Biện luận PT mũ và logarit

7 1.5K 27
Biện luận PT mũ và logarit

Đang tải... (xem toàn văn)

Thông tin tài liệu

GIẢI BIỆN LUẬN PHƯƠNG TRÌNH MŨ LOGARIT B. Giải biện luận phương trình logarit: I. Nhắc lại về hàm số logarit: 1. Khái niệm: Hàm số logarit có dạng xlogy a = ( a > 0, 1a ≠ ) TXĐ: x > 0. 2. Tính chất: . a > 1: hàm số xlogy a = là hàm số đồng biến . 0 < a < 1: hàm số xlogy a = là hàm số nghịch biến. . 1alog a = , 01log a = , x)a(log x a = , xa xlog a = . 2a1a21a xlogxlog)x.x(log += . 2a1a 2 1 a xlogxlog x x log −= . )0x,Rm(xlogmxlog a m a >∈= . )0,0x(xlog 1 xlog a a ≠α> α = α . )0x,1b,a,b,a0(xlog.blogxlog baa >≠<= . alog 1 blog b a = II. Phương trình logarit: 1. Khái niệm: phương trình logarit là phương trình chứa ẩn số dưới dấu logarit. 2. Phương trình logarit đơn giản: . blogxlog aa = (a > 0, a ≠ 1, b > 0) ⇔ x = b . c a axcxlog =⇔= (x > 0, a > 0, a ≠ 1) . Dạng tổng quát: )x(hlog)x(flog )x(g)x(g = ⇔    >= ≠> 0)x(h)x(f 1)x(g,0)x(g 3. Phương pháp giải: a. Phương pháp hoá ( chuyển về cùng 1 cơ số): Ví dụ 1. Giải phương trình: )1(xlogxlogxlogxlog 10432 =++ Giải. đk: x > 0 Ta biến đổi về cùng cơ số 2: xlog.logxlog 233 2 = ; xlog.logxlog 244 2 = ; xlog.logxlog 21010 2 = (1) ⇔ 02221 10432 =−++ )logloglog(xlog ⇔ 0 2 = xlog ⇔ x = 1. Ví dụ 2. (Đề 81) Giải phương trình 3 4 1 3 4 1 2 4 1 )6x(log)x4(log3)2x(log 2 3 ++−=−+ (1) Giải. Ta có: 222 4 1 2 4 1 +=+ xlog)x(log xlog)x(log −=− 434 4 1 3 4 1 636 4 1 3 4 1 +=+ xlog)x(log Đk:      >+ >− >+ 06 04 02 x x x ⇔    <<− −<<− 42 26 x x (1) ⇔ )x(log)x(logxlog 6343323 4 1 4 1 4 1 ++−=−+ ⇔ )]x)(x[(logxlog 6412 4 1 4 1 +−=−+ ⇔ )]x)(x[(logxlog 6424 4 1 4 1 +−=+ ⇔ 06424 >+−=+ )x)(x(x ⇔    −+=+ +−−=+ 24224 24224 2 2 xx)x( xx)x( ⇔    =−− =−+ 0222 0166 2 2 xx xx ⇔      ±= −= = 331 8 2 x x x ⇒ nghiệm:    −= = 331 2 x x Ví dụ 3. Giải biện luận phương trình: 2x3xlog 2 32 +− + + 1xlog 32 − − = [ ] )2x(alog 347 + − , a > 0 (1) Giải. Đk: 2 x – 3x + 2 > 0, x – 1 > 0, a(x + 2) > 0 ⇒ x > 2 Ta có: ))(( 3232 −+ = 1 ⇒ 1 32 − − xlog = 1 1 32 − − + xlog )( = 1 32 −− + xlog 23 2 32 +− + xxlog + 1 32 − − xlog = 1 23 2 32 − +− + x xx log = )x(log 2 2 1 32 − + [ ] )x(alog 2 347 + − = [ ] )x(alog )( 2 2 32 + − = [ ] )x(alog 2 2 1 32 + − = [ ] )x(alog 2 2 1 32 +− + (1) ⇔ )x(log 2 2 1 32 − + = [ ] )x(alog 2 2 1 32 +− + ⇔ x – 2 = [ ] 1 2 − + )x(a ⇔ 2 x – 4 = a 1 ⇔ 2 x = 4 + a 1 a > 0 ⇒ nghiệm: x = a 1 4 +± . x > 2 ⇒ x = a 1 4 + . Bài tập áp dụng: 1) Giải phương trình: a) )(log x 44 1 2 + + . )(log x 14 2 + = 8 1 2 1 log b) 3 x log + xlog 3 = 3 x log + xlog 3 + 2 1 c) )x(log x 125 . xlog 2 25 = 1 d) )xsin x (sinlog − 2 3 + )xcos x (sinlog 2 2 3 1 + = 0. (Đề 3) 2) Xác định m để phương trình: )mmxx(log 22 4 4222 −+− + )mmxx(log 22 2 1 2 −+ = 0 có nghiệm 1 x , 2 x thoả mãn: 2 1 x + 2 2 x > 1. Hướng dẫn: pt ⇔ )mmxx(log 22 2 4222 −+− = )mmxx(log 22 2 2 −+ ⇔    >−+ −+=−+− 02 2422 22 2222 mmxx mmxxmmxx ⇔    >−+ =−++− 02 0221 22 22 mmxx mmx)m(x ⇔      >−+    −= = )(mmxx mx mx 202 1 2 22 2 1 phương trình có 2 nghiệm 1 x , 2 x nên 1 x , 2 x điều kiện (2) ⇒ – 1 < 0 ≠ m < 2 1 2 1 x + 2 2 x > 1 ⇒      << <<− 2 1 5 2 01 m m 3) Tìm a để phương trình )x(log )ax(log 1 5 5 + = 2 có nghiệm duy nhất. (đề 120) Hướng dẫn: pt ⇔      += ≠+>+ > 2 55 1 1101 0 )x(log)ax(log x;x ax ⇔ 2 x + (2 – a)x + 1 = 0 (2) phương trình có nghiệm duy nhất khi (2) có nghiệm duy nhất thoả mãn:    ≠<− > 01 0 x ax 4) Giải biện luận phương trình: 2lgx – lg(x – 1) = lga theo a (đề 29) b. Phương pháp biến đổi hoặc đặt ẩn số phụ: Ví dụ 1. Giải phương trình [ ] )x(log )x( 14 2 1 − − = 8 3 1)x( − Giải. Đk:    >− >− 01 014 x )x( Lấy logarit cơ số 2 cả 2 vế, ta được: [ ] )x(log )x(log 14 2 2 1 − − = [ ] 3 2 18 )x(log − ⇔ [ ] )x(log 14 2 − . )x(log 1 2 − = 3 + 3 )x(log 1 2 − ⇔ [ ] )x(log 12 2 −+ . )x(log 1 2 − = 3 + 3 )x(log 1 2 − (1) Đặt t = )x(log 1 2 − ⇒ (1) ⇔ 2 t – t – 3 = 0. ⇒ phương trình có nghiệm: 2 131 1 − = t ; 2 131 2 + = t . 2 131 1 − = t ⇒ 2 131 1 21 − += x . 2 131 2 + = t ⇒ 2 131 2 21 + += x Ví dụ 2. Giải phương trình 2. 2 2 2 )x( − = )x(log 2 2 Giải. Đk:    ≥− > 02 02 x x ⇒ 2 ≥ x Đặt 1 2 − x = y; 2 ≥ y ⇒ x = ylog 2 + 1 ⇒ Ta được hệ phương trình:    = = ylogx xlogy 2 2 2 2 ⇔    = = y x x y 22 22 ⇔ y. y 2 = x. x 2 (1) Xét hàm số: f(z) = z. z e ; f'(z) = z e + 2 z e > 0 2 ≥∀ z f(z) đồng biến trên [2; ∞+ ). Từ (1) ⇔ x = y ⇒ x x 22 = . Đường thẳng y = 2x cắt đường cong y = x 2 tại 2 điểm: 1 x = 1; 2 x = 2. từ 2 ≥ x ⇒ x = 2 là nghiệm. Ví dụ 3. Giải phương trình 9 2 log x = 2 x . xlog 2 3 – 3 2 log x (1) Giải. Đk: x>0 áp dụng công thức: clog b a = alog b c (1) ⇔ xlog 2 9 = 2 x . xlog 2 3 – xlog 2 3 ⇔ xlog 2 3 = 2 x – 1. Đặt t = xlog 2 ⇒ t 3 + 1 = t 4 ⇔ t       4 3 + t       4 1 = 1 (2) Xét f(t) = t       4 3 + t       4 1 là hàm nghịch biến ⇒ (2) có nghiệm duy nhất t = 1 ⇒ x = 2 là nghiệm của (1) Bài tập áp dụng: 1) Giải phương trình a) )xx(log 1 2 2 −− )xx(log 1 2 3 −+ = 1 2 6 −− xxlog b) )(log x 13 3 − )(log x 33 1 3 − + = 6 c) xloglog 24 + xloglog 42 = 2 d) 3 x log + xlog 3 = 3 x log + xlog 3 + 2 1 2) Giải biện luận theo a a) axlog x . xlog a = – 2 b) ( xlog a 2 + 2). alog xa 2 = alog x a x log a 2 3) Cho phương trình: (m – 3) )x(log 4 2 2 1 − – (2m + 1) )x(log 4 2 1 − + m + 2 = 0 tìm m để phương trình có 2 nghiệm 21 x,x thoả mãn 4 < 1 x < 2 x < 6 c. Đoán nghiệm chứng minh tính duy nhất: Ví dụ 1. Giải phương trình: )xxlg( 6 2 −− + x = )xlg( 2 + + 4 (1) Giải. Đk: 06 2 >−− xx , x + 2 > 0 ⇒ x > 3. (1) ⇔ )xxlg( 6 2 −− – )xlg( 2 + = 4 – x ⇔ 2 6 2 + −− x xx lg = 4 – x ⇔ lg(x – 3) = 4 – x (2) Nhận xét: x = 4 là nghiệm của (2). y = lg(x – 3); y' = 3 1 − x > 0 là hàm đồng biến y = 4 – x là nghịch biến ⇒ x = 4 là nghiệm duy nhất. Ví dụ 2. Giải phương trình )xx(log 22 2 322 −− + = )xx(log 32 2 32 −− + (1) Giải. Đk:    >−− >−− 032 022 2 2 xx xx ⇒    > −< 3 1 x x (1) ⇔ )xx(log 22 2 348 −− + = )xx(log 32 2 347 −− + (2) Đặt: a = 7 + 4 3 ; t = 32 2 −− xx (2) ⇔ )t(log a 1 1 + + = tlog a (3) Đặt: y = tlog a . (3) ⇔    +=+ = y y )a(t at 11 ⇔ 1 + y a = y )a( 1 + ⇔ y a a       + 1 + y a       + 1 1 = 1 (4) y = 1 là nghiệm của (4) y > 1 ⇒ VT < VP y < 1 ⇒ VT > VP ⇒ y = 1 là nghiệm duy nhất. Ví dụ 3. Giải phương trình: )x(log 3 5 2 + = x. Giải. Đk: x > – 3 – 3 < x ≤ 0: phương trình vô nghiệm. x > 0: Đặt )x(log 3 5 + = t ⇒    = =+ x t)x(log t 2 3 5 ⇔    = =+ t t x x 2 53 ⇒ 3 t       5 1 + t       5 2 =1 (*) t = 1 là nghiệm. VT của (*) là hàm nghịch biến ⇒ t = 1 là nghiệm duy nhất ⇒ x = 2 là nghiệm duy nhất. Bái tập áp dụng: 1) Tìm m để phương trình: )x10(lg 2 + lgx = m a) có nghiệm. b) có nghiệm thoả mãn: 1 < x < 10. 2) Giải phương trình: )3x(log xlog 2 6 + = xlog 6 . . GIẢI VÀ BIỆN LUẬN PHƯƠNG TRÌNH MŨ VÀ LOGARIT B. Giải và biện luận phương trình logarit: I. Nhắc lại về hàm số logarit: 1. Khái niệm: Hàm số logarit. b a = II. Phương trình logarit: 1. Khái niệm: phương trình logarit là phương trình chứa ẩn số dưới dấu logarit. 2. Phương trình logarit đơn giản: . blogxlog

Ngày đăng: 31/05/2013, 00:20

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan