] Dym, C.L., and Lang, D.C., 1983, “Transmission loss of damped symmetric sandwich panels with orthotropic cores”, Journal of Sound and Vibration, vol 88, pp 299-319 [45] Dym, C.L., and Lang, M.A., 1974, “Transmission of sound through sandwich panels”, Journal of the Acoustical Society of America, vol 56, pp 1523-1532 [46] Edired by R.A Shenoi and J.F Wellicome, “Composite Materials in Maritime Structures”, Vol [47] Edited by S.T Peters, Handbook of Composites, Published by Chapman & Hall, London ISBN 412 54020 7, 1998 [48] Edoardo Alessio Piana, Candida Petrogalli, Diego Paderno and Ulf Carlsson, 2018, “Application of the Wave Propagation Approach to Sandwich Structures”, Vibro-Acoustic Properties of Aluminum Honeycomb Materials, Article in Applied Sciences, January [49] Eichler, E., 1965, “Thermal circuit approach to vibration in coupled systems and the noise reduction of a rectangular box”, Journal of the Acoustical Society of America, vol 37, pp 995-1007 [50] El-Raheb, M., 1997, “Frequeny Response of a Two-Dimensional Trusslike Periodic Panels”, Journal of Acoustical Society of America [51] El-Raheb, M., Wagner, P., 1997, “Transmission of Sound Across a Trusslike Periodic Panel; 2-D Analysis”, Journal of Acoustical Society of America 142 [52] Experimental Study Report on Noise Reduction in Ship ccommodation Spaces [53] Ferguson, N.S., and Clarkson, B.L., 1986, “The modal density of honeycomb shells”, Journal of vibration, Acoustics, Stress, and Reliability in Design, vol 108, pp 399-404 [54] Ford, R.D., Lord, P., and Walker, A.W., 1967, “Sound transmission through sandwich constructions”, Journal of Sound and Vibration, vol 5, pp 921 [55] Gomperts, M.C., 1974, “Radiation from rigid baffled, rectangular plates with general boundary conditions”, Acustica, vol.30, pp 320-327 [56] Grosveld, F.W., 1999, “Calibration of the structural acoustical loads and transmission facility at NASA Langley research center”, InterNoise 99 [57] Grosveld, F.W., Mixson, J.S., 1985, “Noise Transmission Though an Acoustically Treated and Honeycomb-Stiffened Aircraft Sidewall”, Journal of Aircraft [58] Guyader, J.L., Boisson, C., Lesueur, C., 1982, “Energy transmission in finite coupled plates, J Sound Vib, vol 87, Part I: theory, pp 81–92 [59] Heckl, M., 1981, The tenth sir Richard fairey memorial lecture: Sound transmission in buildings Journal of Sound and Vibration, 77 (2), p 165-189 [60] Huang, W., and Ng, C., 1953, “Sound insulation improvement using honeycomb sandwich panels”, Applied Acoustics, vol 53, pp 163-177 [61] Hwang, S., 2015, “Prediction of sound reduction index of double sandwich panel”, Applied Acoustics, vol 93, p 44-50 [62] ISO 140 - (1998) [63] ISO-3740 Acoustics - determination of sound power levels - guidelines for the use of basic standards, 2000 [64] Jackson, P., 2003, “Design and construction of a small reverberation chamber”, SAE International Noise and Vibration Conference and Exhibition [65] Jones, R.E., 1981, “Field sound insulation of load-bearing sandwich panels for housing”, Noise Control Engineering, vol 16, pp 90-105 [66] Keswick, P.R., and Norton, M.P., 1987, “A comparison of modal density measurement techniques”, Applied Acousticsm, vol 20, pp 137-153 [67] Kumar, S., Feng, L., and Orrenius, U., 2011, “Predicting the Sound Transmission Loss of Honeycomb Panels Using the Wave Propagation Approach”, Acta Acust Acust, vol 97, pp 869–876 [68] Kurt, R.E., Khalid, H., Turan, O., Houben, M., Bos, J., Helvacioglu, I.H., 2016, “Towards human-oriented norms: Considering the effects of noise exposure on board ships”, Ocean Engineering, Vol 120, pp 101-107 [69] Kurtze, G, Watters, B.G., 1959, “New Wall Design for High Transmission Loss or High Damping”, Journal of Acoustical Society of America [70] Lang, M.A., Dym, C.L., 1975, “Optimal Acoustic Design of Sandwich Sandwich”, Journal of Acoustical Society of America 143 [71] Lin, H.J., Wang, C.N., Kuo, Y.M., 2007, “Sound transmission loss across orthotropic composite laminate”, Appl Acoust, vol 68, no 10, pp 1177– 1191 [72] Liu, Y., 2015, “Sound transmission through triple-panel structures lined with poroelastic materials”, Journal of Sound and Vibration, vol 339, pp 376395 [73] Lyon, R.H., 1963, “Noise reduction of rectangular enclosures with one flexible wall”, Journal of the Acoustical Society of America, vol 35, pp 17911797 [74] Lyon, R.H., and Maidanik, G., 1962, “Power flow between linearly coupled oscillators”, Journal of the Acoustical Society of America, vol 34, pp 623-639 [75] Lyon, R.H., and Scharton, T.D., 1965, “Vibrational-energy transmission in a three-element structure”, Journal of the Acoustical Society of America, vol 38, pp 253-261 [76] Maidanik, G., 1962, “Response of ribbed panels to reverberant acoustic fields”, Journal of the Acoustical Society of America, vol 34, pp 809-826 [77] Man B&W Noise Pollution Diesel Engines and the Environment – Noise [78] Mariem, J.B., and Hamdi, M.A., 1987, “A new boundary finite method for fluid-structure interaction problems”, International Journal for Numerical Methods in Engineering, vol 24, pp 1251-1267 [79] Mead, D.J., and Markus, S., 1969, “The force vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions”, Journal of Sound and Vibration, vol 10, pp 163-175 [80] Mindlin, R.D., 1951, “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates”, Journal of Applied Mechanics, vol 18, pp 31-38 [81] Moore, J.A., and Lyon, R.H., 1991, “Sound Transmission Loss Characteristics of Sandwich Panel Constructions”, J Acoust Soc Am., vol 89, pp 777–791 [82] Moore, J.A, R.H Lyon, R.H., 1978, “Mode Canceling panels for Greater Than Mass-Law”, Transmission Loss in the Principal Speech Bands, U.S Patent, no 4, pp 106,588 [83] Moore, J.A., 1975, “Sound Transmission Loss Characteristics of Three Layer Composite Wall Constructions”, Ph.D thesis, MIT, Cambridge, MA [84] Moore, J.A., and Lyon, R.H., 1991, “Sound transmission loss characteristics of sandwich panel constructions”, Journal of the Acoustical Society of America, vol 89, pp 777-791 [85] Naify, C.J., 2011, “Transmission loss of honeycomb sandwich structures with attached gas layers”, Applied Acoustics, vol 72, no 2–3, pp 71 - 77 [86] Nair, S., Sotiropoulos, D.A., 1997, “Elastic waves in orthotropic incompressible materials and reflection from an interface”, J Acoust Soc Am, vol 102, no 1, 102–9 [87] Nilsson, A.C., 1990, “Wave propagation in and sound transmission through sandwich plates”, Journal of Sound and Vibration 138, pp.73-94 144 [88] Nilsson, E., and Nilsson, A.C., 2002, “Prediction and Measurement of Some Dynamic Properties of Sandwich Structures With Honeycomb and Foam Cores”, J Sound Vib., vol 251, pp 409–430 [89] Oppenheimer, C.H., and S Dubowsky, S., 1997, “A radiation efficiency for unbaffled plates with experimental validation”, Journal of Sound and Vibration, vol 199, pp 473-489 [90] Pallett, D.S., Pierce, E.T., and Toth, D.D., 1976, “A small-scale multipurpose reverberation room”, Appl Acoust, vol 9, pp 287–302 [91] Pellicier, A., Trompette, N., 2007, “A review of analytical methods, based on the wave approach, to compute partitions transmission loss”, Applied Acoustics, vol 68, pp 1192–1212 [92] Pham Ngoc Thanh and Tran Ich Thinh, 2018, “The effect of several parameter on sound transmission loss across finite orthotropic composite th plates” Proceedings of the XIV National Coference on Mechanics of Solids, Ho Chi Minh City, 19-20/7/2018 [93] Porges, G., 1977, “Applied Acoustics”, John Wiley & Sons, New York [94] Price, A.J., and Crocker, M.J., 1970, “Sound transmission through double panels using statistical energy analysis”, Journal of the Acoustical Society of America, vol 47, pp 683-693 [95] Rajaram, S., Wang, T., and Nutt, S., 2006, “Sound transmission loss of honeycomb sandwich panels”, Noise Control Engineering Journal, vol 54, pp.106-115 [96] Ran Zhou, 2009, “Sound transmission loss of composite sandwich Panels”, Degree of Doctor of Philosophy, Auburn, Alabama, May [97] Ranky, M.F., and Clarkson, B.L., 1983, “Frequency average loss factors of plates and shells”, Journal of Sound and Vibration, vol 89, pp 309-323 [98] Renji, K., and Nair, P.S., 1996, “Modal density of composite honeycomb sandwich panels”, Journal of Sound and Vibration, vol 195, pp 687-699 [99] Renji, K., and Narayan, S.S., 2002, “Loss factors of composite honeycomb sandwich panels”, Journal of Sound and Vibration, vol 250, pp 745-761 [100] Richard Lee, 2012, “Tailoring the Acoustic Properties of Truss – Core Sandwich Structure”, Master of Applied Science – Graduate Department of Aerospace Science and Engineering University of Toronto [101] RTA, Real Time Analyer [102] Ruzzene, M., Scarpa, F., Soranna, F., 2004, “Wave Beaming Effects in Two-Dimensional Cellular Structures”, Smart Material Structure 145 [103] Sahu, K.C., Tuhkuri, J., and Reddy, J.N., 2015, “Active attenuation of sound transmission through a soft-core sandwich panel into an acoustic enclosure using volume velocity cancellation” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol 229, no 17, pp 3096-3112 [104] Schultz, T.J., 1971, “Diffusion in reverberant rooms”, J Sound Vib, vol 16, pp 17–28 [105] Sewell, E.C., 1970, “Transmission of reverberant sound through a single-leaf partition surrounded by an infinite rigid baffle”, Journal of Sound and Vibration, vol 12, pp 21-32 [106] Shankar Rajaram, Tongan Wang, Steven Nutt, 2009, “Small-scale transmission loss facility for flat lightweight panels”, Noise Control Engine, vol.57, no 5, pp 536-542 [107] Shen, C., 2015, “Sound Transmission Loss of Adhesively Bonded Sandwich Panels with Pyramidal Truss Core”, Theory and Experiment International Journal of Applied Mechanics, vol 7, no 01, pp 1550 [108] Shen, C., Xin, F.X., and Lu, T.J., 2012, “Theoretical model for sound transmission through finite sandwich structures with corrugated core”, International Journal of Non-Linear Mechanics, vol 47, no 10, pp 1066 -1072 [109] Shen, Y., Gibbs, B.M., 1986, “An approximate solution for the bending vibrations of a combination of rectangular thin plates” J Sound Vib, vol 105, no 1, pp 73–90 [110] Simmons, C., 1991, “Structure-borne sound transmission through plate junctions and estimates of SEA coupling loss factors using the finite element method”, J Sound Vib, vol 144, no 2, pp 215–27 [111] Smith, P.W., 1962, “Response and radiation of structural modes excited by sound”, Journal of the Acoustical Society of America, vol 34, pp 640-647 [112] Smolenski, C.P., and Krokosky, E.M., 1973, “Dilational-mode sound transmission in sandwich panels”, Journal of the Acoustical Society of America, vol 54, pp 1449-1457 [113] Spadoni, A., Ruzzene, M., 2006, “Structural and Acoustic Behavior of Chiral Truss-Core Beams” [114] Tadeu, A., Pereira, A., Godinho, L., Antonio, J., 2007, “Prediction of airborne sound and impact sound insulation provided by single and multilayer systems using analytical expressions”, Appl Acoust, vol 68, no 1, pp 17– 42 [115] Tamura, Y., Kawada, T., Sasazwa, Y., 1997, “Effects of ship noise on sleep”, Journal of Sound and Vibration, vol 205, no 4, pp 417-425 [116] Thamburaj, P., Sun, Q., 2002, “Optimization of Anisotropic Sandwich Beams for Higher Sound Transmission Loss”, Journal of Sound and Vibrations [117] Tor Erik Vigran, 2008, Building Acoustics, Taylor and Francis Group, London and NewYork 146 [118] Tran Ich Thinh and Pham Ngoc Thanh, 2017, “Vibroacoustic response of a simply supported orthotropic composite laminated plate” Proceedings of the Xth National Coference on Mechanics, Hanoi, 7-8/12/ 2017 [119] Tran Ich Thinh and Pham Ngoc Thanh, 2018, “Soud Transmission Loss across a clamped orthotropic composite plate”, Proceedings of the XIVth National Coference on Mechanics of Solids, Ho Chi Minh City, 19-20/7/2018 [120] Tran Ich Thinh and Pham Ngoc Thanh, 2018, “Vibroacoustic behaviour of a clamped orthotropic composite plate”, ICERA 2018 Conference Proceedings Published by Springer, pp 589 – 600 [121] Tsui, C.Y., Voorhees, C.R., and Yang, J.C.S., 1976, “The design of small reverberation chambers for transmission loss measurements”, Appl Acoust, vol 9, pp 165–175 [122] Vinson, Jack, R., 1999, “The Behavior of Sandwich Structures of Isotropic and Composite Materials”, USA: Technomic Publishing [123] Wang, S., Deng, Z., and Sheng, W., 2010, “Sound transmission loss characteristics of unbounded orthotropic sandwich panels in bending vibration considering transverse shear deformation”, Composite Structures, vol 92, no 12, pp 2885 - 2889 [124] Wicks, N., Hutchinson, J.W., 2001, “Optimal Truss Plates”, International Journal of Solids and Structure [125] Wicks, N., Hutchinson, J.W., 2004, “Performance of Sandwich Plates with Truss Cores”, Journal of Mechanics of Materials [126] Williams, R., Erbe, C., Ashe, E., Beerman, A., Smith, J., 2014, “Severity of killer whale behavioural responses to ship noise”, A dose-response study, Marine Pollution Bulletin, vol 79, no 1-2, pp 254-260 [127] Xin, F.X., and Lu, T.J., 2009, “Analytical and experimental investigation on transmission loss of clamped double panels”: Implication of boundary effects, The Journal of the Acoustical Society of America, vol 125, no 3, pp 1506-1517 [128] Xin, F.X., and Lu, T.J., 2010, “Analytical modeling of sound transmission across finite aeroelastic panels in convected fluids”, Laboratory for Strength and Vibration, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China, Received 19 August 2009; revised January 2010; accepted 22 June [129] Xin, F.X., T.J Lu and Chen, C.Q., 2008, “Vibroacoustic behavior of clamp mounted double-panel partition with enclosure air cavity”, The Journal of the Acoustical Society of America, vol 124, no 6, pp 3604-3612 [130] Yang, Y., 2016, “Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels”, Composites Part B: Engineering, vol 96, pp 281-286 [131] Yan-Min Kuo, Huei-Jeng Lin, Chao-Nan Wang, 2008, “Sound transmission across orthotropic laminates with a 3D model”, Applied Acoustics, vol 69, pp 951-959 147 [132] Zhou, J., Bhaskar, A., and Zhang, X., 2013, “Optimization for sound transmission through a double-wall panel”, Applied Acoustics, no 12, pp 14221428 [133] Zhou, J., Bhaskar, A., and Zhang, X., 2013, “Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow”, Journal of Sound and Vibration, vol 332, no 16, pp 3724-3734 WEBSITE [134] http://www.diabgroup.com/en-GB/Products-and-services/CoreMaterial/ Divinycell-H [135] http://www.spheretex.com/en/produktdatenblatt6.html [136] http://www.google.com/composite sandwich panels PHẦN MỀM ỨNG DỤNG [137] Ansys R15 [138] Matlab R14 148 PHỤ LỤC Phụ lục ... vào Nghiên cứu tổn thất truyền âm qua composite sandwich ứng dụng vào giảm ồn tàu thủy , làm sở để lựa chọn chế tạo kết cấu tàu thủy vỏ composite có lợi phương diện giảm ồn MỤC TIÊU NGHIÊN CỨU... tổn thất truyền âm qua kết cấu composite sandwich ứng dụng tàu thủy Việt Nam; - Ứng dụng kết nghiên cứu vào việc giảm ồn buồng máy tàu khách vỏ composite chế tạo Viện nghiên cứu chế tạo Tàu thủy, ... DUNG NGHIÊN CỨU 4.1 Nghiên cứu thực nghiệm xác định tổn thất truyền âm qua kết cấu composite sandwich 4.2 Nghiên cứu tính tốn tổn thất truyền âm qua composite sandwich 4.3 Nghiên cứu ứng dụng giảm

Ngày đăng: 16/09/2019, 15:46

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan