Nghiên cứu và ứng dụng vi khuẩn sử dụng hydrocarbon trong xử lý ô nhiễm dầu ven biển

145 572 2
Nghiên cứu và ứng dụng vi khuẩn sử dụng hydrocarbon trong xử lý ô nhiễm dầu ven biển

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM VIỆN CÔNG NGHỆ SINH HỌC VƯƠNG THỊ NGA NGHIÊN CỨU VÀ ỨNG DỤNG VI KHUẨN SỬ DỤNG HYDROCARBON TRONG XỬ LÝ Ô NHIỄM DẦU VEN BIỂN LUẬN ÁN TIẾN SĨ SINH HỌC HÀ NỘI, 2016 VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM VIỆN CÔNG NGHỆ SINH HỌC Vương Thị Nga NGHIÊN CỨU VÀ ỨNG DỤNG VI KHUẨN SỬ DỤNG HYDROCARBON TRONG XỬ LÝ Ô NHIỄM DẦU VEN BIỂN Chuyên ngành: Vi sinh vật Mã số: 62 42 01 07 LUẬN ÁN TIẾN SĨ SINH HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS Trần Đình Mấn Viện Công nghệ sinh học i LỜI CẢM ƠN Tôi xin gửi lời biết ơn chân thành sâu sắc tới PGS TS NCVCC Lại Thúy Hiền, phòng Vi sinh vật dầu mỏ, Viện Công nghệ sinh học, Viện Hàn Lâm Khoa học Công nghệ Việt Nam, hướng dẫn, giúp đỡ tận tình, cặn kẽ chuyên môn dìu dắt, bảo ban từ bước nhỏ sống Tôi xin bày tỏ lòng cảm ơn sâu sắc đến PGS TS NCVC Trần Đình Mấn, nguyên Viện phó Viện Công nghệ sinh học, phòng Vật liệu sinh học, đồng hướng dẫn nghiên cứu tôi, bảo cặn kẽ bổ sung kiến thức quý báu, giúp hoàn thành tốt luận án Tôi xin gửi lời cảm ơn sâu sắc tới TS Kiều Thị Quỳnh Hoa anh chị, bạn đồng nghiệp phòng Vi sinh vật dầu mỏ, Viện Công nghệ sinh học, tập thể vững mạnh, đoàn kết mà vô yêu quý Các anh chị, bạn phối hợp chặt chẽ, giúp đỡ tận tình, chia sẻ với niềm vui, nỗi buồn, vượt qua khó khăn, giúp hoàn thành tốt luận án Tôi vô biết ơn người thân gia đình, đặc biệt người bạn đời, mang đến cho nhiều niềm vui, hạnh phúc, bên để động viên, quan tâm, giúp đỡ lúc khó khăn Tôi xin trân trọng gửi lời cảm ơn tới Ban lãnh đạo Viện Công nghệ sinh học ThS Bùi Thị Hải Hà giúp đỡ, hợp tác tạo điều kiện thuận lợi để hoàn thành luận án Hà Nội, ngày tháng Tác giả Vương Thị Nga năm 2015 ii LỜI CAM ĐOAN Tôi xin cam đoan: Đây công trình nghiên cứu số kết cộng tác với cộng khác; Các số liệu kết trình bày luận án trung thực, phần công bố Tạp chí Khoa học chuyên ngành với đồng ý cho phép đồng tác giả; Phần lại chưa công bố công trình khác Hà Nội, ngày tháng Tác giả năm 2015 iii MỤC LỤC Lời cảm ơn i Lời cam đoan ii Mục lục iii Danh mục ký hiệu, chữ viết tắt .vii Danh mục bảng viii Danh mục hình x MỞ ĐẦU CHƢƠNG TỔNG QUAN VẤN ĐỀ NGHIÊN CỨU 1.1 Tình hình ô nhiễm hydrocarbon dầu mỏ giới Việt Nam 1.1.1 Tình hình ô nhiễm hydrocarbon dầu mỏ giới 1.1.2 Tình hình ô nhiễm hydrocarbon dầu mỏ Việt Nam 1.2 Một số đặc điểm, tính chất dầu mỏ 1.2.1 Thành phần hóa học dầu mỏ 1.2.2 Các tính chất vật lý quan trọng dầu mỏ 10 1.3 Quá trình phân hủy hydrocarbon dầu mỏ nhờ vi sinh vật 11 1.3.1 Quá trình oxy hóa hydrocarbon chất nhận điện tử oxygen 11 1.3.2 Quá trình oxy hóa hydrocarbon chất nhận điện tử khác 18 1.4 Những nét chung chất hoạt hóa bề mặt sinh học .20 1.4.1 Vai trò chất hoạt hóa bề mặt sinh học vi sinh vật phân hủy dầu 20 1.4.2 Các loại chất hoạt hóa bề mặt sinh học từ vi khuẩn .21 1.4.3 Tính chất chất hoạt hóa bề mặt sinh học 24 1.5 Vi sinh vật có khả sử dụng hydrocarbon dầu mỏ tạo chất hoạt hóa bề mặt sinh học .26 1.5.1 Tình hình nghiên cứu vi sinh vật sử dụng hydrocarbon dầu mỏ tạo chất hoạt hóa bề mặt sinh học giới 26 1.5.2 Tình hình nghiên cứu vi sinh vật sử dụng hydrocarbon dầu mỏ tạo chất hoạt hóa bề mặt sinh học Việt Nam 30 iv 1.6 Ứng dụng vi sinh vật sử dụng hydrocarbon dầu mỏ tạo chất hoạt hóa bề mặt sinh học xử lý ô nhiễm dầu ven biển 33 CHƢƠNG VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU 35 2.1 Vật liệu nghiên cứu 35 2.1.1 Vật liệu 35 2.1.2 Thiết kế mô hình thực nghiệm xử lý ô nhiễm dầu ven biển 35 2.1.3 Máy móc thiết bị 36 2.1.4 Hóa chất 36 2.1.5 Môi trường nuôi cấy .36 2.2 Phƣơng pháp .37 2.2.1 Phương pháp thu mẫu 37 2.2.2 Xác định số lượng vi sinh vật theo phương pháp pha loãng tới hạn Most Probable Number (Man, 1983) 37 2.2.3 Phân lập vi khuẩn sử dụng hydrocarbon .38 2.2.4 Quan sát hình thái tế bào vi khuẩn kính hiển vi điện tử quét .38 2.2.5 Đặc điểm sinh hóa vi khuẩn kít chuẩn sinh hóa 38 2.2.6 Phân loại vi khuẩn phân tích trình tự 16S rRNA 38 2.2.7 Phân tích quần xã vi sinh vật Metagenomics .40 2.2.8 Phương pháp, tiêu chí đánh giá số lượng taxa (giới, ngành, lớp, chi loài) 41 2.2.9 Nghiên cứu ảnh hưởng nhiệt độ, nguồn carbon, nitrogen, pH nồng độ NaCl lên sinh trưởng tổng hợp chất hoạt hóa bề mặt sinh học vi khuẩn 41 2.2.10 Khả tạo chất hoạt hóa bề mặt sinh học số nhũ hóa E24 42 2.2.11 Hiệu nhũ hóa chất hoạt hóa bề mặt sinh học phương pháp đẩy màng dầu loang Oil spreading 42 2.2.12 Hoạt tính nhũ hóa chất hoạt hóa bề mặt sinh học số hydrocarbon độ ổn định nhũ hóa tác động nhiệt độ, nồng độ muối pH thay đổi 42 v 2.2.13 Tối ưu hóa môi trường tạo chất hoạt hóa bề mặt sinh học phương pháp đáp ứng bề mặt 43 2.2.14 Tách chiết thô chất hoạt hóa bề mặt sinh học .43 2.2.15 Xác định cấu trúc chất hoạt hóa bề mặt sinh học sắc ký khối phổ (GC-MS) 43 2.2.16 Xác định dầu tổng số cân trọng lượng .44 2.2.17 Xác định thành phần dầu sắc ký khí khối phổ (GC-MS) 44 2.2.18 Xử lý số liệu 44 CHƢƠNG KẾT QUẢ NGHIÊN CỨU 45 3.1 Số lƣợng thành phần loài vi khuẩn sử dụng hydrocarbon nƣớc trầm tích số cảng, vịnh ven biển Việt Nam 46 3.1.1 Phân tích số lượng vi khuẩn sử dụng hydrocarbon 46 3.1.2 Đặc điểm phân loại vi khuẩn sử dụng hydrocarbon .50 3.2 Khả tạo chất hoạt hóa bề mặt sinh học vi khuẩn sử dụng hydrocarbon 56 3.2.1 Sàng lọc chủng vi khuẩn tạo chất hoạt hóa bề mặt sinh học cao 56 3.2.2 Động thái sinh trưởng khả tạo chất hoạt hóa bề mặt sinh học chủng A soli H1, A calcoaceticus H3 R ruber TD2 .57 3.2.3 Đặc điểm chất hoạt hóa bề mặt sinh học chủng A soli H1, A calcoaceticus H3 R ruber TD2tạo 58 3.2.4 Ảnh hưởng yếu tố môi trường đến sinh trưởng tạo chất hoạt hóa bề mặt sinh học chủng A soli H1, A calcoaceticus H3 R ruber TD2 60 3.3 Khả phân hủy dầu diesel dầu thô chủng A soli H1, A calcoaceticus H3 R ruber TD2 .68 3.4 Cấu trúc hóa học chất hoạt hóa bề mặt sinh học chủng R ruber TD2 tạo 71 vi 3.5 Tối ƣu hóa khả tạo chất hoạt hóa bề mặt sinh học chủng R ruber TD2 phƣơng pháp đáp ứng bề mặt 73 3.6 Ứng dụng vi khuẩn sử dụng hydrocarbon tạo chất hoạt hóa bề mặt sinh học xử lý ô nhiễm dầu ven biển 77 3.6.1 Tạo chế phẩm sinh học từ chủng R ruber TD2 77 3.6.2 Biến động số lượng vi khuẩn sử dụng hydrocarbon trình xử lý .79 3.6.3 Biến động loài vi khuẩn sử dụng hydrocarbon chiếm ưu trình xử lý .81 3.6.4 Xác định quần xã vi sinh vật mô hình xử lý phân tích Metagenomics 86 3.6.5 Hiệu xử lý ô nhiễm dầu ven biển 88 CHƢƠNG BÀN LUẬN KẾT QUẢ NGHIÊN CỨU 94 * Số lượng thành phần loài vi khuẩn sử dụng hydrocarbon nước trầm tích số cảng, vịnh ven biển Việt Nam 94 * Khả tạo chất hoạt hóa bề mặt sinh học đặc điểm chất hoạt hóa bề mặt sinh học vi khuẩn sử dụng hydrocarbon tạo 96 * Khả phân hủy dầu diesel dầu thô số chủng vi khuẩn sử dụng hydrocarbon 101 * Ứng dụng vi khuẩn sử dụng hydrocarbon tạo chất hoạt hóa bề mặt sinh học xử lý ô nhiễm dầu ven biển 103 KẾT LUẬN 111 KIẾN NGHỊ 111 DANH MỤC CÁC CÔNG TRÌNH CÔNG BỐ 113 TÀI LIỆU THAM KHẢO 114 TÓM TẮT TIẾNG ANH 125 vii DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT BLAST Basic local alignment search tool = Công cụ tìm kiếm xếp CHHBMSH Chất hoạt hóa bề mặt sinh học DNA Deoxyribonucleic acid = axit deoxyribonucleic EDTA Ethylene diamine tetra acetic acid = axit etilen điamin tetra axetic dNTP Deoxyribonucleotide triphosphate FO Fuel oil = dầu nhiên liệu DT Dầu thô DO Diesel oil = dầu diesel GC-MS Gas chromatography-Mass spectrometry = sắc ký khối phổ GHCP Giới hạn cho phép PAH Polycyclic aromatic hydrocarbon = hydrocarbon thơm đa vòng MPN Most probable number = số lượng tế bào có mẫu NCBI National Center for Biotechnology Information = Trung tâm Quốc gia Tin sinh học OD Optical density = mật độ quang học OS Oil spreading = màng dầu loang PBS Phosphate buffered saline = muối đệm photphat PCI phenol choloroform isoamylalcohol PCR Polymerase chain reaction = phản ứng trùng hợp chuỗi SDS Sodium dodecyl sulfate = muối natri dodexil sunphat VSV Vi sinh vật VK Vi khuẩn VK SDHC Vi khuẩn sử dụng hydrocarbon VK HK Vi khuẩn hiếu khí STT Số thứ tự viii DANH MỤC CÁC BẢNG Bảng 1.1 Các hydrocarbon riêng lẻ xác định loại dầu mỏ Bảng 1.2 Các chi vi sinh vật có khả phân hủy hydrocarbon no 15 Bảng 1.3 Các chi vi khuẩn có khả phân hủy hydrocarbon thơm 18 Bảng 1.4 Các nhóm vi khuẩn có khả oxy hóa hydrocarbon điều kiện kị khí 19 Bảng 1.5 Chất hoạt hóa bề mặt sinh học tách từ vi khuẩn 21 Bảng 2.1 Các điều kiện nuôi cấy khảo sát 41 Bảng 2.2 Giá trị mã hóa yếu tố thực nghiệm 43 Bảng 3.1 Số lượng vi khuẩn sử dụng hydrocarbon hiếu khí mẫu nước trầm tích vịnh Lan Hạ 46 Bảng 3.2 Số lượng vi khuẩn sử dụng hydrocarbon hiếu khí mẫu nước trầm tích ven biển Đồ Sơn 47 Bảng 3.3 Số lượng vi khuẩn sử dụng hydrocarbon hiếu khí mẫu nước trầm tích cảng Nghi Sơn 47 Bảng 3.4 Số lượng vi khuẩn sử dụng hydrocarbon hiếu khí mẫu nước trầm tích cảng, ven biển Quy Nhơn, Huế, Vũng Tàu 48 Bảng 3.5 Số lượng vi khuẩn sử dụng hydrocarbon hiếu khí mẫu nước trầm tích ven biển Bình Thuận 49 Bảng 3.6 Số lượng vi khuẩn sử dụng hydrocarbon hiếu khí mẫu nước trầm tích ven biển Bến Tre 49 Bảng 3.7 Đặc điểm hình thái vi khuẩn sử dụng hydrocarbon Gram âm phân lập số cảng, vịnh ven biển Việt Nam 50 Bảng 3.8 Đặc điểm hình thái vi khuẩn sử dụng hydrocarbon Gram dương phân lập cảng, vịnh ven biển Việt Nam 51 116 13 Bernard O and Michel M (2005) Petroleum Microbiology ASM Press, American Soci Microbiol, Washington, DC 14 Boronin AM, Kosheleva IA (2010) Diversity of naphthalene biodegradation systems in soil bacteria Hanbook of hydrocarbon and lipid Microbiology:11551163 15 Bragg JR, Prince RC, Harner EJ and Atlas RM (1994) Effectiveness of bioremediation for the Exxon-Valdez oil-spill Nature 368: 413-418 16 Byungsoo K, Jiyeon K (2013) Optimization of culture conditions for the production of biosurfactant by Bacillus subtilis JK-1 using response surface methodology J Korean Soci Appl Biological Chem 56(3): 279-287 17 Cappello S, Santisi S, Calogero R, Hassanshahian M, Yakimov MM (2012) Characterisation of oil-degrading bacteria isolated from bilge water Water Air Soil Pollut 223: 3219-3226 18 Cao J, Xu Z, Li LZ and Shen B (2009) Biosurfactant-producing petroleumdegrader-Acinetobacter BHSN J Ecology Rural Environ 25(1): 73-78 19 Carrillo PG, Mardaraz C, Pitta-Alvarez SI, Giulietti (1996) Isolation and selection of biosurfactant-producing bacteria World J Microbiol Biotechnol 12: 82-84 20 Chen J, Huang PT, Zhang KY, Ding FR (2012) Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp from petroleum-contaminated soil J Appl Microbiol 112(4): 660-71 21 Chenggang Z, Li Y, Lixin H, Jianlong X, Zhiyong H (2012) Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery J Petroleum Sci Eng 81: 49-56 22 Chikere CB, Okpokwasili GC and Chikere BO (2009) Bacterial diversity in a tropical crude oil-polluted soil undergoing bioremediation African J Biotechnol 8(11): 2535-2540 23 Chikere CB, Okpokwasili GC, Chikere BO (2011) Monitoring of microbial hydrocarbon remediation in the soil Biotech 1: 117-138 24 Dahalan FA, Yunus I, Johari WL, Shukor MY, Halmi MIE, Shamaan NA, Syed MA (2014) Growth kinetics of a diesel-degrading strain from petroleumcontaminated soil J Environ Biology 35(2): 399-460 25 Darvishi P, Ayatollahi S, Mowla D, Niazi Ali (2011) Biosurfactant production under extreme environmental by an efficient microbial consortium ERCPPI-2 Colloids Surf B Biointerfaces, DOI:10.1016/j.colsurfb.2011.01.011 117 26 Das R, Kazy SK (2014) Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation Environ Sci Pollut Res 21:7369-7389 27 Desai JD and Banat IM (1997) Microbial Production of Surfactants and their commercial potential Microbiol Molecur Biology Reviews: 47-64 28 Erum S, Faiza A, Uzma B, Jameela A, Samina I (2013) Classification and industrial applications of biosurfactants Nat App Sci 4(3): 243-252 29 Franzetti A, Gandolfi I, Bestetti G, Smyth TJ, Banat IM (2010) Production and applications of trehalose lipid biosufactants Eur J Lipid Sci Tech 112: 617-627 30 Fuchs G, Boll M and Heider J (2011) Microbial degradation of aromatic compounds - from one strategy to four Microbiol 9: 803-816 31 Fuentes S, Mendez V, Aguila P, Seeger M (2014) Bioremediation petroleum hydrocarbons: catabolic genes, microbial communities, and application Appl Microbiol Biotechnol 98: 4781-4794 32 Gallego S, Vila J, Tauler M, Nieto JM, Breugemans P, Springael D, Grifoll M (2014) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium Biodegradation 25(4): 543556 33 Gao Y, Guo S, Wang J, Li D, Wang H, Zeng DH (2014) Effects of different remediation treatments on crude oil contaminated saline soil Chemosphere 117: 486-493 34 Garrity GM (2001) Bergey’s manual of systematic bacteriology 2nd edition 35 Gerdes B, Brinkmeyer R, Dieckmann G, Helmke E (2005) Influence of crude oil on changes of bacterial communities in Arctic sea-ice Microbiol Ecology 53: 129-139 36 Gutnick DL, Goldman S, Shabtai Y, Rubinovitz C, Rosenberg E (1982) Emulsan in Acinetobacter calcoaceticus, RAG-1 Appl Environ Microbiol 44: 165-170 37 Gonzalez DKO, Zaragoza D, Garrido J, Ramirez-Saad H, Hernandez-Rodriguez C, Jan-Roblero J (2013) Degradation of benzene, toluene and xylene isomers by a bacterial consortium obtained from rhizosphere soil of Cyperus sp Grown in a petroleum-contaminated area Folia Microbiol 58: 569-6577 38 Goyal AK, Zylstra GJ (1997) Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni J Ind Microbiol Biotechnol 19: 401407 39 Graziela JP, Elisa MPC, Edelvio BG, Neu PJ (2010) Biosurfactant production by Rhodococcus erythropolis and its application to oil removal Brazil J Microbiol 41: 685-693 118 40 Habib A, Hakimeh S, Leila A, Atefe B, Hossein SZ, Kambiz AN (2013) Response surface optimization of biosurfactant produced by Pseudomonas aeruginosa MAO1 isolated from spoiled apples Preparative Biochem Biotechnol 43(4): 398-414 41 Hamzah A, Saturani N and Radiman S (2013) Screening and optimization of biosurfactant production by the hydrocarbon-degrading bacteria Sains Malaysiana 42(5): 615-623 42 Hang PT, Hien LT (2010) Study on Dietzia sp.A343.4, a new strain was detected from Jet A1, and its influence to aviation fuel qualities J Biotechnol 8(3A): 853-863 43 Harvey S (2010) California’s legendary oil spill Los Angeles Times, http://articles.latimes.com/2010/jun/13/local/la-me-then-20100613 44 Hassanshahian M, Emtiazi G, Cappello S (2012) Isolation and characterization of crude-oil-degrading bacteria from th Persian Gulf and the Caspian Sea Marine Pollut Bulletin 64: 7-12 45 Head IM, Jones DM (2006) Marine microorganisms make a meal of oil Nat Rev Microbiol 4(3): 173–82 46 Hien LT, Man TD, Nga DP, Thuy PT, Hy LG, Phuong DT, Hai H (2001) First successful application of microbial enhancement of oil recovery in Vietnam Advances in Nat Sci 2(1): 103-108 47 Hien LT, Phuong DT, Thuy PT, Nga DP, Hai H, Hang PT, Pham TM, Tateda M (2002) Field test on cleaning of oil pollution by microorganism on Nhatrang beach of Vietnam Scientific Conference Bien Dong 2002: 103-104 48 Huang L, Xie J, Lv B, Shi X, Li G, Liang F, Lian J (2013) Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS Marine Pollut Bulletin 76: 325-332 49 Huy NQ, Jin S, Amada K, Haruki M, Huu NB, Hang DT, Ha DT, Imanaka T, Morikawa M, Kanaya S (1999) Characterization of petroleum-degrading bacteria from oil-contaminated sites in Vietnam J Biosci Bioeng 88(1): 100102 50 Jan BB, Enrico GF (2007) Alkane hydroxylases involved in microbial alkane degradation Appl Microbiol Biotechnol 74: 13-21 51 Joel EK, Om P, Will AO, Stefan JG, Gina F, Andy C, Jonathan D, Nikita N, Terry CH and Markus H (2011) Hydrocarbon-Degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill Appl Environ Microbiol 77 (22): 7962-7974 52 Jonathan D, Van H, Ajay S and Owen PW (2003) Recent Advances in Petroleum Microbiology Microbiol Molecul Biology Reviews: 503–549 119 53 Jonathan WCW, Zhenyong Z and Guanyu Z (2010) Biosurfactants from Acinetobacter calcoaceticus BU30 enhance the bioavailability and biodegradation of polycyclic aromatic hydrocarbons Proceed Annual Inter Confer on Soil, Sediments, Water and Energy 15(5): 36-51 54 Jong-Su S, Young-Soo K, Qing XL (2009) Bacterial degradation of aromatic compounds A review Int J Environ Public Health 6(1): 278-309 55 Joseph GL and Rita RC (1990) Microbial degradation of hydrocarbons in the Environment American Society Microbiol: 305-315 56 Kaloorari N and Sabet MS (2013) Biosurfactants: properties and application J Biology and today’s world 2(5): 235-241 57 Kang SW, Kim YB, Shin JD, Kim EK (2009) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipit Appl Biochem Biotechnol 160: 789-90 58 Karaca A (2014) Dertermination of petroleum-degrading bacteria isolated from crude oil-contaminated soil in Turkey Scientific Journals 11 (21): 4853-4859 59 Karpenko EV, Martishin RI, Shcheglova NS, Pirog TP, Voloshina IN (2006) The prospects of using bacteria of the genus Rhodococcus and microbial surfactants for the degradation of oil pollutants Mikrobiol 42 (2): 175-179 60 Kniemeyer O, Fischer T, Wilkes H, Oliver F and Widdel F (2003) Anaerobic Degradation of Ethylbenzene by a New Type of Marine Sulfate-Reducing Bacterium Environ Microbiol 69 (2): 760-768 61 Koo H, Mojib N, Thacker RW, Bej AK (2014) Comparative analysis of bacterial community-metagenomics in coastak Gulf of Mexico sediment microcosms following exposure to Macondo oil (MC252) Antonie Van Leuwenhoek 106(5): 993-1009 62 Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC and Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill Appl Environ Microbiol: 7962-7974 63 Kumari B, Singh SN, Singh DP (2012) Characterization of two biosurfactant producing strains in crude oil degradation Process Biochemistry 47(12): 24632471 64 Kuyukina MS and Ivshina IB (2010) Application of Rhodococcus in bioremediation of contaminated environments Biology of Rhodococcus, Microbiol Monographs 16: 231-255 65 Kuyukina MS and Ivshina IB (2010) Rhodococcus biosurfactants: biosynthesis, properties, and potential application Biology of Rhodococcus Microbiol Monographs 16, DOI 10.1007/978-3-642-12937-7-11 120 66 Labana S, Kapur M, Malik DK, Prakash D, Jain RK (2007) Diversity, Biodegradation and Bioremediation of Polycyclic Aromatic Hydrocarbons Environ Bioremediation Technol: 409-443 67 Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans J Appl Bacteriol 81(4): 355-62 68 Lee M, Woo SG and Ten LN (2012) Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil World J Microbiol Biotechnol 28(5): 20572067 69 Li C, Zhou ZX, Jia XQ, Chen Y, Liu J, Wen JP (2013) Biodegradation of crude oil by a newly isolated strain Rhodococcus sp JZX-01 Appl Biochem Biotechnol 171(7): 1715-25 70 Lindstrom JE, Prince RC, Clark JC, Grossman MJ, Yeager TR, Braddock JF, Brown EJ (1991) Microbial Populations and Hydrocarbon Biodegradation Potentials in Fertilized Shoreline Sediments Affected by the T/V Exxon Valdez Oil Spill Appl Environ Microbiol: 2514-2522 71 Liu H, Yao J, Yuan Z, Shang Y, Chen H, Wang F, Masakorala K, Yu C, Cai M, Blake RE, Choi MMF (2014) Isolation and characterization of crude-oildegrading bacteria from oil-water mixture in Dagang oilfield, China, Inter Biodeterioration Biodegradation 87: 52-59 72 Luo Q, Zhang JG, Shen XR, Fan ZQ, He Y, Hou DY (2013) Isolation and charaterization of marine diesel oil-degrading Acinetobacter sp Strain Y2 Ann Microbiol 63, 633-640 73 Magdalena PP, Grazyna AP, Zofia PS (2011) Environmental applications of biosurfactants: Recent Advances Inter J Molecul Sci 12: 633-654 74 Mamaeva EV, Suslova MY, Pogodaeva TV, Parfenova VV, Zemskaya TI (2014) Microbial uncultured community of bottom sediments from the bays of Gydan and Yenisei of the Kara Sea Oceanology 54(3): 308-318 75 Maneerat S (2005) Biosurfactants from marine microorganisms J Sci Technol 27(6): 1263-1272 76 Maruyama A, Tsukuba-shi, Higashihara T, IshiWata H, Fujita H (2006) Novel 16S rRNA gene data and probes useful for detecting and quantitating microorganism from natural environment Patent Application Publication 11/350,796: 11 77 Matvyeyera OL, Vasylchenko OA, Alivera OR (2014) Microbial biosurfactants role in oil products biodegradation Inter J Environ 2(2): 69-74 78 McInerney MJ, Javaheri M and Nagle DP (1990) Properties of the biosurfactant produced by Bacillus liqueniformis strain JF-2 J Microbiol Biotechnol 5: 95102 79 Milton B (2011) Petroleum crude oil www.eoearth.org 121 80 Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure function relationship of lipopeptide biosurfactants Biochim Biophys Acta 1488(3): 211218 81 Moumita PP, Bhalchandra KV, Kiran MD, Renuka MJ, Sanjay NN, Bhaskar DK (2009) Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: artificial intelligence versus a statistical approach J Ind Microbiol Biotechnol 36: 747-756 82 Mrassi AG, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons Environ Sci Pollut Res, DOI 10.1007/s11356-015-43438 83 Mrozik A, Piotrowska-sege Z, Labuzek S (2003) Bacterial Degradation and Bioremediation of Polycyclic Aromatic Hydrocarbons Pol J Environ Stud 12(1): 15-25 84 Mukred AM, Hamid AA, Hamzah A and Yusoff MW (2008) Growth enhancement of effective microorganisms for bioremediation of crude oil contamonated waters Biological Sci 11(13): 1708-1712 85 Mundi I (2010) World crude oil consumption by year, http://www.indexmundi.com/energy.aspx 86 Murygina V, Arinbasarov M, Kalyuzhnyi S (2000) Bioremediation of oil polluted aquatic systems and soils with novel preparation `Rhoder' Biodegradation 11(6): 385-389 87 Mutalik SR, Vaidya BK, Joshi RM, Desai KM, Nene SN (2008) Use of response surface optimization for the production of biosurfactant from Rhodococcus spp MTCC 2574 Bioresour Technol 99(16): 7875-7880 88 Muthusamy K, Gopalakrishnan S, Ravi TK Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application-Review Curr Sci 94(6): 736-747 89 Nga LP, Nga TT, Thu NM, Kawasaki H (2007) Diesel oil utilizing-biosurfactant producing bacterial isolated and characteristics of produced biosurfactants toward bioremendiation application Inter 7th General Seminar of CUP on Environ Sci and Technol: 33-40 90 Nilanjana D and Preethy C (2011) Microbial degradation of Petroleum shydrocarbon contaminants: an overview Biotech Research Inter, DOI 10.4061/2011/941810 91 Nitschke M and Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater Bioresource Technol 97: 336-34 122 92 OSAT (2010) Summary report for sub-sea and sub-surface oil and dispersant detection: sampling and monitoring Operational Sci Advisory Team (multiagency), Washington, DC 93 Pacheco GJ, Ciapina EMP, Gomes EB, Junior NP (2010) Biosurfactant production by Rhodococcus erythropolis and its application to oil removal Brazilian J Microbiol 41: 685-693 94 Pruthi V, Cameotra SS (1995) Rapid method for monitoring maximum biosurfactant production obtained by acetone precipitation Biotechnol Lett 9(4): 271-276 95 Quatrini P, Scaglione G, De Pasquale C, Riela S, Puglia AM (2008) Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline J Appl Microbiol 104: 251-259 96 Rhamnolipids, sophorolipids and other glycolipid biosurfactants, Structures, occurence and biology Lipidlibrary.aocs.org 97 Robert AK, Shigeaki H (2000) Biodegradation of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons by Bacteria J Bacteriol 182(8): 2059-2067 98 Rojo F (2009) Degradation of alkanes by bacteria Environ Microbiol 11: 24772490 99 Ron ZE and Rosenberg E (2002) Biosurfactants and oil bioremediation Curr Opinion Biotech 13: 249-252 100 Sakalle K, Rajkumar S (2008) Isolation of crude oil degrading marine bacteria and assessment for biosurfactant production The Internet Journal of Microbiology 7(2): 1-7 101 Sei K, Sugimoto Y, Mori K, Maki H, Kohno T (2003) Monitoring of alkanedegrading bacteria in a sea-water microcosm during crude oil degradation by polymerase chain reaction based on alkane-catabolic genes Environ Microbiol 5: 517-522 102 Shafeeq M, Kikub D, Khalid ZM, Malik KA (1989) Degradation of different hydrocarbons and production of biosurfactant by Pseudomonas aeruginosa isolated from coastal water J Biotechnol 5: 505-510 103 Shavandi M, Mohebali G, Haddadi A, Shakarami H (2011) Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp strain TA6 Colloids and Surfaces B Biointerfaces 82: 477-482 104 Singh SN, Kumari B, Mishra S (2012) Microbial Degradation of Alkane Environ Sci Eng: 439-469 105 Souza EC, Penna TC, Ricardo PSO (2014) Biosurfactant-enhanced hydrocarbon bioremediation: An overview Inter Biodeterioration and Biodegradation 89: 88-94 123 106 Suja F, Rahim F, Taha MR, Hambali N, Razali MR, Khalid A, Hamzah A (2014) Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations Inter Biodeterioration & Biodegradation: 115-122 107 Sun JQ, Xu L, Zhang Z, Li Y, Tang YQ, Wu XL (2014) Diverse bacteria isolated from microtherm oil-production water Antonie van Lecuwenhoek 105: 401-411 108 Szulc A, Ambrożewicz D, Sydow M, Lawniczak L, Piotrowska CA, Marecik R, Chrzanowski L (2014) The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies J Environ Manage 132: 121-128 109 Takei D, Washio K, Morikawa M (2008) Identification of alkane hydroxylase genes in Rhodococcus sp strain TMP2 that degrades a branched alkane Biotechnol Lett 30: 1447-1452 110 Teramoto M and Haravama S (2011) Potential for petroleum aliphatic hydrocarbon degradation of the key bacteria in temperate seas Marine Environ: 157-166 111 Thompson IP, Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection Environ Microbiol 7: 909-915 112 Tomas-Gallardo L, Gomez-Alvarez H, Santero E and Floriano B (2014) Combination of degradation pathways for naphthalene utilization in Rhodococcus sp strain TFB Microb Biotechnol 7(2): 100-113 113 Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation Appl Microbiol Biotechnol 74: 13-21 114 Van Beilen LB, Smits TH, Whyte LG, Schorcht S, Rothlisberger M, Plaggermeier T, Engesser KH, Witholt B (2002) Alkane hydroxylase homologues in Gram-positive strains Environ Microbiol 4: 676-682 115 Walker T (1973) Hydrocarbon microbiology The biological efficiency of protein production Cambridge University Press, London NW1 2DB: 317-323 116 Wang L, Wang W, Shao Z (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean Environ Microbiol 12(5): 1230-1242 117 Wang Q, Zhang S, Li Y, Klassen W (2011) Potential Approaches to Improving Biodegradation of Hydrocarbons for Bioremediation of Crude Oil Pollution J Environ Protect 2: 47-55 118 Wanpeng W, Liping W, Zongze S (2010) Diversity and Abundance of OilDegrading Bacteria and Alkane Hydroxylase (alkB) Genes in the Subtropical Seawater of Xiamen Island Microbial Ecology 60(2): 429-39 124 119 Xu P, Ma W, Han S, Jia S, Hou B (2014) Isolation of a naphthalenedegrading strain from activated sludge and bioaugmentation with it in a MBR treating coal gasification wastewater Bull Environ Contam Toxicol, DOI 10.1007/s00128-014-1366-7 120 Yakimov MM, Fredrickson HL, Timmis KN (1996) Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50 Biotechnol Appl Biochem 23: 13-8 121 Yakimov MM, Timmis KN and Golyshin PN (2007) Obligate Oil-Degrading Marine Bacteria Cur Opinion Biotechnol 18(3): 257-266 122 Yuan H, Yao J, Masakarala K, Wang F, Cai M, Yu C (2014) Isolation and characterization of a newly isolated pyrene-degrading Acinetobacter strain USTB-X Environ Sci Pollut Research 21: 2724-2732 123 Yuqiang X, Michel CB (2010) Lessons from the Exxon Valdez oil spill disaster in Alaska Disaster Advances 3(4): 270-273 124 Zheng C, Li S, Yu L, Huang L, Wu Q (2009) Study of the biosurfactantproducing profile in a newly isolated Rhodococcus ruber strain Annals of Microbiol 59 (4): 771-776 125 Zheng C, Luo Z, Yu L, Huang L, Bai X (2011) The utilization of lipid waste for biosurfactant production and its application in enhancing oil recovery Petroleum Sci Technol 29(3): 282-289 126 Zhong Q, Zhang H, Bai W, Li M, Li B, Qiu X (2007) Degradation of aromatic compounds and degradative pathway of 4-nitrocatechol by Ochrobactrum sp B2 J Environmental Science Health 42(14): 2111- 2116 127 Zhu X, Venosa AD, Suidan MT and Lee K (2001) Guidelines for the Bioremediation of Marine Shorelines and Freshwater Wetlands United State Environmental Protection Agency Contract, 68-C-00-159 128 Zou C, Wang M, Xing Y, Lan G, Ge T (2014) Characterization and optimization of biosurfactants produced by Acinetobacter baylyi ZJ2 isolated from crude oil-contaminated soil sample toward microbial enhanced oil recovery applications Biochemical Engineering J 90: 49-58 129 www.itopf.com 130 https://apiweb.biomerieux.com 131 www.mobio.com/soil-dna-isolation 125 SUMMARY STUDY ON HYDROCARBON-DEGRADING BACTERIA AND THEIR APPLICATION IN OIL POLLUTION REMEDIATION IN VIETNAM COASTAL ZONE Vietnam has a long coast zone and a developing petrochemical industry From 1986 up to now, 200 million tons of crude oil have been exploited, the highest annual amount is 20 tons and turn-over is 8,8 billion USD Although petrochemical industry provides huge income source, untreated wastes of this industry results in the environmental pollution Annually, hundred thousands tons of crude oil seepage have caused the serious environmental pollution in coastal zones from North to South of Vietnam Soil and water contamination with hydrocarbon causes extensive damage of local system and affects negatively to aquaculture in coastal zones Thus, the selection of the reasonable technologies for clean-up of the oil is required Recently, the bioremediation technology using microorganisms (especially bacteria) to remove oil contamination is an attractive alternative over other methods because of cost-effectiveness, complete mineralization of pollutants and environment-friendliness Petroleum bioremediation is carried out by natural population microorganisms capable of utilizing hydrocarbons as a source of energy and carbon There microorganisms are capable of degrading the various types of hydrocarbon including short-chain, long-chain and aromatic compounds However, all these compounds have low solubility in water It make difficult for bacteria to come in direct contact with the hydrocarbon substrates for degrading Therefore, bacteria growing on petroleum hydrocarbon usually produce potent emulsifierscalled biosurfactant Due to their amphiphilic structure, biosurfactants increase the surface area of hydrophobic water-insoluble substances and increase their bioavailability, thereby enhancing the growth of bacteria and the rate of bioremediation In comparison to their chemically synthesized equivalents they have many advantages such as: environmentally friendly, biodegradable, less toxic and non-hazardous Moreover, they are active at extreme temperatures, pH and 126 salinity as well, and can be produced from industrial wastes and from by-products Because of their potential advantages, biosurfactant-producing microorganisms are widely used in many industries such as agriculture, chemistry, cosmetics, pharmaceutics, especially in removal of oil contamination In Vietnam, over the decade years, diverse bacteria capable of degrading petroleum hydrocarbons have been isolated and characterized, including the genera Pseudomonas, Aeromonas, Rhodococcus, Bacillus, Shigella, Acinetobacter etc However, there have been only few researches on biosurfactant-producing bacteria, especially studies on their application in bioremediation of oil contamination were still lacking Thus, this thesis studied on the hydrocarbon-degrading bacteria isolated from Vietnam coastal zones and their capability of biosurfactant production Then, they were of use as probiotics for removal of oil pollution in coastal zones From 112 water and sediment samples taken from some of ports, gulfs and coastal zones of Do Son, Cat Ba, Nghi Son, Hue, Quy Nhon, Vung Tau, Ben Tre and Binh Thuan, the enumeration and isolation of hydrocarbon-degrading bacteria were investigated The results have shown that all samples were present hydrocarbon-degrading bacteria with the number of 1.1x102-7.5x106 MPN/ml(g) Among, the number of hydrocarbon-degrading bacteria in sediment samples were higher 5-100 fold in water samples Cultivate on Gost 9023-74 media, 124 hydrocarbon-degrading bacterial strains were isolated Based on physiological, biochemical properties (API 50 CHB, 50 CHL and 20 NE kit) and 16S-rDNA sequence analysis, they are belong to 16 genera and phylums, including: Rhodococcus, Janibacter (Actinobacteria); Aeromonas, Acinetobacter, Burkholderia, Brevundimonas, Chryceomonas, Ochrobactrum, Enterobacter, Pseudomonas, Serratia, Morganella (Proteobacteria); Bacillus, Leuconostoc, Lactobacillus and Paenibacillus (Firmicutes) Among the genera, Acinetobacter, Rhodococcus, Pseudomonas and Bacillus were dominant in some of ports, gulfs and coastal zones of Vietnam 127 For efficient bioremediation of oil contamination, we screened the capability of biosurfactant production of the selected strains The results shown that, all strains are capable of biosurfactant production with the emulsification activity (E24) of 35±1.2-75±1% Three of them (Acinetobacter soli H1, Acinetobacter calcoaceticus H3 and Rhodococcus ruber TD2) showed high biosurfactant-producing capacity with the E24 of 67.5±1.2, 70.2±1.1 and 75±1%, respectively In addition, the result of the oil spreading test (Morikawa et al., 2000) on the production of biosurfactants from these strains is 100% In order to their application in oil polluted treatment, we determined characterization of biosurfactant, the optimal growth conditions for biosurfactantproducing capacity and oil biodegradation by strains H1, H3 and TD2 The data indicated that the maximum biomass concentration of three strains were achieved after days of growth At the same time, the emulsification activity of biosusurfactant produced by strains H1, H3 and TD2 were highest with the E24 of 70.3±1.2, 74±1 and 80±1%, respectively Moreover, the surface tension of the their culture broth reduced from 68.6 to 29.7-36.5mN/m Emulsification activity of biosurfactant with some hydrocarbons (xylene, n-hexane, DO and JetA1) and effects of temperature, pH and sodium chloride on biosurfactant stability were investigated The data indicated that biosurfactants produced by strains H1, H3 and TD2 emulsified effectively with all hydrocarbons Moreover, the their biosurfactant were stable during exposure to temperatures of 4-121oC for 20 min, within a wide pH range (6-12 by H1, 4-12 by H3 and 2-12 by TD2) and salinity of 0-10% NaCl Environmental conditions such as temperature, nutrients, pH and salinity affected the bacterial growth and their biosurfactant-producing capacity The best environmental conditions for H1, H3 and TD2 growing and producing biosurfactant were 30oC, 5% (v/v) DO, 2gL-1 (NH4)2HPO4, pH 7.5, 2% (w/v) NaCl; 30oC, 5% (v/v) DO, 2gL-1 (NH4)2SO4, pH7, 1% (w/v) NaCl and 30oC, 5% (v/v) DO, 2gL-1 NaNO3, pH8, 2% (w/v) NaCl, respectively In these condition, strains H1, H3 and TD2 produced crude biosurfactant of 12.9±0.3, 13.57±0.4 and 13.7±0.45 gL-1, 128 respectively The biosurfactant production by Rhodococcus ruber TD2 were optimized by using response surface methodology (RSM) based on changes of medium component: diesel oil, NaNO3 and pH RSM analysis showed that the highest biosurfactant production was obtained in medium containing 5.7 % (v/v) DO, 3.3 gL-1 NaNO3 and pH 8.3 In this medium, strain TD2 produced the maximum yield of crude biosurfactant of 30.05 gL-1 after days It was 2.2-fold higher than before optimization Base on GC-MS analyses, the biosurfactant produced by strains H1 and H3 consist of hydrophobic (-CH3) and hydrophilic (COOH) groups in chemical structure C16H22O4 (1,2 benzendicarboxylic acid, bis 2methyl propyl ester) The biosurfactant of Rhodococcus ruber TD2 was ester of Hexadecenoic acid (C16H30O2) and Hexanedioic acid bis 2-ethylhexyl (C22H42O4) containing of many –OH and C=O groups in structural chemicals Degradation of diesel and crude oil of three selected strains were estimated Analysis of total petroleum hydrocarbon (TPH) in diesel oil (DO) indicated that the TPH degradation was contributed by 98.44, 98.68 and 99.27% by H1, H3 and TD2 during days of incubation, respectively As evident from GC-MS chromatogram of hydrocarbon components of DO, H1, H3 and TD2 could degrade C10-C35 by 90.73-99.47%, 91.68-99.45% and 97.11-97.11%, respectively Similarly, the degradation of THP and its fractions in crude oil (CO) by these strains was also observed The results indicated that the degradation rate of THP and components (C11-C36) were 81% and 39.21-100% by H1, 85.2% and 60.27-100% by H3, 90.07% and 70.76-100% by TD2 after days of incubation, respectively According to the above analyses, strain Rhodococcus ruber TD2 showed the high capability of biosurfactant production and degradation of petroleum hydrocarbon Hence, it was of use as the main components of probiotics for removal of oil contamination in coastal zones To evaluate the effectiveness of probiotics, four experimental microcosms were applied in Do Son beach (each measuring by 6mx3m) Four treatments consisted of a diesel oil control, a diesel oil plus probiotics, a crude oil control and a crude oil 129 plus probiotics Diesel oil or Bach Ho crude oil were applied in each microcosm, resulting in a calculated diesel and crude oil contamination level of approximately and 10 g/kg of sand, respectively Probiotic was applied, resulting in a calculated number of bacteria of approximately 103 CFU/g of sand Once a days, mineral nutrients (7g of NH4NO3 and 3g of Ca3(PO4)2) predissolved in about 10 liters of seawater were applied in each microcosm via a sprinkler Biodegrading processes was experimented during 28 days in winter (12/2009) and summer (6/2010) In order to assess the effect of probiotics, microbial population changes and amount of total and hydrocarbon components of petroleum during bioremediation were examined The results showed that in treated microcosms, the number of useful bacteria (aerobic, fermentative and hydrocarbon-degrading bacteria) was increased during the biodegrading process while the number of sulfate-reducing bacteria, fungi and streptomyces was decreased In the highest hydrocarbon degradation stage (the 21st day of experiment in winter and the 14th day of experiment in summer), the hydrocarbon-degrading bacteria were dominant with 50 and 65-70% of total aerobic bacteria in the microcosms supported probiotics, respectively Based on 16S rDNA sequence analysis and standard API kit indicated that dominant hydrocarbon-degrading bacteria in processes are belonging to genera: Acinetobacter, Bacillus, Brevundimonas, Ochrobactrum, Pseudomonas, Pasteurella, Strenotromonas, Staphylococcus and Rhodococcus Four genera Bacillus, Pseudomonas, Pasteurella and Bacillus were dominant in control microcosms, while seven genera Rhodococcus, Acinetobacter, Brevundimonas, Ochrobactrum, Pseudomonas, Strenotromonas and Staphylococus were dominant in probiotic microcosms Though, the number of each dominant genera was changed during the different periods of treatment, they are demonstrated to play an significant role in degrading process Using non-cultivation method (metagenomics) for investigation the biodiversity of microorganisms in probiotics microcosms revealed that the dominant genera are belonging to phylum: Actinobacteria (Rhodococcus, Nocardioides, 130 Mycobacterium ), Proteobacteria (Acinetobacter, Pseudomonas, Ochrobactrum ), Firmicutes (Bacillus, Staphylococcus, Leuconostoc ) and Bacteroidetes (Flavobacterium, Shingobacterium ) with ratio of 97,17% Among genera, two genera Rhodococcus and Acinetobacter are dominant in both analysis of cultivation and non-cultivation methods The obtained result indicated that Rhodococcus ruber and other microorganisms play a key role in oil-degrading process in Do Son beach Besides, the decrease in total and hydrocarbon components of the petroleum could also serve as a proof for the effectiveness of probiotic in oil degradation Thus, approximately 99.92-99.89% and 41.16-74.65 of total petroleum, 98.35-100% and 14,56-92,71 hydrocarbon components in treated and control microcosms were removed, respectively The data obtained in this study support the application of biosurfactant-producing bacteria in the treatment of oil pollution along coastlines in Vietnam

Ngày đăng: 08/11/2016, 18:47

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan