Trình bày các kiến thức cơ bản về đồ thị, đồ thị bắc cầu đỉnh, đồ thị Meta. Tính liên thông, chu trình Hamilton của đồ thị Meta luân hoàn bậc 4.

87 402 0
Trình bày các kiến thức cơ bản về đồ thị, đồ thị bắc cầu đỉnh, đồ thị Meta. Tính liên thông, chu trình Hamilton của đồ thị Meta luân hoàn bậc 4.

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Header Page of 123 `.I CAM D - OAN LO Toˆi xin cam d¯oan r˘`a ng c´ac keˆ´t qua’ d¯u.o c tr`ınh b`ay luaˆn ´an l`a u.ng d¯u.o c coˆng boˆ´ o’ baˆ´t k`y moˆt ho`an to`an m´o.i, chu.a t` coˆng tr`ınh khoa ho.c cu’a kh´ac H` a Noˆi, ang n˘am 2005 ng`ay th´ Tra o.c ˆ`n Minh Tu.´ Footer Page of 123 Header Page of 123 MU C LU C L` o.i cam d ¯oan Mu.c lu.c Danh mu.c c´ ac h`ınh ’ D ˆ`U -A MO ’N ´ KIE ´ C CO BA ˆ´N THU Chu.o.ng CAC 12 - oˆ` thi 1.1 D 12 - oˆ` thi b˘a´c caˆ`u d¯ı’nh v`a d¯oˆ` thi meta luaˆn ho`an 1.2 D 17 1.2.1 Nh´ om ho´ an vi 17 1.2.2 C´ac d¯.inh ngh˜ıa 19 1.3 T´ınh lieˆn thoˆng 22 1.4 B`ai to´an Hamilton 25 ˆ N THO ˆ NG CU’A D ˆ` THI -O Chu.o.ng T´INH LIE ˆC BA 2.1 Moˆt soˆ´ t´ınh chaˆ´t cu’a d¯oˆ` thi meta luaˆn ho`an 2.2 Tru.`o.ng ho p S0 = ∅ 2.3 Tru.`o.ng ho p S0 = ∅ ˆ N HOAN ` META LUA 29 29 34 41 ˆN ˆ` THI META LUA -O Chu.o.ng CHU TR`INH HAMILTON TRONG D ` BA ˆ C HOAN 66 3.1 Moˆt soˆ´ boˆ’ d¯ˆe` 66 - ieˆ`u kieˆn 3.2 D d¯u’ cho su toˆ`n ta.i chu tr`ınh Hamilton 73 ˆN ˆ´T LUA KE 82 Danh mu.c c´ ac co ˆng tr`ınh 83 T` lie ˆu tham kha’o 84 Footer Page of 123 Header Page of 123 ´ ` DANH MU C CAC HINH 1.1 Bieˆ’u dieˆ˜n d¯oˆ` thi treˆn m˘a.t ph˘a’ ng - oˆ` thi ca’m sinh G v`a d¯oˆ` thi bao tr` 1.2 D um G cu’a G 14 1.3 Hai d¯oˆ` thi d¯a˘’ ng caˆ´u G v`a G 15 1.4 Baˆc cu’a d¯ı’nh, baˆc cu’a d¯oˆ` thi 1.5 V´ı du d¯oˆ` thi d¯ˆe`u 16 1.6 C´ac d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh Coxeter (G1 ) v`a Petersen (G2 ) 19 - oˆ` thi luaˆn ho`an 1.7 D 20 - oˆ` thi meta luaˆn ho`an 1.8 D - oˆ` thi G v´o.i chu tr`ınh C v`a d¯u.`o.ng P 1.9 D - oˆ` thi v´o.i c´ac th`anh phaˆ`n cu’a n´o 1.10 D - oˆ` thi Hamilton v`a nu’.a Hamilton 1.11 D 21 cu’a n´o 23 24 25 - i.nh l´ 3.1 V´ı du minh ho.a cho D y 3.7 - i.nh l´ 3.2 V´ı du minh ho.a cho D y 3.9 76 78 - inh l´ 3.3 V´ı du minh ho.a cho D y 3.10 80 Footer Page of 123 13 16 Header Page of 123 - ˆ` AU MO’ D Luaˆn lieˆn thoˆng v`a su toˆ`n ta.i chu tr`ınh a´n d¯ˆe` caˆp t´o i d¯ieˆ`u kieˆn - ´o l`a moˆt u.ng Hamilton cu’a c´ac d¯oˆ` thi meta luaˆn ho`an baˆc D nh˜ l´o.p d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh c`on ´ıt d¯u.o c quan taˆm xem x´et moˆt u.u nhieˆ`u soˆ´ l´o.p d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh kh´ac, gaˆ`n d¯ˆay, d¯a˜ d¯u.o c nghieˆn c´ L´y thuyeˆ´t d¯oˆ` thi d¯a˜ d¯u.o c h`ınh th`anh t` u laˆu v`a c´o u ´.ng du.ng roˆng ´ tu.o’.ng co ba’n cu’a r˜ai nhieˆ`u l˜ınh vu c khoa ho.c v`a thu c tieˆ˜n Y l´y thuyeˆ´t d¯oˆ` thi d¯a˜ d¯u.o c nhieˆ`u nh`a khoa ho.c d¯ˆe` xuaˆ´t v`ao nu’.a d¯aˆ`u theˆ´ ky’ 18 Tieˆu bieˆ’u l`a Leonhard Euler (1707 – 1783), nh`a to´an ho.c u.u b`ai to´an “Ba’y caˆy caˆ`u o’ noˆ’i tieˆ´ng ngu.`o.i Thu.y S˜ı, oˆng nghieˆn c Kăonigsberg - o` thi l`a mot D uc toan ho.c r`o.i ra.c bieˆ’u dieˆ˜n moˆ´i quan heˆ gi˜ u.a caˆ´u tr´ u.c, ta c´o theˆ’ h`ınh dung moˆt c´ac d¯oˆ´i tu.o ng Moˆt c´ach phi h`ınh th´ d¯oˆ` thi bao goˆ`m c´ac “d¯ı’nh” v`a c´ac “ca.nh”, moˆ˜i ca.nh noˆ´i moˆt c˘a.p d¯ı’nh n`ao d¯o´ uc d¯oˆ` thi Nhieˆ`u b`ai to´an thu c teˆ´ c´o theˆ’ d¯u.o c moˆ h`ınh ho´a b˘a` ng caˆ´u tr´ Ch˘a’ ng ha.n, thieˆ´t laˆp u.a c´ac th`anh phoˆ´ cu’a moˆt tuyeˆ´n bay gi˜ quoˆ´c ung gia th`ı d¯oˆ` thi gi´ up ch´ ung ta so d¯oˆ` ho´a heˆ thoˆ´ng n`ay b˘a` ng c´ach d` moˆ˜i d¯ı’nh bieˆ’u thi moˆt th`anh phoˆ´ c`on moˆ˜i ca.nh bieˆ’u dieˆ˜n moˆt tuyeˆ´n ´.ng; moˆt bay th˘a’ ng gi˜ u.a hai th`anh phoˆ´ tu.o.ng u v´ı du kh´ac: thieˆ´t keˆ´ ma.ch in cho moˆt “bo” ma.ch d¯ieˆn tu’ , nhieˆ`u keˆ´t qua’ veˆ` d¯oˆ` thi ph˘a’ ng s˜e gi´ up ta t`ım d¯u.o c moˆt so d¯oˆ` thieˆ´t keˆ´ hieˆu qua’ Nhu vaˆy, u.u caˆ´u tr´ uc cu’a nh˜ u.ng l´o.p d¯oˆ` thi kh´ac vieˆc nghieˆn c´ - ˘a.c bieˆt c` ung v´o.i c´ac u ´.ng du.ng cu’a n´o l`a h˜ u.u ´ıch D l`a th`o i d¯a.i ng`ay nay, coˆng ngheˆ thoˆng tin v´o.i voˆ soˆ´ qu´a tr`ınh xu’ l´y v`a truyeˆ`n u.u tin d¯ang thaˆm nhaˆp soˆ´ng th`ı vieˆc nghieˆn c´ v`ao mo.i l˜ınh vu c cu’a cuoˆc u.ng nghieˆn c´ u.u l´y thuyeˆ´t n`ay la.i c`ang c´o y ´ ngh˜ıa Ngu.o c la.i, nh˜ Footer Page of 123 Header Page of 123 u.ng keˆ´t qua’ m´o.i saˆu s˘a´c ho.n nh`o su tieˆ´n boˆ cu’a d¯oˆ` thi s˜e d¯a.t d¯u.o c nh˜ khoa ho.c m´ay t´ınh V´o.i moˆt d¯oˆ` thi cho tru ´o c, t´ınh lieˆn thoˆng cu’a n´o thu `o ng d¯u o c quan taˆm d¯aˆ`u tieˆn Ch˘a’ ng ha.n, moˆ h`ınh cu’a moˆt heˆ thoˆ´ng giao thoˆng nhaˆ´t - ˜a c´o nh˜ thieˆ´t pha’i l`a moˆt u.ng thuaˆt u.u d¯oˆ` thi lieˆn thoˆng D to´an kh´a h˜ hieˆu d¯ˆe’ kieˆ’m tra t´ınh lieˆn thoˆng cu’a moˆt d¯oˆ` thi., nhu ng caˆu tra’ l`o i o’ d¯o´ m´o.i chı’ l`a “C´o” ho˘a.c “Khoˆng” lieˆn thoˆng V´o.i nhieˆ`u l´o.p d¯oˆ` thi cu theˆ’, c´ac nh`a nghieˆn c´ u.u thu.`o.ng mong muoˆ´n c´o moˆt kh˘a’ ng d¯.inh ma.nh ho n Do vaˆy, l´o p d¯oˆ` thi n`ao d¯o´ vaˆ´n d¯ˆe` d¯a˘ c tru ng t´ınh lieˆn thoˆng cu’a moˆt - ieˆ`u n`ay khoˆng pha’i l´ uc n`ao c˜ ung c˜ ung thu.`o.ng d¯u.o c d¯u.a xem x´et D nhaˆn d¯u o c deˆ˜ d`ang Chı’ c´o moˆt soˆ´ keˆ´t qua’ cu’a Menger (1927) v`a Tutte (1961) veˆ` d¯oˆ lieˆn thoˆng (connectivity) cu’a moˆt d¯oˆ` thi (xem [13]) u.ng l´o.p he.p ho.n V`ı theˆ´, ngu.`o.i ta thu.`o.ng xem x´et vaˆ´n d¯ˆe` n`ay treˆn nh˜ Moˆt u.a m`a cho t´o.i vaˆ˜n d¯ang d¯u.o c coi l`a vaˆ´n d¯ˆe` trung vaˆ´n d¯ˆe` n˜ taˆm cu’a l´y thuyeˆ´t d¯oˆ` thi l`a b`ai to´an Hamilton: V´o.i moˆt d¯oˆ` thi cho tru.´o.c, h˜ay x´ac d¯.inh xem c´o hay khoˆng moˆt h`anh tr`ınh d¯i qua taˆ´t ca’ c´ac d¯ı’nh cu’a d¯oˆ` thi., moˆ˜i d¯ı’nh d¯u ´ng moˆt laˆ`n, roˆ`i la.i quay tro’ veˆ` d¯ı’nh xuaˆ´t ph´at? H`anh tr`ınh tho’a m˜an b`ai to´an Hamilton d¯u.o c go.i l`a chu tr`ınh Hamilton Neˆ´u khoˆng yeˆu caˆ`u pha’i tro’ veˆ` d¯u ´ng d¯ı’nh xuaˆ´t ph´at th`ı h`anh tr`ınh n`ay s˜e d¯u.o c go.i l`a d¯u.`o.ng Hamilton B`ai to´an Hamilton l`a moˆt b`ai to´an l´o n, nhu ng m´o i chı’ d¯u o c gia’i quyeˆ´t cho nh˜ u.ng tru.`o.ng ho p d¯a˘ c bieˆt Do d¯o´, xem x´et b`ai to´an u.ng ha.n cheˆ´ leˆn c´ac d¯oˆ` thi d¯ˆe’ nghieˆn n`ay, ngu.`o.i ta thu.`o.ng d¯a˘ t nh˜ ung theo moˆt u vaˆy, u.ng c´ u.u ch´ c´ach tieˆ´p caˆn n`ao d¯o´ M˘a.c d` d¯a phaˆ`n nh˜ coˆng tr`ınh nghieˆn c´ u.u c˜ ung chı’ d¯u.a d¯u.o c d¯ieˆ`u kieˆn d¯u’ d¯ˆe’ moˆt d¯oˆ` thi c´o chu tr`ınh Hamilton Ch˘a’ ng ha.n, d¯.inh l´y cu’a Dirac kh˘a’ ng d¯.inh veˆ` su toˆ`n ta.i cu’a chu tr`ınh Hamilton c´ac d¯oˆ` thi c´o soˆ´ ca.nh “d¯u’ l´o.n” v`a “phaˆn boˆ´ d¯ˆe`u treˆn c´ac d¯ı’nh”, hay keˆ´t qua’ cu’a Tutte chı’ r˘a` ng c´ac d¯oˆ` thi ph˘a’ ng (d¯oˆ` thi c´o theˆ’ bieˆ’u dieˆ˜n d¯u.o c treˆn m˘a.t ph˘a’ ng cho Footer Page of 123 Header Page of 123 c´ac ca.nh cu’a n´o khoˆng c˘a´t nhau) v`a c´o su “lieˆn thoˆng ma.nh” th`ı s˜e c´o chu tr`ınh Hamilton (xem chi tieˆ´t [13], [14], [19]) - aˆy Gaˆ`n d¯ˆay, ngu.`o.i ta quan taˆm nhieˆ`u d¯ˆe´n d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh D l`a c´ac d¯oˆ` thi c´o nh´om tu d¯a˘’ ng caˆ´u t´ac d¯oˆng b˘a´c caˆ`u leˆn taˆp d¯ı’nh cu’a u.a d¯ı’nh baˆ´t k`y luoˆn toˆ`n ta.i c´ac tu d¯a˘’ ng caˆ´u chuyeˆ’n ch´ ung, t´ u.c l`a gi˜ ch´ ung veˆ` Nhu vaˆy, d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh l`a l´o p d¯oˆ` thi mang t´ınh u.ng t´ınh chaˆ´t l´y th´ u V´ı du., gia’ thuyeˆ´t d¯oˆ´i x´ u.ng cao neˆn c´o theˆ’ c´o nh˜ Lov´asz (1968, xem [18], [21]) cho r˘a` ng: “Mo.i d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh lieˆn thoˆng d¯ˆe`u c´o d¯u.`o.ng Hamilton”, hay gia’ thuyeˆ´t Thomassen (xem [10], [18]) d¯a˜ neˆu: “Chı’ c´o moˆt u.u ha.n c´ac d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh lieˆn soˆ´ h˜ thoˆng l`a khoˆng c´o chu tr`ınh Hamilton” Nh˜ u.ng n˘am tro’ la.i d¯ˆay, uy ´ t´o.i u ´.ng du.ng cu’a d¯oˆ` thi b˘a´c nghieˆn c´ u.u l´y thuyeˆ´t, ngu.`o.i ta c`on ch´ caˆ`u d¯ı’nh cho moˆ h`ınh ma.ng lieˆn keˆ´t hay c´ac heˆ thoˆ´ng xu’ l´y song song Ngo`ai ra, c´o nh´om tu d¯a˘’ ng caˆ´u t´ac d¯oˆng b˘a´c caˆ`u treˆn taˆp d¯ı’nh, u.u b˘`a ng l´y thuyeˆ´t neˆn d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh khoˆng nh˜ u.ng d¯u.o c nghieˆn c´ toˆ’ ho p m`a c`on c´o theˆ’ su’ du.ng ca’ d¯a.i soˆ´ (cu theˆ’ l`a l´y thuyeˆ´t nh´om) d¯ˆe’ xem x´et ch´ ung theo moˆt g´oc d¯oˆ kh´ac - oˆ´i v´o.i d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh, caˆ´u tr´ D uc cu’a nh´om c´ac tu d¯a˘’ ng caˆ´u treˆn d¯oˆ` thi d¯o´ng moˆt u.u vai tr`o quan tro.ng Tuy nhieˆn vieˆc nghieˆn c´ ´ c˜ ung khoˆng pha’i d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh v´o.i nh´om c´ac tu d¯a˘’ ng caˆ´u tu`y y deˆ˜ d`ang V`ı theˆ´, ngu.`o.i ta thu.`o.ng nghieˆn c´ u.u d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh v´o.i u d¯o.n gia’n d¯ˆe´n ph´ u.c ta.p nh´om tu d¯a˘’ ng caˆ´u t` - oˆ` thi luaˆn ho`an l`a d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh c´o caˆ´u tr´ D uc d¯o.n gia’n nhaˆ´t: ung ch´ u.a moˆt nh´om tu d¯a˘’ ng caˆ´u cu’a ch´ nh´om xyclic t´ac d¯oˆng b˘a´c u.u nhieˆ`u nhaˆ´t caˆ`u leˆn taˆp d¯ı’nh V`ı vaˆy c´ac d¯oˆ` thi n`ay d¯a˜ d¯u o c nghieˆn c´ soˆ´ c´ac d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh Treˆn c´ac d¯oˆ` thi luaˆn ho`an, b`ai to´an Hamilton v`a b`ai to´an phaˆn l´o.p d¯a˜ d¯u.o c gia’i quyeˆ´t tro.n ve.n Trong [17], ngu.`o.i ta d¯a˜ chı’ r˘`a ng d¯oˆ` thi luaˆn ho`an n˘`a m l´o.p d¯oˆ` thi Cayley Footer Page of 123 Header Page of 123 uc (xem d¯.inh ngh˜ıa o’ trang 22), moˆt l´o p d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh c´o caˆ´u tr´ ung tu.o.ng d¯oˆ´i roˆng kh´a ch˘a.t ch˜e nhu.ng c˜ uc ph´ u.c ta.p L´o.p d¯oˆ` thi m`a nh´om c´ac tu d¯a˘’ ng caˆ´u cu’a n´o c´o caˆ´u tr´ u.a ho.n d¯o´ l`a l´o.p d¯oˆ` thi meta luaˆn ho`an Nh´om tu d¯a˘’ ng caˆ´u cu’a n´o ch´ b˘a´c caˆ`u leˆn moˆt nh´om g, h , sinh bo’ i hai phaˆ`n tu’ g, h, t´ac d¯oˆng ’ taˆp d¯ı’nh v`a g, h l`a t´ıch nu’ a tru c tieˆ´p cu’a g v´o i h O d¯ˆay, t´ıch nu’.a tru c tieˆ´p cu’a nh´om K v´o.i nh´om L l`a nh´om M ch´ u.a c´ac nh´om K v`a L cho K d¯a˘’ ng caˆ´u v´o.i K, L d¯a˘’ ng caˆ´u v´o.i L, K v`a L chı’ chung phaˆ`n tu’ d¯o.n vi., K l`a nh´om chuaˆ’n t˘a´c cua’ M v`a M d¯u.o c sinh bo’.i K v`a L - oˆ` thi meta luaˆn ho`an d¯u.o c d¯ˆe` xuaˆ´t v`a nghieˆn c´ D u.u d¯aˆ`u tieˆn bo’.i B Alspach v`a T.D Parsons t` u n˘am 1982 (xem [5]) Trong b`ai b´ao n`ay, c´ac t´ac gia’ d¯a˜ d¯u.a moˆt d¯.inh ngh˜ıa toˆ’ ho p cho d¯oˆ` thi meta luaˆn ho`an, ch´ u.ng minh moˆt uc cu’a c´ac d¯oˆ` thi n`ay v`a x´ac soˆ´ keˆ´t qua’ veˆ` caˆ´u tr´ u.a ba l´o.p d¯oˆ` thi luaˆn ho`an, meta luaˆn ho`an d¯.inh d¯u.o c moˆ´i lieˆn heˆ gi˜ v`a Cayley O’ d¯ˆay, moˆt d¯oˆ` thi meta luaˆn ho`an d¯u o c cho bo’ i c´ac tham soˆ´ caˆ´u tr´ uc bao goˆ`m hai soˆ´ nguyeˆn du.o.ng m, n x´ac d¯.inh soˆ´ d¯ı’nh v`a su phaˆn boˆ´ c´ac d¯ı’nh cu’a d¯oˆ` thi., soˆ´ α nguyeˆn toˆ´ v´o.i n v`a moˆt soˆ´ taˆp cu’a taˆp c´ac soˆ´ nguyeˆn modulo n, d¯u o c go.i l`a c´ac bieˆ’u tu o ng cu’a d¯oˆ` thi - ˘a.c bieˆt, meta luaˆn ho`an, x´ac d¯.inh c´ac ca.nh cu’a d¯oˆ` thi D keˆ´t luaˆn u.u cho cu’a b`ai b´ao, Alspach v`a Parsons d¯a˜ d¯ˆe` xuaˆ´t ba hu.´o.ng nghieˆn c´ u.u kh´a phoˆ’ bieˆ´n l`a vaˆ´n c´ac d¯oˆ` thi n`ay, d¯o´ c´o hai hu.´o.ng nghieˆn c´ d¯ˆe` d¯a˘’ ng caˆ´u v`a b`ai to´an Hamilton treˆn l´o.p d¯oˆ` thi meta luaˆn ho`an Theo c´ac hu.´o.ng nghieˆn c´ u.u treˆn, vaˆ´n d¯ˆe` toˆ`n ta.i chu tr`ınh Hamilton - ˜a c´o moˆt d¯u.o c quan taˆm nhieˆ`u ho.n D u.ng l´o.p d¯oˆ` thi soˆ´ keˆ´t qua’ cho nh˜ meta luaˆn ho`an d¯u.o c ha.n cheˆ´ bo’.i c´ac d¯ieˆ`u kieˆn r`ang buoˆc kh´ac Alspach v`a nh´om nghieˆn c´ u.u d¯a˜ keˆ´t luaˆn r˘`a ng mo.i d¯oˆ` thi meta luaˆn ho`an v´o.i tham soˆ´ n nguyeˆn toˆ´ v`a kh´ac d¯oˆ` thi Petersen (xem trang 19) d¯ˆe`u c´o chu tr`ınh Hamilton [4] Moˆt soˆ´ b`ai b´ao kh´ac la.i d¯ˆe` caˆp t´o i l´o p Footer Page of 123 Header Page of 123 d¯oˆ` thi Cayley Ch˘a’ ng ha.n [8], [16], [22], c´ac t´ac gia’ d¯a˜ chı’ u.ng d¯oˆ` thi Cayley treˆn c´ac su toˆ`n ta.i cu’a chu tr`ınh Hamilton nh˜ nh´om c´o caˆ´u tr´ uc d¯a˘ c bieˆt Trong d¯o´, t´ınh lieˆn thoˆng cu’a c´ac d¯oˆ` thi la.i gi˜ u moˆt vai tr`o quan ´ ngh˜ıa treˆn c´ac tro.ng d¯oˆ´i v´o.i b`ai to´an Hamilton B`ai to´an n`ay chı’ c´o y - ˘a.c bieˆt d¯oˆ` thi lieˆn thoˆng D treˆn c´ac d¯oˆ` thi cho bo’ i c´ac tham soˆ´ caˆ´u tr´ uc nhu d¯oˆ` thi meta luaˆn ho`an, ngu.`o.i ta muoˆ´n c´o d¯u.o c d¯ieˆ`u kieˆn caˆ`n v`a d¯u’ cho t´ınh lieˆn thoˆng cu’a c´ac d¯oˆ` thi n`ay Khi d¯a˜ d¯a˘ c tru.ng d¯u.o c u.ng r`ang buoˆc u.a t´ınh lieˆn thoˆng cu’a d¯oˆ` thi meta luaˆn ho`an b˘a` ng nh˜ gi˜ c´ac tham soˆ´ caˆ´u tr´ uc, vieˆc xem x´et su toˆ`n ta.i chu tr`ınh Hamilton ch´ ung s˜e thuaˆn lo i ho n Tru.´o.c thu c teˆ´ n`ay, luaˆn u.u veˆ` l´o.p d¯oˆ` thi meta luaˆn a´n nghieˆn c´ ’ ung toˆi khoˆng su’ du.ng ho`an v`a d¯oˆ` thi meta luaˆn ho`an baˆc O d¯ˆay, ch´ u.u theo tham soˆ´ nh˜ u.ng c´ach tieˆ´p caˆn tru ´o c d¯o´ m`a d¯.inh hu ´o ng nghieˆn c´ “baˆc” (xem d¯.inh ngh˜ıa o’ trang 15) cu’a d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh Trong c´ac moˆ h`ınh ma.ng lieˆn keˆ´t, d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh baˆc nho’ c´o moˆt ´ ngh˜ıa quan tro.ng C´ac d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh baˆc y v`a baˆc c´o theˆ’ - oˆ` thi b˘a´c caˆ`u d¯ı’nh baˆc d¯u.o c moˆ ta’ d¯aˆ`y d¯u’ m`a khoˆng maˆ´y kh´o kh˘an D l`a ho p r`o.i cu’a c´ac d¯oˆ` thi K2 , c`on d¯oˆ` thi b˘a´c caˆ`u d¯ı’nh baˆc l`a ung d¯oˆ d`ai Trong soˆ´ c´ac d¯oˆ` thi ho p cu’a c´ac chu tr`ınh r`o.i v`a c´o c` b˘a´c caˆ`u d¯ı’nh baˆc 3, d¯oˆ` thi meta luaˆn ho`an baˆc ´ıt nhieˆ`u d¯a˜ d¯u o c xem ung nhu su toˆ`n ta.i x´et v`a d¯a.t d¯u.o c nhieˆ`u keˆ´t qua’ veˆ` t´ınh lieˆn thoˆng c˜ chu tr`ınh Hamilton (xem [25] – [29], [31], [33] – [36]) Moˆt c´ach tru c quan, ngu `o i ta deˆ˜ laˆ`m tu o’ ng r˘a` ng mo.i d¯oˆ` thi meta u.ng luaˆn ho`an baˆc u.a c´ac d¯oˆ` thi meta luaˆn ho`an baˆc nhu nh˜ c´o theˆ’ ch´ d¯oˆ` thi Nhu.ng thu c teˆ´ khoˆng d¯u.o c nhu ta mong muoˆ´n Do caˆ´u tr´ uc d¯a˘ c bieˆt soˆ´ ´ıt c´ac d¯oˆ` thi meta luaˆn cu’a nh´om tu d¯a˘’ ng caˆ´u, chı’ moˆt ho`an baˆc u.ng l`a d¯oˆ` thi cu’a d¯oˆ` thi meta luaˆn ho`an baˆc Do d¯o´ nh˜ Footer Page of 123 Header Page of 123 k˜y thuaˆt haˆ`u nhu d¯u o c su’ du.ng treˆn l´o p d¯oˆ` thi meta luaˆn ho`an baˆc khoˆng a´p du.ng d¯u.o c d¯oˆ´i v´o.i d¯oˆ` thi meta luaˆn ho`an baˆc V´o i hy vo.ng u.ng k˜y thuaˆt s˜e t`ım t`oi d¯u.o c nh˜ m´o i c´o theˆ’ ´ap du.ng cho ca’ l´o p d¯oˆ` thi meta luaˆn ho`an toˆ’ng qu´at, ch´ ung toˆi d¯a˘ t mu.c tieˆu nghieˆn c´ u.u veˆ` t´ınh lieˆn thoˆng v`a su toˆ`n ta.i chu tr`ınh Hamilton c´ac d¯oˆ` thi meta luaˆn ho`an baˆc Keˆ´t qua’ cu’a luaˆn a´n ch´ınh l`a vieˆc d¯a˘ c tru ng t´ınh lieˆn thoˆng cu’a d¯oˆ` thi meta luaˆn ho`an baˆc k˜y thuaˆt du a treˆn moˆt d¯u o c xaˆy du ng cho c´ac d¯oˆ` thi meta luaˆn ho`an toˆ’ng qu´at T` u d¯o´, su toˆ`n ta.i chu tr`ınh Hamilton l´o.p d¯oˆ` thi n`ay d¯a˜ d¯u.o c xem x´et v`a kh˘a’ ng d¯.inh d¯oˆ´i v´o.i moˆt soˆ´ tru.`o.ng ho p Noˆi dung cu’a luaˆn ´an bao goˆ`m phaˆ`n mo’ d¯aˆ`u, phaˆ`n keˆ´t luaˆn v`a ba chu.o.ng: u.c co ba’n; Chu.o.ng C´ac kieˆ´n th´ Chu.o.ng T´ınh lieˆn thoˆng cu’a d¯oˆ` thi meta luaˆn ho`an baˆc 4; Chu.o.ng Chu tr`ınh Hamilton d¯oˆ` thi meta luaˆn ho`an baˆc Chu.o.ng tr`ınh b`ay v˘a´n t˘a´t nh˜ u.ng kh´ai nieˆm co ba’n cu’a l´y thuyeˆ´t d¯oˆ` thi., l´y thuyeˆ´t nh´om ho´an vi v`a moˆt soˆ´ vaˆ´n d¯ˆe` lieˆn quan d¯ˆe´n d¯oˆ´i tu.o ng nghieˆn c´ u.u cu’a luaˆn ´an l`a d¯oˆ` thi meta luaˆn ho`an Chu.o.ng tr`ınh b`ay c´ac keˆ´t qua’ veˆ` t´ınh lieˆn thoˆng cu’a d¯oˆ` thi meta luaˆn ho`an baˆc C´ac d¯.inh l´y 2.5, 2.11 l`a d¯ieˆ`u kieˆn caˆ`n v`a d¯u’ d¯ˆe’ moˆt d¯oˆ` - ˆe’ ch´ thi meta luaˆn ho`an baˆc u.ng minh c´ac d¯.inh l´y n`ay, lieˆn thoˆng D d¯ˆe` 2.1, 2.2 v`a mu.c 2.1 d¯a˜ d¯u.a k˜y thuaˆt toˆ’ng qu´at c´ac meˆnh 2.3 c` ung v´o.i vieˆc d¯ˆe` 1.1 K˜y thuaˆt ´ap du.ng Meˆnh n`ay c´o theˆ’ ´ap du.ng cho mo.i d¯oˆ` thi meta luaˆn ho`an neˆn c˜ ung c´o gi´a tri d¯oˆc laˆp nhaˆ´t d¯.inh Chu.o.ng d¯ˆe` caˆp t´o i su toˆ`n ta.i chu tr`ınh Hamilton c´ac d¯oˆ` thi meta luaˆn ho`an baˆc soˆ´ d¯ieˆ`u lieˆn thoˆng Keˆ´t qua’ ch´ınh o’ d¯ˆay l`a moˆt - oˆ´i v´o.i c´ac d¯oˆ` kieˆn d¯u’ d¯ˆe’ c´ac d¯oˆ` thi d¯ang x´et c´o chu tr`ınh Hamilton D Footer Page of 123 Header Page 10 of 123 10 u nhaˆ´t kh´ac roˆ˜ng, c´ac d¯.inh l´y 3.6, 3.7, 3.8 v`a 3.9 d¯a˜ thi c´o bieˆ’u tu.o ng th´ kh˘a’ ng d¯.inh su toˆ`n ta.i cu’a chu tr`ınh Hamilton moˆt soˆ´ tru `o ng ho p - i.nh l´y 3.10 c˜ u nhaˆ´t cu’a c´ac d¯oˆ` thi n`ay l`a roˆ˜ng, D ung Khi bieˆ’u tu.o ng th´ chı’ d¯u.o c moˆt ung c´o chu tr`ınh Hamilton neˆ´u v`ai d¯ieˆ`u kieˆn d¯u’ d¯ˆe’ ch´ m = C´ac keˆ´t qua’ d¯a˜ d¯o´ng g´op phaˆ`n n`ao v`ao vieˆc l`am s´ang to’ theˆm cho gia’ thuyeˆ´t cu’a Thomassen hay gia’ thuyeˆ´t cu’a Alspach v`a Parsons n´oi r˘`a ng: Taˆ´t ca’ c´ac d¯oˆ` thi meta luaˆn ho`an kh´ac v´o.i d¯oˆ` thi Petersen d¯ˆe`u c´o chu tr`ınh Hamilton C´ac keˆ´t qua’ cu’a luaˆn ´an d¯u o c coˆng boˆ´ c´ac b`ai b´ao [39], [40], [41] v`a d¯a˜ d¯u.o c b´ao c´ao ta.i: • Seminar “Co so’ To´an ho.c cu’a Tin ho.c”, Vieˆn To´an ho.c, Vieˆn Khoa ho.c v`a Coˆng ngheˆ Vieˆt Nam, H`a Noˆi; • Hoˆi nghi Quoˆ´c teˆ´ “Co so’ To´an ho.c cu’a Tin ho.c” (MFI 99), 10/1999, H`a Noˆi; ´ ng du.ng”, 12/2001, H`a Noˆi; • Hoˆi nghi Quoˆ´c teˆ´ “Toˆ’ ho p v`a U • Hoˆi u 6, 09/2002, Hueˆ´; nghi To´an ho.c To`an quoˆ´c laˆ`n th´ • Tru.`o.ng thu “Co so’ To´an ho.c cu’a Tin ho.c”, 09/2003, Qui Nho.n Luaˆn To´an ho.c, Vieˆn ´an d¯u o c ho`an th`anh ta.i Vieˆn Khoa ho.c v`a Coˆng ngheˆ Vieˆt Nam, du ´o i su hu ´o ng daˆ˜n khoa ho.c cu’a PGS TS Ngoˆ - `ao - ˘a´c Taˆn, Vieˆn -u D ´.c Th`anh, Boˆ Gi´ao du.c v`a D To´an ho.c v`a TS Kieˆ`u D ta.o Toˆi xin b`ay to’ l`ong bieˆ´t o.n chaˆn th`anh v`a saˆu s˘a´c t´o.i c´ac thaˆ`y u.ng ngu.`o.i d¯a˜ ta.o toˆi nieˆ`m say meˆ khoa ho.c, hu.´o.ng daˆ˜n, nh˜ tinh thaˆ`n l`am vieˆc uc v`a d¯a˜ d`anh cho toˆi su hu.´o.ng daˆ˜n chı’ nghieˆm t´ ung qu´ı b´au Rieˆng v´o.i thaˆ`y Kieˆ`u ba’o c´o d¯oˆi ch´ ut kh˘a´t khe nhu.ng voˆ c` -u D ´.c Th`anh, toˆi muoˆ´n d¯u.o c b`ay to’ nieˆ`m thu.o.ng tieˆ´c chaˆn th`anh Moˆt tai na.n chuyeˆ´n coˆng t´ac d¯a˜ cu ´o p d¯i sinh ma.ng cu’a thaˆ`y, ngu `o.i u.ng bu.´o.c toˆi m´o.i chaˆp u.ng bu.´o.c v`ao d¯a˜ d`ıu d˘a´t toˆi t` u.ng bu.´o.c, t` ch˜ d¯u.`o.ng nghieˆn c´ u.u To´an ho.c Footer Page 10 of 123 Header Page 73 of 123 73 u vi0 t´o.i vj1 ,o’ Hamilton T` u d¯o´ suy G11 c´o moˆt d¯u `o ng Hamilton P t` d¯ˆay j − i ∈ S1 Khi d¯o´ ψ(P ) c˜ ung l`a moˆt u d¯u `o ng Hamilton G22 t` 0 ψ(vi0) = vi+ o.i ψ(vj1 ) = vj+ n t´ n Ta la i thaˆ´y, G vi keˆ` v´o i vi+ n2 c`on 2 ˆn ta c´o theˆ’ xaˆy du ng d¯u.o c moˆt vj1 keˆ` v´o.i vj+ n , ne chu tr`ınh Hamilton 1 ung v´o.i c´ac ca.nh vi0 vi+ n, v v G t` u c´ac d¯u.`o.ng P , ψ(P ) c` j j+ n2 - ˘a.t G12 = G[V12] Baˆy gi`o ta la.i gia’ thieˆ´t r˘a` ng ca’ h, k v`a d¯ˆe`u le’ D v`a G21 = G[V21] X´et c´ac d¯oˆ` thi G12, G21 theo c´ach tu.o.ng tu nhu treˆn, ta c˜ ung chı’ d¯u.o c r˘a` ng d¯oˆ` thi G c´o chu tr`ınh Hamilton T´o.i d¯ˆay, ph´ep ch´ u.ng minh Boˆ’ d¯ˆe` 3.5 d¯u.o c ho`an thieˆn 3.2 - ie ˆn D ¯u’ cho su to ˆ`u kie ˆ`n ta.i chu tr`ınh Hamilton d Trong mu.c n`ay, ta ch´ u.ng minh su toˆ`n ta.i chu tr`ınh Hamilton moˆt soˆ´ d¯oˆ` thi meta luaˆn ho`an baˆc - i.nh l´ a d¯oˆ` thi meta D y 3.6 Gia’ su’ G = MC(m, n, α, S0, S1 , , Sµ ) l` ˆn ho` lua an baˆc o.i S0 = ∅ v`a m = ho˘a.c m = Khi d¯´o G lieˆn thoˆng v´ c´o chu tr`ınh Hamilton Ch´ u.ng minh Gia’ su’ G = MC(m, n, α, S0, S1, , Sµ) l`a moˆt d¯oˆ` thi meta luaˆn ho`an baˆc lieˆn thoˆng v´o i S0 = ∅ v`a m = ho˘a.c m = - i.nh l´y 2.11, chı’ moˆt Theo D c´ac tru `o ng ho p sau c´o theˆ’ xa’y ra: m = 1, S0 = {±s, ±r} v`a gcd(s, r, n) = 1; m = 2, n ch˘a˜n, S0 = {±s, n2 }, S1 = {k} v`a gcd(s, n2 ) = 1; m = 2, S0 = {±s}, S1 = {k, } v`a gcd(s, k − , n) = 1; m = 2, n ch˘a˜n, S0 = { n2 }, S1 = {h, k, } v`a gcd(h − k, k − , n2 ) = - i.nh l´y 3.6 d¯u.o c suy t` V`ı vaˆy u c´ac boˆ’ d¯ˆe` 3.1, 3.3, 3.4 v`a 3.5 D Footer Page 73 of 123 Header Page 74 of 123 74 Tieˆ´p tu.c xem x´et c´ac d¯oˆ` thi meta luaˆn ho`an baˆc ung lieˆn thoˆng c˜ u nhaˆ´t kh´ac roˆ˜ng nhu.ng soˆ´ khoˆ´i m > 2, ch´ ung ta ch´ u.ng c´o bieˆ’u tu.o ng th´ minh d¯u.o c c´ac d¯.inh l´y sau - inh l´ D y 3.7 Gia’ su’ G = MC(m, n, α, S0, S1 , , Sµ ) l` a d¯oˆ` thi meta ˆn ho` lua an baˆc lieˆn thoˆng v´o i S0 = ∅, m > v`a ca’ m v`a n d¯ˆe`u le’ Khi d¯´o G c´ o chu tr`ınh Hamilton Ch´ u.ng minh X´et d¯oˆ` thi G = MC(m, n, α, S0, S1, , Sµ) tho’a m˜an - i.nh l´y 2.11, ta pha’i d¯ieˆ`u kieˆn cu’a d¯.inh l´y Khi d¯o´ m ≥ Theo D c´o S0 = {±s}, Si = {k} v´o.i i n`ao d¯o´ thuoˆc {1, 2, , µ} cho gcd(i, m) = 1, Sj = ∅ v´o.i mo.i i = j ∈ {1, 2, , µ} v`a gcd(s, r, n) = o’ d¯ˆay r = k(1 + αi + α2i + · · · + α(m−1)i ) Gia’ su’ G = MC(m, n, α , S0, S1, , Sµ ) l`a d¯oˆ` thi meta luaˆn ho`an v´o.i V (G ) = uxy | x ∈ Zm, y ∈ Zn v`a α = αi , S0 = S0 , S1 = Si , S2 = S3 = · · · = Sµ = ∅ X´et ´anh xa ϕ : V (G) → V (G ), vyxi → uxy Do gcd(i, m) = 1, ta c´o u.a, neˆ´u vyxi vhxi+r ∈ E(G) theˆ’ thaˆ´y r˘a` ng ϕ l`a moˆt song a´nh Ho n theˆ´ n˜ th`ı pha’i c´o ho˘a.c r = i v`a (h − y) ∈ αxi Si ho˘a.c r = v`a (h − y) ∈ αxi S0 Neˆ´u r = i v`a (h − y) ∈ αxi Si th`ı ϕ(vyxi)ϕ(vhxi+i) = uxyux+1 v´o.i h - ieˆ`u n`ay c´o ngh˜ıa l`a (h − y) ∈ (αi )xSi , t´ (h − y) ∈ αxi Si D u.c l`a (h − y) ∈ x x+1 xi (α )xS1 Vaˆy uy uh l`a moˆt ca.nh cu’a G Neˆ´u r = v`a (h − y) ∈ α S0 th`ı ϕ(vyxi)ϕ(vhxi+0) = uxyuxh v´o.i (h − y) ∈ αxi S0 = (α )xS0 V`a v`ı theˆ´ uxy uxh c˜ ung l`a moˆt ca.nh cu’a G Ho`an to`an tu o ng tu , ta c´o theˆ’ kieˆ’m tra d¯u o c −1 x −1 x+r r˘a` ng neˆ´u uxy uhx+r l`a moˆt ung l`a moˆt ca.nh cu’a G th`ı ϕ (uy )ϕ (uy ) c˜ ca.nh cu’a G Vaˆy, u G leˆn G V`ı vaˆy, khoˆng l`am maˆ´t ϕ l`a moˆt d¯a˘’ ng caˆ´u t` t´ınh toˆ’ng qu´at, ta c´o theˆ’ gia’ thieˆ´t r˘a` ng, G = MC(m, n, α, S0, S1, , Sµ ) v´o.i m > le’ , n le’ , S0 = {±s}, S1 = {k}, S2 = S3 = · · · = Sµ = ∅ v`a gcd(s, r, n) = 1, o’ d¯ˆay r = k(1 + α + α2 + · · · + α(m−1) ) Footer Page 74 of 123 Header Page 75 of 123 75 i Gia’ su’ ρ l`a tu d¯a˘’ ng caˆ´u cu’a G x´ac d¯.inh bo’.i ρ(vji ) = vj+1 Khi d¯o´ ρ l`a nu’.a ch´ınh qui Neˆ´u gcd(s, n) = d th`ı tu d¯a˘’ ng caˆ´u β = ρd u.a d¯ı’nh vji ch´ınh l`a Vji = c˜ ung l`a nu’.a ch´ınh qui Qu˜ı d¯a.o cu’a β ch´ i i i , vj+2d , , vj+( vji , vj+d n −1)d d n i i M˘a.t kh´ac, c´ac taˆp 0, d, 2d, , ( d − 1)d v`a 0, α s, 2α s, , ung neˆn G[Vji ] ch´ınh l`a chu tr`ınh ( nd − 1)αis cu’a Zn tr` i i i i vji vj+α i s vj+2αi s vj+( n −1)αi s vj d v´o.i i = 0, 1, , (m − 1); j = 0, 1, , (d − 1) i Neˆ´u β c´o caˆ´p th`ı ρ2d (vji ) = vji , t´ u.c l`a vj+2d = vji ⇔ 2d ≡ (mod n) - ieˆ`u n`ay l`a khoˆng theˆ’ v`ı n le’ v`a d l`a moˆt D u ´o c thu c su cu’a n X´et d¯oˆ` thi thu.o.ng G/β Ta c´o V (G/β) = Vji | i ∈ Zm , j ∈ Zd v`a hai d¯ı’nh cu’a G/β (l`a hai qu˜ı d¯a.o cu’a β ) keˆ` G/β neˆ´u c´o moˆt d¯ı’nh thuoˆc qu˜ı d¯a.o n`ay v´o i moˆt d¯ı’nh ca.nh G noˆ´i moˆt thuoˆc ung lieˆn thoˆng qu˜ı d¯a.o Do d¯oˆ` thi G lieˆn thoˆng neˆn G/β c˜ Theˆm n˜ u.a, G[Vji ] l`a moˆt chu tr`ınh v`a G c´o baˆc b˘`a ng neˆn d¯oˆ` thi thu.o.ng G/β l`a ch´ınh qui baˆc Suy G/β l`a moˆt chu tr`ınh Ta la.i ung c´o |V (G/β)| = md v´o.i m le’ v`a d l`a moˆt u ´o c cu’a n neˆn |V (G/β)| c˜ - i.nh l´y 3.7 - i.nh l´y 1.5, ta keˆ´t luaˆn le’ Theo D G c´o chu tr`ınh Hamilton D d¯u.o c ch´ u.ng minh - i.nh l´y 3.7 veˆ` su V´ı du sau d¯ˆay s˜e minh ho.a cho kh˘a’ ng d¯.inh cu’a D toˆ`n ta.i cu’a chu tr`ınh Hamilton c´ac d¯oˆ` thi meta luaˆn ho`an baˆc lieˆn thoˆng c´o bieˆ’u tu.o ng th´ u nhaˆ´t kh´ac roˆ˜ng v`a ca’ m, n d¯ˆe`u le’ V´ı du H`ınh 3.1 l`a moˆt chu tr`ınh Hamilton d¯oˆ` thi G = MC(3, 7, 2, {±1}, {0}) - inh l´ D y 3.8 Gia’ su’ G = MC(m, n, α, S0, S1, , Sµ) l` a d¯oˆ` thi meta ˆn ho` lua an baˆc o m > 2, S0 = {±s}, Si = {k} v´o.i i n`ao d¯´o c´ thuoˆc a˜n v` a {1, 2, , µ} neˆ´u m le’ ho˘a.c thuoˆc {1, 2, , µ − 1} neˆ´u m ch˘ Footer Page 75 of 123 Header Page 76 of 123 76 v00 s v10 s sv0 v11 s s s v0 v21 s s v1 v s v02 v12 v31 s v30 s s v2 s v22 sv60 s s s v42 v32 sv5 s v sv s v40 - inh l´ H`ınh 3.1: V´ı du minh ho.a cho D y 3.7 gcd(i, m) = 1, Sj = ∅ v´ o.i mo.i j ∈ {1, 2, , µ} \ {i} Neˆ´u gcd(r, n) = 1, d¯´o r = k(1 + αi + · · · + α(m−1)i ) th`ı G c´ o chu tr`ınh Hamilton - i.nh l´y Ch´ u.ng minh Tru.´o.c heˆ´t ta thaˆ´y G l`a d¯oˆ` thi lieˆn thoˆng theo D x 2.5 Gia’ su’ G c´o taˆp d¯ı’nh V = {vy | x ∈ Zm ; y ∈ Zn } Tu d¯a˘’ ng caˆ´u x ρ : vyx → vy+1 treˆn G l`a nu’.a ch´ınh qui neˆn ta c´o theˆ’ x´et d¯oˆ` thi thu.o.ng - ˘a.t V x = {vyx| y ∈ Zn }; Gx = G[V x ], x = 0, , m − Khi d¯o´ V x G/ρ D l`a c´ac d¯ı’nh cu’a G/ρ Do Si = {k} neˆn theo d¯.inh ngh˜ıa d¯oˆ` thi thu.o.ng, V xV x+i l`a ca.nh cu’a G/ρ X´et chu tr`ınh C = V V i V 2i V (m−1)iV G/ρ La.i c´o gcd(i, m) = neˆn {0, i, 2i, , (m − 1)i} l`a taˆ´t ca’ c´ac phaˆ`n tu’ cu’a Zm V`ı vaˆy C l`a chu tr`ınh Hamilton G/ρ Ta xaˆy i u C nhu sau: P xuaˆ´t ph´at t` u vy0 cu’a G0 , d¯i t´o.i vy+k cu’a du ng d¯u.`o.ng P t` (m−1)i 2i ’ a G2i Tieˆ´p tu.c nhu vaˆy, Gi , roˆ`i t´o.i vy+k(1+α i ) cu t´o i vy+k(1+αi+···+α(m−2)i ) cu’a G(m−1)i v`a quay tro’ veˆ` vy+r cu’a G0 Taˆp taˆ´t ca’ c´ac d¯u `o ng d¯i d¯u o c xaˆy du ng theo c´ach th´ u.c treˆn, [2], d¯u.o c k´y hieˆu l`a coil(C) Trong d¯oˆ` thi G, tu d¯a˘’ ng caˆ´u ρ nu’.a ch´ınh qui v`a c´o caˆ´p n, d¯oˆ` thi u.a c´ac d¯u.`o.ng P thu.o.ng G/ρ c´o chu tr`ınh Hamilton C v`a coil(C) ch´ noˆ´i hai d¯ı’nh cu’a G0 c´o khoa’ng c´ach r = k(1 + αi + · · · + α(m−1)i) v´o.i gcd(r, n) = Theo Boˆ’ d¯ˆe` [26], G c´o chu tr`ınh Hamilton Footer Page 76 of 123 Header Page 77 of 123 77 - i.nh l´ D y 3.9 Gia’ su’ G = MC(m, n, α, S0, S1, , Sµ) l` a d¯oˆ` thi meta ˆn ho` lua an baˆc o m chia heˆ´t cho 4, n ch˘a˜n, S0 = { n2 }, lieˆn thoˆng c´ ao d¯´ o thuoˆc o.i i n` Si = {s} v´ {1, 2, , µ − 1} cho gcd(i, m) = 1, Sj = ∅ cho mo.i j ∈ {1, 2, , µ − 1} \ {i}, Sµ = {r} Khi d¯´o G c´o chu tr`ınh Hamilton x Ch´ u.ng minh Gia’ su’ G c´o taˆp d¯ı’nh V = {vy | x ∈ Zm ; y ∈ Zn } K´y x x x hieˆu wy = {vy , vy+ n2 }, o’ d¯ˆay x ∈ Zm, y ∈ Zn/2 X´et d¯oˆ` thi G d¯u o c xaˆy x u G nhu sau: G c´o taˆp du ng t` d¯ı’nh V (G ) = {wy | x ∈ Zm , y ∈ Zn/2}, hai d¯ı’nh wyx v`a whk , k = x, l`a keˆ` G v`a chı’ toˆ`n ta.i u ∈ wyx v`a v ∈ whk cho u, v keˆ` G M˘a.t kh´ac, deˆ˜ kieˆ’m tra d¯u.o c G d¯a˘’ ng caˆ´u v´o.i d¯oˆ` thi meta luaˆn ho`an MC(m, n2 , α , S0, , Sµ ), d¯o´ α ≡ α (mod n2 ), Si = {s } v´o.i s ≡ s (mod n2 ), Sj = ∅ v´o.i mo.i j ∈ {0, 1, , µ − 1} \ {i} c`on Sµ = {r } v´o.i r ≡ r (mod n2 ) Do vaˆy ta c´o theˆ’ d¯oˆ`ng nhaˆ´t G v´o i d¯oˆ` thi n`ay Nhu u.a, G vaˆy d¯oˆ` thi meta luaˆn ho`an baˆc G l`a moˆt v´o i S0 = ∅ Theˆm n˜ - i.nh l´y [29], G s˜e c´o chu l`a lieˆn thoˆng v`a c´o m chia heˆ´t cho Theo D tr`ınh Hamilton Tieˆ´p theo ta s˜e xaˆy du ng chu tr`ınh Hamilton C G t` u moˆt chu tr`ınh Hamilton C G b˘`a ng c´ach sau d¯ˆay xt−1 Gia’ su’ C = w00 wyx11 wyx22 wyt−1 w0 l`a moˆt chu tr`ınh Hamilton c´o d¯oˆ u d`ai t G Tru.´o.c heˆ´t ta xaˆy du ng d¯u.`o.ng P1 G nhu sau: T` x d¯ı’nh z00 = v00 ∈ w00 ta d¯i t´o.i d¯ı’nh zyx11 thuoˆc wy11 b˘`a ng moˆt ca.nh x ung b˘a` ng moˆt G Tieˆ´p theo, t` u zyx11 ta d¯i t´o.i d¯ı’nh zyx22 thuoˆc wy22 c˜ ca.nh xt−1 xt−1 d¯a˜ d¯u.o c cho.n thuoˆc G, , v`a cuoˆ´i c` ung t` u d¯ı’nh zyt−1 wyt−1 , b˘`a ng x moˆt ca.nh G, ta d¯i t´o i d¯ı’nh zytt cu’a w0 C´ach xaˆy du ng d¯u `o ng P1 nhu treˆn l`a thu c hieˆn d¯u o c d¯.inh ngh˜ıa cu’a d¯oˆ` thi G Nhu vaˆy ta c´o t−1 xt P1 = z00 zyx11 zyx22 zyxt−1 zyt , u P1 b˘`a ng c´ach thay o’ d¯ˆay z00 = v00 Baˆy gi`o ta la.i xaˆy du ng d¯u.`o.ng P2 t` Footer Page 77 of 123 Header Page 78 of 123 78 theˆ´ moˆ˜i d¯ı’nh zyxii P1 bo’.i zyxii+ n C´o hai kha’ n˘ang xa’y ra: Kha’ n˘ ang 1: zyxtt = z 0n Trong tru.`o.ng ho p n`ay, zyxtt+ n = z00 V`ı vaˆy, C = P1 ∪ P2 l`a chu tr`ınh Hamilton G Kha’ n˘ ang 2: zyxtt = z00 L´ uc n`ay, zyxtt+ n = z 0n v`a v`ı theˆ´, ca’ P1 v`a P2 d¯ˆe`u l`a chu tr`ınh 2 xt−1 xt−1 n ` ˆy keˆ` v´o.i zyt−1 G Do S0 = { } neˆn z0 keˆ v´o.i z 0n v`a zyt−1 + n Do va 2 0 t−1 t−2 t−1 C = z00 zyx11 zyx22 zyxt−1 zyt−1 + n zyt−2 + n z n2 z0 x x 2 u.ng minh l`a chu tr`ınh Hamilton G T´o.i d¯ˆay, d¯.inh l´y d¯u.o c ch´ - i.nh l´y 3.9 veˆ` c´ac d¯oˆ` thi meta luaˆn ho`an baˆc D lieˆn thoˆng c´o m chia heˆ´t cho v`a S0 = ∅ s˜e d¯u.o c minh ho.a v´ı du sau d¯ˆay V´ı du H`ınh 3.2 l`a moˆt chu tr`ınh Hamilton G = MC(4, 6, 1, {3}, {1}, {0}) d¯a˜ x´oa d¯i c´ac ca.nh cu’a G khoˆng thuoˆc chu tr`ınh n`ay tv4 v53 t tv4 v52 t vt41 v51 t v50 t vt03 v0t vt30 t t t t t vt 00 tv01 v13 v40 v12 v11 v10 vt31 vt32 vt33 t v20 t v21 t v22 t3 v2 - i.nh l´ H`ınh 3.2: V´ı du minh ho.a cho D y 3.9 Footer Page 78 of 123 Header Page 79 of 123 79 ung ta d¯a˜ ch´ u.ng minh d¯u.o c su toˆ`n ta.i chu O’ c´ac d¯.inh l´y treˆn, ch´ tr`ınh Hamilton moˆt soˆ´ d¯oˆ` thi meta luaˆn ho`an baˆc c´o bieˆ’u tu o ng u nhaˆ´t cu’a ch´ ung b˘a` ng roˆ˜ng, keˆ´t th´ u nhaˆ´t kh´ac roˆ˜ng Khi bieˆ’u tu.o ng th´ qua’ sau d¯ˆay l`a d¯ieˆ`u kieˆn d¯u’ cho tru `o ng ho p d¯oˆ` thi d¯ang x´et c´o khoˆ´i - i.nh l´ D y 3.10 Gia’ su’ G = MC(2, n, α, S0, S1 ) l`a d¯oˆ` thi meta luaˆn ho` an baˆc o S0 = ∅, S1 = {r1, r2, r3, r4} Khi d¯´o G c´o chu tr`ınh c´ Hamilton neˆ´u tho’ a m˜ an moˆt hai d¯ieˆ`u kieˆn sau: ao d¯´ o thuoˆc Toˆ`n ta.i i n` {1, 2, 3} cho gcd(ri − r4, n) = 1; Toˆ`n ta.i j, k ∈ {1, 2, 3}, j = k cho gcd(rj − r4 , rk − r4, n) = x Ch´ u.ng minh Gia’ su’ d¯oˆ` thi G c´o taˆp d¯ı’nh V = {vy | x ∈ Z2 ; y ∈ Zn} x X´et d¯oˆ` thi G = MC(2, n, −1, S0, S1) c´o taˆp d¯ı’nh V (G ) = {wy | x ∈ Z2, y ∈ Zn } v`a S1 = {r1 − r4, r2 − r4 , r3 − r4, r4 − r4 } C´o theˆ’ kieˆ’m tra l`a d¯u.o c song a´nh ϕ : V (G) → V (G ) x´ac d¯.inh bo’.i vy0 → wy0, vy1 → wy−r moˆt u.a G v`a G d¯a˘’ ng caˆ´u gi˜ Do vaˆy, khoˆng l`am maˆ´t t´ınh toˆ’ng qu´at, ta c´o theˆ’ gia’ thieˆ´t d¯oˆ` thi G = MC(2, n, α, S0, S1) d¯a˜ cho c´o α = −1 v`a S1 = {r1, r2, r3, 0} Nhu u.ng minh G c´o chu tr`ınh vaˆy, u.ng minh meˆnh d¯ˆe` n`ay, ta chı’ caˆ`n ch´ d¯ˆe’ ch´ Hamilton neˆ´u n´o tho’a m˜an moˆt c´ac d¯ieˆ`u kieˆn: Toˆ`n ta.i i n`ao d¯o´ thuoˆc {1, 2, 3} cho gcd(ri, n) = 1; Toˆ`n ta.i j, k ∈ {1, 2, 3}, j = k cho gcd(rj , rk , n) = Tru.´o.c heˆ´t ca’ hai tru.`o.ng ho p treˆn, d¯oˆ` thi G l`a lieˆn thoˆng theo - i.nh l´y 2.11 Baˆy gi`o ta x´et t` u.ng tru.`o.ng ho p D Toˆ`n ta.i i n` ao d¯´ o thuoˆc {1, 2, 3} cho gcd(ri, n) = 1 Trong G x´et chu tr`ınh C c´o da.ng: C = v00 vr1i vr0i v2r v v(n−1)r v1v0 i 2ri i 0 Do gcd(ri, n) = neˆn {0, ri, 2ri, , (n − 1)ri} l`a taˆ´t ca’ c´ac phaˆ`n tu’ cu’a Zn Vaˆy C l`a moˆt chu tr`ınh Hamilton G Footer Page 79 of 123 Header Page 80 of 123 80 Toˆ`n ta.i j, k ∈ {1, 2, 3}, j = k cho gcd(rj , rk , n) = X´et d¯oˆ` thi G cu’a G x´ac d¯.inh bo’.i G = MC(2, n, −1, S0, S1) v´o.i um cu’a G, c´o baˆc S1 = {rj , rk , 0} Hieˆ’n nhieˆn, G l`a d¯oˆ` thi bao tr` G - i.nh l´y [27]) La.i theo D - i.nh lieˆn thoˆng c´o gcd(rj , rk , n) = (theo D l´y [5], G l`a d¯oˆ` thi Cayley treˆn ρ, τ v´o.i ρ, τ l`a c´ac tu d¯a˘’ ng caˆ´u cu’a G x+1 x x+1 x´ac d¯.inh bo’.i ρ(vyx ) = vy+1 v`a τ (vyx) = vαy = v−y M˘a.t kh´ac, deˆ˜ kieˆ’m u.c ρn = τ = v`a τ ρτ −1 = ρ−1 tra d¯u.o c r˘`a ng ρ, τ tho’a m˜an c´ac heˆ th´ neˆn ρ, τ l`a moˆt nh´om nhi dieˆn Nhu vaˆy, G l`a d¯oˆ` thi Cayley baˆc lieˆn thoˆng treˆn nh´om nhi dieˆn - i.nh l´y 1.4, G c´o chu tr`ınh Hamilton Do G l`a d¯oˆ` thi ρ, τ Theo D bao tr` um cu’a G neˆn c´o theˆ’ keˆ´t luaˆn ung c´o chu tr`ınh Hamilton G c˜ - i.nh l´y 3.10 s˜e d¯u.o c moˆ ta’ b˘`a ng moˆt Keˆ´t qua’ cu’a D chu tr`ınh Hamilton d¯oˆ` thi G = MC(2, 7, 1, ∅, {0, 2, 3, 5}) o’ v´ı du sau d¯ˆay V´ı du Trong h`ınh 3.3 l`a moˆt chu tr`ınh Hamilton d¯oˆ` thi meta luaˆn ho`an baˆc u nhaˆ´t l`a taˆp c´o m = v`a bieˆ’u tu o ng th´ roˆ˜ng v00 v10 v20 v30 v40 v50 v60 v01 v11 v21 v31 v41 v51 v61 t ❏ ❏ t ❏ t ❏ ❏ ❏ t ❏ ❏ t ❏ t t ✧ ✧ ✧ ✧ ✧ ✧ ✧ ❏✧ ❏ ❏ ✧✧ ❏ ✧✧ ❏ ❏ ✧ ✧ ❏ ❏ ❏ ✧❏ ✧❏ ❏ ✧ ❏ ✧ ❏ ❏ ❏ ✧ ✧ ❏ ❏ ❏ ✧❏ ✧❏ ❏ ❏ ❏ ✧✧ ❏ ✧✧ ❏ ✧❏ ❏ ✧❏ ❏ ❏ ❏ ❏ ❏ ❏✧✧ ❏✧✧ ✧❏ ✧❏ ❏ ❏ ❏ ✧ ✧ ✧ ❏ ❏ ❏ ❏ ❏✧ ✧ ✧ ❏ ❏ ❏ ❏ ✧ ✧ ❏ ❏t ✧ ❏t ❏t ❏t ❏t t✧ t - i.nh l´ H`ınh 3.3: V´ı du minh ho.a cho D y 3.10 ung ta d¯a˜ chı’ d¯u.o c d¯ieˆ`u kieˆn T´om la.i, o’ chu.o.ng n`ay ch´ d¯u’ cho su toˆ`n ta.i chu tr`ınh Hamilton moˆt soˆ´ d¯oˆ` thi meta luaˆn ho`an baˆc u u treˆn c´ac C´ac d¯.inh l´y 3.6, 3.7, 3.8 v`a 3.9 l`a nh˜ u ng keˆ´t qua’ nghieˆn c´ Footer Page 80 of 123 Header Page 81 of 123 81 u nhaˆ´t kh´ac d¯oˆ` thi meta luaˆn ho`an baˆc lieˆn thoˆng c´o bieˆ’u tu o ng th´ - i.nh l´y 3.10 d¯a˜ x´et d¯ˆe´n c´ac d¯oˆ` thi n`ay ch´ roˆ˜ng D ung c´o bieˆ’u tu.o ng ung ta d¯a˜ su’ du.ng t´o.i moˆt th´ u nhaˆ´t b˘a` ng roˆ˜ng O’ d¯ˆay, ch´ v`ai keˆ´t qua’ tru.´o.c d¯ˆay veˆ` d¯oˆ` thi Cayley, d¯oˆ` thi thu.o.ng, d¯oˆ` thi Petersen toˆ’ng qu´at GP (n, k) v`a c´ac k˜y thuaˆt cu’a toˆ’ ho p d¯ˆe’ xaˆy du ng tru c tieˆ´p chu tr`ınh Hamilton d¯oˆ` thi Tieˆ´p tu.c mo’ roˆng u.u theo hu.´o.ng n`ay, hy vo.ng r˘`a ng nghieˆn c´ ung ta s˜e c´o theˆm nh˜ u.ng keˆ´t qua’ saˆu s˘a´c ho.n treˆn l´o.p th`o.i gian t´o.i, ch´ d¯oˆ` thi d¯ang x´et Footer Page 81 of 123 Header Page 82 of 123 ˆN ˆ´T LUA KE Taˆ´t ca’ c´ac keˆ´t qua’ d¯u.o c tr`ınh b`ay luaˆn ´an d¯ˆe`u xoay quanh l´o.p d¯oˆ` thi meta luaˆn ho`an baˆc 4, d¯oˆ´i tu o ng ch´ınh luaˆn ´an V´o i hai mu.c d¯´ıch d¯a˘ t l`a x´et t´ınh lieˆn thoˆng v`a su toˆ`n ta.i chu tr`ınh Hamilton cu’a c´ac d¯oˆ` thi n`ay, luaˆn ´an d¯a˜ d¯a.t d¯u o c c´ac keˆ´t qua’ sau d¯ˆay: Xaˆy du ng k˜y thuaˆt toˆ’ng qu´at d¯ˆe’ x´ac d¯.inh d¯ieˆ`u kieˆn lieˆn thoˆng cho c´ac d¯oˆ` thi meta luaˆn ho`an n´oi chung K˜ y thuaˆt n`ay d¯u o c theˆ’ hieˆn ung v´o.i vieˆc d¯ˆe` 1.1 d¯ˆe` 2.1, 2.2 v`a 2.3 c` c´ac meˆnh ´ap du.ng Meˆnh Su’ du.ng k˜y thuaˆt n´oi treˆn, luaˆn ´an d¯a˜ chı’ d¯u o c d¯ieˆ`u kieˆn caˆ`n - i.nh l´y 2.5 v`a d¯u’ cho t´ınh lieˆn thoˆng cu’a d¯oˆ` thi meta luaˆn ho`an baˆc D u nhaˆ´t kh´ac roˆ˜ng l`a c´ac d¯ieˆ`u kieˆn d`anh cho c´ac d¯oˆ` thi c´o bieˆ’u tu o ng th´ - inh l´y Khi c´ac d¯oˆ` thi c´o bieˆ’u tu.o ng th´ u nhaˆ´t b˘`a ng roˆ˜ng, ch´ ung ta c´o D 2.11 Ngo`ai ra, moˆt ung du a v`ao thu’ tu.c kieˆ’m tra t´ınh lieˆn thoˆng cu’a ch´ hai d¯.inh l´y treˆn c˜ ung d¯u.o c d¯ˆe` xuaˆ´t Veˆ` vaˆ´n d¯ˆe` Hamilton, luaˆn u.ng minh d¯u.o c c´ac d¯.inh l´y ´an d¯a˜ ch´ 3.6, 3.7, 3.8 v`a 3.9 veˆ` d¯ieˆ`u kieˆn d¯u’ cho su toˆ`n ta.i chu tr`ınh Hamilton u nhaˆ´t kh´ac c´ac d¯oˆ` thi meta luaˆn ho`an baˆc c´o bieˆ’u tu o ng th´ - i.nh l´y 3.10 d¯a˜ roˆ˜ng Khi bieˆ’u tu.o ng th´ u nhaˆ´t cu’a ch´ ung b˘a` ng roˆ˜ng, D chı’ d¯u.o c moˆt v`ai d¯ieˆ`u kieˆn d¯ˆe’ d¯oˆ` thi MC(2, n, α, S0, S1 ) v´o i |S1 | = c´o chu tr`ınh Hamilton Tieˆ´p tu.c nghieˆn c´ u.u veˆ` chu tr`ınh Hamilton d¯oˆ` thi meta luaˆn ho`an baˆc ung toˆi d¯ang xem x´et t´o.i c´ac d¯oˆ` thi c´o m chia heˆ´t cho 4, ch´ u.ng keˆ´t qua’ ban d¯aˆ`u Hy vo.ng r˘a` ng th`o.i gian v`a d¯a˜ thu d¯u.o c nh˜ ung toˆi s˜e gia’i quyeˆ´t d¯u.o c tro.n ve.n tru.`o.ng ho p n`ay t´o.i, ch´ 82 Footer Page 82 of 123 Header Page 83 of 123 ´ ˆ ` DANH MU C CAC CONG TRINH ˆng tr`ınh d ˆng bo ˆn quan d ˆn C´ ac co ¯˜ a co o lie ¯e an: ˆ´ c´ ˆ´n lua ´ Ngo Dac Tan and Tran Minh Tuoc, “Connectedness of tetravalent metacirculant graphs with non-empty first symbol”, In: Proceedings of The International Conference “Mathematical Foundation of Informatics” (October 25 – 28, 1999, Hanoi, Vietnam), World Scientific, Singapore (nhaˆn d¯a˘ng) Ngo Dac Tan and Tran Minh Tuoc, “On Hamilton cycles in connected tetravalent metacirculant graphs with non-empty first symbol”, Acta Mathematica Vietnamica 28 (2003), 267 - 278 Ngo Dac Tan and Tran Minh Tuoc, “Connectedness of tetravalent metacirculant graphs with the empty first symbol”, Preprint 2002/33, Institute of Mathematics (2002) (gu’.i d¯a˘ng) ´t b´ ˆi C´ ac t´ om t˘ a ao c´ ac ta.i c´ ac ho nghi.: Ngo Dac Tan and Tran Minh Tuoc, “Connectedness of tetravalent metacirculant graphs with non-empty first symbol”, Abstract of The International Conference “Mathematical Foundation of Informatics”, October 25 – 28, 1999, Hanoi, Vietnam Ngo Dac Tan and Tran Minh Tuoc, “On Hamilton cycles in connected tetravalent metacirculant graphs with non-empty first symbol”, Abstract of The International Conference “Combinatorics and Applications”, December 03 – 05, 2001, Hanoi, Vietnam - ˘a´c Taˆn v`a Traˆ`n Minh Tu.´o.c, “Connectedness of tetravalent Ngoˆ D metacirculant graphs with the empty first symbol”, T´om t˘ a´t c´ac b´ ao c´ao Hoˆi an ho.c To`an quoˆ´c laˆ`n th´ u 6, 07 – 10/09/2002, nghi To´ Hueˆ´, Vieˆt Nam 83 Footer Page 83 of 123 Header Page 84 of 123 ` LIE ˆ U THAM KHA’O TAI [1] Alspach B (1983), “The classification of hamiltonian generalized Petersen graphs”, J Combin Theory Ser B 34, 293 - 312 [2] Alspach B (1989), “Lifting Hamilton cycles of quotient graphs”, Discrete Mathematics 78, 25 - 36 [3] Alspach B (1989), “Hamiton cycles in metacirculant graphs with prime cardinal blocks”, Annals of Discrete Mathematics Vol 41, 25 - 36 [4] Alspach B., Durnberger E and Parsons T.D (1985), “Hamiton cycles in metacirculant graphs with prime cardinality blocks”, Annals of Discrete Mathematics 27, 27 - 34 [5] Alspach B and Parsons T.D (1982), “A construction for vertextransitive graphs”, Canad J Math 34, 307 - 318 [6] Alspach B and Parsons T.D (1982), “On Hamilton cycles in metacirculant graphs”, Ann of Discrete Math 15, - [7] Alspach B and Sutcliffe R.J (1979), “Vertex-transitive graphs of order 2p”, in: Ann New York Acad Sci., New York Acad Sci., 18 - 27 [8] Alspach B and Zhang C.Q (1989), “Hamilton cycles in cubic Cayley graphs on dihedral groups”, Ars Combin 28, 101 - 108 [9] Behzad M and Chartrand G (1971), Introduction to the theory of graphs, Allyn and Bacon, Boston [10] Bermond J.C (1978), “Hamitolnian graphs”, Selected topics in Graphs Theory, Academic Press, London 84 Footer Page 84 of 123 Header Page 85 of 123 85 [11] Biggs N (1973), “Three remarkable graphs”, Canadian Journal of Mathematics 25, 397 – 411 [12] Bollob´as B (1979), Graph Theory, an introductory course, Springer - Verlag, New York [13] Diestel R (2000), Graph Theory, Springer, Berlin [14] Dirac G.A (1952), “Some theorem on Abstract graphs”, Proc London Math Soc 2, 69 - 81 [15] Dobson E (1998), “Isomorphism problem for metacirculant graphs of order a product of two primes”, Canad J Math 50, 1176 - 1188 [16] Durnberger E (1983), “Connected Cayley graphs of semi-direct product of cyclic groups of prime order by abelian groups are Hamiltonian”, Discrete Mathematics 46, 55 - 68 [17] Godsil C and Royle G.F (2001), Algebraic graph theory, Springer - Verlag, New York [18] Gould R.J (1991), “Updating the hamiltonian problem, a survey”, J Graph Theory 15, 121-157 [19] Gross J., Yellen J (1999), Graph Theory and its applications, CRC Press, Boca Raton - London - New York - Washington [20] Lipman M.J (1985), “Hamilton cycles and paths in vertextransitive graphs with abelian and nilpotent groups”, Discrete Mathematics 54, 15 - 21 [21] Lov´asz L (1970), Combinatorial Structures and Their Applications, Gordon and Breach, London Problem II [22] Maruˇsiˇc D (1983), “Hamilton circuits in Cayley graphs”, Discrete Mathematics 46, 49 - 54 Footer Page 85 of 123 Header Page 86 of 123 86 [23] Maruˇsiˇc D and Scapellato R (1994), “Classifying vertex-transitive graphs whose order is a product of two primes”, Combinatorica 14, 184 - 201 [24] Ore O (1960), “A note on Hamiltonian circuits”, Am Math Month 67, 55 [25] Ngo Dac Tan (1990), “On cubic metacirculant graphs”, Acta Mathematica Vietnamica Vol 15, No 2, 57 - 71 [26] Ngo Dac Tan (1992), “Hamilton cycles in cubic (4, n)-metacirculant graphs”, Acta Math Vietnamica Vol 17, No 2, 83 - 93 [27] Ngo Dac Tan (1993), “Connectedness of cubic metacirculant graphs”, Acta Math Vietnamica Vol 18, No.1, - 17 [28] Ngo Dac Tan (1993), “On Hamilton cycles in cubic (m, n)metacirculant graphs”, Australasian Journal of Combinatorics 8, 211 - 232 [29] Ngo Dac Tan (1994), “Hamilton cycles in cubic (m, n)- metacirculant graphs with m divisible by 4”, Graphs and Combin 10, 67 - 73 [30] Ngo Dac Tan (1995), “Hamilton cycles in some vertex-transitive graphs”, SEA Bull Math Vol 19, No 1, 61 - 67 [31] Ngo Dac Tan (1996), “On Hamilton cycles in cubic (m, n)metacirculant graphs, II”, Australasian Journal of Combinatorics 14, 235 - 257 [32] Ngo Dac Tan (1996), “Non-Cayley tetravalent metacirculant graphs and their hamiltonicity”, Journal of Graph Theory 23, 273 - 287 [33] Ngo Dac Tan (1996), “On the isomorphism problem for a family of cubic metacirculant graphs”, Discrete Mathematics 151, 231 - 242 Footer Page 86 of 123 Header Page 87 of 123 87 [34] Ngo Dac Tan (1996), “Cubic (m, n)-metacirculant graphs which are not Cayley graphs”, Discrete Mathematics 154, 237 - 244 [35] Ngo Dac Tan (1997), “Sufficient conditions for the existence of a Hamilton cycles in cubic (6, n)-metacirculant graphs”, Vietnam Journal of Mathematics 25:1, 41 - 52 [36] Ngo Dac Tan (1998), “Sufficient conditions for the existence of a Hamilton cycles in cubic (6, n)-metacirculant graphs, II”, Vietnam Journal of Mathematics 26:3, 41 - 52 [37] Ngo Dac Tan (2002), “On Non-Cayley tetravalent metacirculant graphs”, Graphs and Combin 18, 795 - 802 [38] Ngo Dac Tan (2003), “The automorphism groups of certain tetravalent metacirculant graphs”, Ars Combinatoria 66, 205 - 232 [39] Ngo Dac Tan and Tran Minh Tuoc, “Connectedness of tetravalent metacirculant graphs with non-empty first symbol”, In: Proceedings of The International Conference “Mathematical Foundation of Informatics” (October 25 – 28, 1999, Hanoi, Vietnam), World Scientific, Singapore (Nhaˆn d¯a˘ng) [40] Ngo Dac Tan and Tran Minh Tuoc (2003), “On Hamilton cycles in connected tetravalent metacirculant graphs with non-empty first symbol”, Acta Mathematica Vietnamica 28, 267 - 278 [41] Ngo Dac Tan and Tran Minh Tuoc, “Connectedness of tetravalent metacirculant graphs with empty first symbol”, Preprint 2002/33, Institute of Mathematics (Gu’.i d¯a˘ng) [42] Wielandt H (1964), Finite permutation groups, Academic Press, New York Footer Page 87 of 123 ... v`a ba chu. o.ng: u.c co ba’n; Chu. o.ng C´ac kieˆ´n th´ Chu. o.ng T´ınh lieˆn thoˆng cu’a d¯oˆ` thi meta luaˆn ho`an baˆc 4; Chu. o.ng Chu tr`ınh Hamilton d¯oˆ` thi meta luaˆn ho`an baˆc Chu. o.ng... d¯u.`o.ng) Hamilton D c´ o chu tr`ınh (t.u d¯u.` o.ng) Hamilton d¯u.o c go.i l`a d¯oˆ` thi Hamilton (t.u nu’.a Hamilton) V´ı du Trong h`ınh 1.11, G l`a d¯oˆ` thi Hamilton, G l`a nu’.a Hamilton. .. du.ng cho mo.i d¯oˆ` thi meta luaˆn ho`an neˆn c˜ ung c´o gi´a tri d¯oˆc laˆp nhaˆ´t d¯.inh Chu. o.ng d¯ˆe` caˆp t´o i su toˆ`n ta.i chu tr`ınh Hamilton c´ac d¯oˆ` thi meta luaˆn ho`an baˆc

Ngày đăng: 04/03/2017, 15:22

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan