Eric wajnberg, carlos bernstein, jacques van alphen behavioural ecology of insect parasitoids from theoretical approaches to field applications wiley blackwell

457 431 0
Eric wajnberg, carlos bernstein, jacques van alphen behavioural ecology of insect parasitoids  from theoretical approaches to field applications wiley blackwell

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

9781405163477_1_pre.qxd 30/08/2007 10:31 AM Page i Behavioral Ecology of Insect Parasitoids 9781405163477_1_pre.qxd 30/08/2007 10:31 AM Page ii To Maura, Emilio, and Esther To Danielito, Andresuchi, and Esteli To Frietson and Joris To John Maynard-Smith and Bill Hamilton 9781405163477_1_pre.qxd 30/08/2007 10:31 AM Page iii Behavioral Ecology of Insect Parasitoids From Theoretical Approaches to Field Applications Edited by Éric Wajnberg, Carlos Bernstein, and Jacques van Alphen 9781405163477_1_pre.qxd 30/08/2007 10:31 AM Page iv © 2008 by Blackwell Publishing Ltd BLACKWELL PUBLISHING 350 Main Street, Malden, MA 02148-5020, USA 9600 Garsington Road, Oxford OX4 2DQ, UK 550 Swanston Street, Carlton, Victoria 3053, Australia The right of Éric Wajnberg, Carlos Bernstein, and Jacques J.M van Alphen to be identified as the Authors of the Editorial Material in this Work has been asserted in accordance with the UK Copyright, Designs, and Patents Act 1988 All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher Designations used by companies to distinguish their products are often claimed as trademarks All brand names and product names used in this book are trade names, service marks, trademarks, or registered trademarks of their respective owners The publisher is not associated with any product or vendor mentioned in this book This publication is designed to provide accurate and authoritative information in regard to the subject matter covered It is sold on the understanding that the publisher is not engaged in rendering professional services If professional advice or other expert assistance is required, the services of a competent professional should be sought First published 2008 by Blackwell Publishing Ltd 2008 Library of Congress Cataloging-in-Publication Data Behavioral ecology of insect parasitoids : from theoretical approaches to field applications / edited by Eric Wajnberg, Carlos Bernstein, and Jacques J.M van Alphen p cm Includes bibliographical references and index ISBN 978-1-4051-6347-7 (hardcover : alk paper) Parasitic insects—Behavior Parasitoids—Behavior Parasitic insects—Ecology Parasitoids—Ecology Insect pests—Biological control I Wajnberg, E II Bernstein, Carlos III Alphen, Jacques van QL496.B384 2008 595.717′857—dc22 2007025136 A catalogue record for this title is available from the British Library Set in 10/12.5pt Minion by Graphicraft Limited, Hong Kong Printed and bound in Singapore by Markono Print Media Pte Ltd The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp processed using acid-free and elementary chlorine-free practices Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards For further information on Blackwell Publishing, visit our website: www.blackwellpublishing.com 9781405163477_1_pre.qxd 30/08/2007 10:31 AM Page v Contents Contributors Preface Part Current issues in behavioral ecology of insect parasitoids vii xiv 1 Optimal foraging behavior and efficient biological control methods Nick J Mills and Éric Wajnberg Parasitoid fitness: from a simple idea to an intricate concept Minus van Baalen and Lia Hemerik 31 Parasitoid foraging and oviposition behavior in the field George E Heimpel and Jérôme Casas 51 Behavior influences whether intra-guild predation disrupts herbivore suppression by parasitoids William E Snyder and Anthony R Ives 71 Chemical and behavioral ecology in insect parasitoids: how to behave optimally in a complex odorous environment Monika Hilker and Jeremy McNeil 92 Parasitoid and host nutritional physiology in behavioral ecology Michael R Strand and Jérôme Casas Food-searching in parasitoids: the dilemma of choosing between ‘immediate’ or future fitness gains Carlos Bernstein and Mark Jervis 129 Information acquisition, information processing, and patch time allocation in insect parasitoids Jacques J.M van Alphen and Carlos Bernstein 172 113 9781405163477_1_pre.qxd 30/08/2007 10:31 AM Page vi vi CONTENTS Competition and asymmetric wars of attrition in insect parasitoids Patsy Haccou and Jacques J.M van Alphen 193 10 Risk assessment and host exploitation strategies in insect parasitoids Luc-Alain Giraldeau and Guy Boivin 212 Part Extension of behavioral ecology of insect parasitoids to other fields 229 11 Multitrophic interactions and parasitoid behavioral ecology Louise E.M Vet and H Charles J Godfray 231 12 Parasitoid sex ratios and biological control Paul J Ode and Ian C.W Hardy 253 13 Linking foraging and dynamics Michael B Bonsall and Carlos Bernstein 292 14 Linking behavioral ecology to the study of host resistance and parasitoid counter-resistance Alex R Kraaijeveld and H Charles J Godfray Part Methodological issues in behavioral ecology 315 335 15 State-dependent problems for parasitoids: case studies and solutions Bernard Roitberg and Pierre Bernhard 337 16 A Bayesian approach to optimal foraging in parasitoids Jean-Sébastien Pierre and Richard F Green 357 17 Finding optimal behaviors with genetic algorithms Thomas S Hoffmeister and Éric Wajnberg 384 18 Statistical tools for analyzing data on behavioral ecology of insect parasitoids Éric Wajnberg and Patsy Haccou Index 402 430 9781405163477_1_pre.qxd 30/08/2007 10:31 AM Page vii Contributors Pierre Bernhard Polytech’Nice Sophia Antipolis 930, Route des Colles BP 145 06903 Sophia Antipolis Cedex France Tel: +33 92 96 51 52 Fax: +33 92 96 51 55 e-mail: pierre.bernhard@polytech.unice.fr Carlos Bernstein Biométrie et Biologie Évolutive Université de Lyon; Université Lyon I 43 BD du 11 Novembre 1918 69622 Villeurbanne Cedex France Tel: +33 72 43 14 38 Fax: +33 72 43 13 88 e-mail: carlosbe@biomserv.univ-lyon1.fr Guy Boivin Centre de Recherche et de Développement en Horticulture Agriculture et Agroalimentaire Canada 430, boulevard Gouin Saint-Jean-sur-Richelieu Québec J3B 3E6 Canada Tel: +1 450 346 4494 ext 210 Fax: +1 450 346 7740 e-mail: boiving@agr.gc.ca Michael B Bonsall Department of Zoology 9781405163477_1_pre.qxd 30/08/2007 10:31 AM Page viii viii CONTRIBUTORS University of Oxford South Parks Road Oxford OX1 3PS UK Tel: +44 865 281064 Fax: +44 865 310447 e-mail: michael.bonsall@zoo.ox.ac.uk Jérôme Casas University of Tours Institut de Recherche sur la Biologie de l’Insecte IRBI-CNRS UMR6035 Av Monge 37200 Tours France Tel: +33 47 36 69 78 Fax: +33 47 36 69 66 e-mail: casas@univ-tours.fr Luc-Alain Giraldeau Université du Québec Montréal Case postale 8888 Succursale Centre-ville Montréal (Québec) H3C 3P8 Canada Tel: +1 514 987 3000 ext 3244 Fax: +1 514 987 4647 e-mail: giraldeau.luc-alain@uqam.ca H Charles J Godfray Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS UK Tel: +44 1865 271176 Fax: +44 1865 310447 e-mail: charles.godfray@zoo.ox.ac.uk Richard F Green Department of Mathematics and Statistics University of Minnesota Duluth Duluth, MN 55812 USA Tel: +1 218 726 7229 Fax: +1 218 726 8399 e-mail: rgreen@d.umn.edu 9781405163477_1_pre.qxd 30/08/2007 10:31 AM Page ix CONTRIBUTORS Patsy Haccou Section Theoretical Biology Institute of Biology Leiden University P.O Box 9516 2300 RA Leiden The Netherlands Tel: +31 71 527 4917 Fax: +31 71 527 4900 e-mail: p.haccou@biology.leidenuniv.nl Ian C.W Hardy School of Biosciences University of Nottingham Sutton Bonington Campus Loughborough LE12 5RD UK Tel: +44 115 951 6052 Fax: +44 115 951 6060 e-mail: ian.hardy@nottingham.ac.uk George E Heimpel Department of Entomology University of Minnesota 1980 Folwell Ave St Paul, MN 55108 USA Tel: +1 612 624 3480 Fax: +1 612 625 5299 e-mail: heimp001@umn.edu Lia Hemerik Wageningen University Biometris, Department of Mathematical and Statistical Methods P.O Box 100 6700AC Wageningen The Netherlands Tel: +31 317 482083 Fax: +31 317 483554 e-mail: Lia.Hemerik@wur.nl Monika Hilker Department of Applied Zoology/Animal Ecology Institute of Biology Freie Universität Berlin Haderslebener Str 12163 Berlin ix 9781405163477_1_pre.qxd 30/08/2007 10:31 AM Page x x CONTRIBUTORS Germany Tel: +49 30 838 559 13 Fax: +49 30 838 538 97 e-mail: hilker@zedat.fu-berlin.de Thomas S Hoffmeister Institute of Ecology and Evolutionary Biology FB 2, Biology University of Bremen Leobener Str./NW2 28359 Bremen Germany Tel: +49 421 218 4290 Fax: +49 421 218 4504 e-mail: hoffmeister@uni-bremen.de Anthony R Ives Department of Zoology University of Wisconsin – Madison Madison, WI 53706 USA Tel: +1 608 262 1519 Fax: +1 608 265 6320 e-mail: arives@wisc.edu Mark Jervis Cardiff School of Biosciences Cardiff University Cardiff CF10 3TL UK Tel: +44 29 20 874948 Fax: +44 29 20 874305 e-mail: jervis@cardiff.ac.uk Alex R Kraaijeveld School of Biological Sciences University of Southampton Bassett Crescent East Southampton SO16 7PX UK Tel: +44 2380 593436 Fax: +44 2380 594459 e-mail: arkraa@soton.ac.uk Jeremy McNeil Department of Biology The University of Western Ontario 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 431 INDEX rose 57 wheat 182 Aphis fabae 84, 222 gossypii 85 Aphytis 17, 58, 60 –1, 61, 82, 122 aonidiae 57– 8, 60 –2 lingnanensis 261 melinus 11–12, 17, 54, 60, 62–3, 87, 147, 261, 271 paramaculicornis 6, 11 vandenboschi 61 yanonensis 11 Apiaceae 134 Apion ulicis 62 Apis mellifera 241 Apoanagyrus diversicornis 265 lopezi 261, 265 Arabidopsis 241 thaliana 240 –1 Argochrysis 55 armilla 55, 57 Armadillidium 278 armyworm 328 arrestants arrhenotoky 279 Arsenophonus nasoniae 278 arthropods 73, 261, 277 artificial selection 247 arylphorin 116 Asaphes vulgaris 84 Asilidae (asilids) 82 Asobara 59 citri 187 tabida (Nees) 45, 59, 118, 140, 143, 183, 318, 320 –2, 324 – aspen 244 –5 asphyxiation 318 attractants augmentation 4, 11–17 behavioral context 12–14 optimal patch and host use 12–14 Aulacorthum solani 339 Australia 4, 64 autoparasitoids 85–7 autophagy 114 bacteria 4, 277, 323, 327 entemopathogenic 323 male-killing 278 Bathyplectes curculionis 20 Bayes’ theorem 382–3 431 Bayesian approach, description of 359–60 Bayesian models 357–83 foraging 358 beans, broad 83 Beauveria bassiana 323 bees cavity nesting 244 honey 135, 137, 217, 241 orchid 137 see also bumblebees beet, sugar 222 beetles 83, 85 carabid 87–8 coccinellid 17, 83–5, 222, 277–8 ladybird 73, 83–5, 88 vedalia beewolves 55 behavioral ecology 32, 92–112, 384 and chemical ecology 234–5, 245 and counter resistance 315–34 current issues in 1–227 extension to other fields 229–334 foraging models in 213 framework of 360–1 and host resistance 315–34 introduction of 361 methodological issues in 335–429 and multitrophic interactions (MTI) 231–52 and nutrient dynamics 122–3 nutritional physiology in 113–28 use of statistical tools in 402–29 Bellman’s equation 347 solving of 343–6 stationary 346–7 Bemisia argentifolii 86 tabaci 85–6 Bethylidae (bethylids) 255, 258, 269, 271, 274 biological control 161–2, 209, 255 categories of 4, and Charnov’s model 261–5 and complementary sex determination (CSD) 275–6 efficient methods of 3–30 and Fisher’s theory 257 inundative and local mate competition (LMC) 269–71 programs 254 and sex ratios 253–91: distorters 278–9 value of biological organization, connecting levels of 240–2 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 432 432 biological signals theory 235 birds 87 Blaesoxipha 82 bluetits 87 body mass 141 Bombus 324 melanopygus 217 mixtus 217 occidentalis 218 sitkensis 217 Bombyliidae 134 Bombyx mori 241 borers European corn 5, 54 –5, 58, 64, 102 sugarcane 12 Braconidae (braconids) 54 –5, 102, 133, 136, 255, 274 –5, 319–20, 327 aphidiine 116, 146 Bracovirus 319–20 Brassica nigra 239 oleracea 133 Brassicaceae (brassicas) 94, 95, 236, 241 see also crucifers British Columbia 11 Brussels sprouts 53 Buchnera 327 buckwheat, annual 4, 21, 21 budworm, spruce 102 bug, assassin 82 bumblebees 217–18, 324 see also bees butterflies 138, 236 Glanville fritillary 57, 244 large cabbage white 60 small cabbage white 60, 64 cabbage 54, 146, 234 O-caffeoyltyrosine 17 C6-aldehydes 94 California 4, 6, 10, 12, 54, 61, 261 San Joaquin Valley in 12 Campoletis sonorensis 95, 320 Campopleginae 319 Canada 244 candidate genes 247 capital reserves 115–16, 120 capital resources 113, 140 carabids 87– carbohydrates 114, 116 –17, 120, 121, 134–6, 143, 160, 184 carbon dioxide 94, 96 –7, 101 INDEX Cardiochilinae 319 carob 135 castration 319 caterpillars 84, 95, 238, 242 forest tent 244 Catolaccus grandis 16, 262–3 central limit theorem 294 Ceratitis capitata 241 cereals 12 Chalcidoidea 274–5 Charnov type effects 253 Charnov’s host quality model 257–9, 258 and biological control 261–5 chemical ecology 92–112, 234–5, 245 chemicals, cascading effects of 237–8 Chenopodium album 84 chickadees, black-capped 362 chorion 318, 321 chrysanthemums 16, 263, 264 chrysidids 55 Chrysonotomyia ruforum 96–9 cleptoparasitoids 55 Closterocerus tricinctus 53 clutch size 13–14 optimal 344, 345, 348, 350 Coccinella septempunctata 83 coccinellids 17, 83–5, 222, 277–8 Coccobius fulvus 11 Coccophagoides utilis 6, 11 cognitive ecology 376 coleopterans 269, 293 collective dynamics 299–302 collier 318 color preference 146 Colpoclypeus florus 271 community ecology 87–8 competition 7, 50, 193–211 exploitative interference and patch time 182, 186–7 competitors see antagonists complementary sex determination (CSD) 271, 273–5 and biological control 275–6 conopids 324 conservation 4, 5, 18–22 behavioral context 18–19 and optimal foraging 19–22 contest competition 45 ‘contrast’ cues 97 corn 54 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 433 INDEX Cotesia 95, 237 congregatus 320 flavipes 12 glomerata 60, 84, 102, 135– 8, 236, 239, 239, 242 plutellae 84, 275 rubecula 60, 64, 137, 146, 153, 156, 158, 159, 302, 376 vestalis 275 cotton 12, 238 –9, 262 counter-resistance and behavioral ecology 315–34 mechanisms 317–20 Cox’s model 179– 83 cranberry 146 crop diversification 18 crop protection 231 crucifers 241–2 see also Brassicaceae (brassicas) crustaceans 278 crystal cells 318 cucumber 12 cues 182–4 chemical 83, 93, 396 – ‘contrast’ 97 host-indicating 93 olfactory 52, 92 physical 93 plant 94 –5 visual 55 volatile 93 Culex pipiens 278 current state 338 CV2 rule 368 cytokines 119, 318 cytoplasmic incompatibility (CI) 278 Cyzenis albicans 11 decisions 37– 8, 148, 232 adaptive 172 Bayesian 359– 60 egg-laying problems 339–52 modeling optimal 148 –59, 155, 158 decremental processes 372–5, 373, 376 –7 decremental rule 176 – 8, 177, 182, 375 Delia radicum 239, 239 Delphastus pusillus 85 density dependence 52– depletion model 297 developmental mortality 267 Diabrotica virgifera virgifera 97 433 Diadegma 53, 274 fabricianae 276 insulare 135, 142–3, 162 semiclausum 22, 135 Diaeretiella rapae 54, 95 diapause 84 Diapriidae 320 Diglyphus isaea 14–16, 15, 260, 262–3 Dinarmus basalis 142 Diptera (dipterans) 82, 195, 241, 293, 325 disaccharides 135 Drosophila 51, 59, 96–8, 187, 241, 278, 301, 306, 315, 317–18, 327–8 ananassae 306, 306, 307 immigrans 59 mauritiana 322 melanogaster 33, 45, 97, 117–19, 320–3, 325–6, 328 obscura 320 sechellia 322 simulans 59, 320, 322 subobscura 59, 320–1, 325–6 teissieri 322 yakuba 322, 325 drosophilids 241 parasitoids of 320–7 dynamic programming 337, 342–3, 364 models 337–8 ecological communities 87–8 ecological immunity 316 ecology chemical and behavioral 92–112 and gene function 240 Ectomyelois ceratoniae 178 ectoparasitoids 16 Ecuador 244 egg(s) anhydropic 138–9, 160 depletion of 10 dynamics 148 expenditure on 10 hydropic 138–9 laying 338: decision problems 339–52; risk-sensitivity in 221–3 limitation 41–3, 56, 131, 208, 398 load 46, 63, 149, 153, 344, 345, 348, 350, 398: behavioral rule of 62; critical 161; and foraging decisions 130–2; high 153; and host density 57–8; low 147, 156, 158–9; optimal 141; and oviposition 337; 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 434 434 INDEX egg(s) (cont’d) predetermined 349; replenishment of 143; size of 42–3, 114, 140 manufacture 138 –9, 144 –5, 160 maturation 129 production, and parasitism 115 production resources (EPRs) 132, 144 –5, 149, 152, 157– 61 resorption 122, 145, 160 –1 state 337 sticky 320 –1, 326 elitism 389 encapsulation 33, 45– 6, 118, 318, 321 Encarsia 86 eremecus 86 formosa –5, 11–12, 36, 86 –7, 277 pergandiella 86 –7 perniciosi 87 sophia 86 transvena 85 encounter probability 36 Encyrtidae (encyrtids) 255, 261, 265 endoparasitoids 16 energy budget 216 –17 rule 220 Enterobacteriaceae 278 environmental factors, and patch time 183 environments odorous 92–112; variation in 100 – patchy 357 protected semi-protected Eoreuma loftini 16 equal investment theory 253 Eretmocerus mundus 86 –7 erlose 135 esters 94 ethology 361 eubacteria 279 Eucoilidae 320 Eulophidae (eulophids) 60, 96 –7, 99, 255, 262, 271 Eupelmus vuilleti 115–16, 120, 121, 122, 137, 144, 160 Europe 12, 140, 321, 325– evolutionarily stable strategy (ESS) 40 –1, 43, 197– 8, 206 – 8, 207, 267, 305, 385 evolutionary dynamics 308 –10, 309 evolutionary ecology 315 expected-number-left estimator (Iwasa) 369 experience effects of 147–8 previous 183 exploitation model 296 Expressed Sequence Tag (EST) libraries 241–2 extinction 244 Fagopyrum esculentum 21 (E)-β-farnesene 97–8 faeces 96 fat body 114, 139, 142, 318–19, 321 fatty acids 241 fecundity 272 feedback eco-evolutionary loops 31, 43 ecological 35 feeding decisions 148, 337 host versus non-host 159 feeding damage, cues from 95–6 feeding mechanisms, adaptive significance of 133–4 feminization 278 fertilization sex determination (FSD) 273 fidelity 339–51 optimal 338–9 and patch leaving problems 341 Figitidae (figitids) 320 Fillmore Insectary 12 finches, weaver 360 Finland 57 Åland 244 Fisher’s sex ratio theory 256–7 fitness 34, 34, 385 costs 275 Darwinian 232 derived from first principles 36–8 derived from population dynamics 38–40 expected 347 functions 214–16, 215: impact of hyperparasitoids on 222–3 gain 14, 173–4, 198, 201, 294, 343, 385: choice between immediate/future 129–71; function 362; and genetic algorithms (GA) 394, 394; in large patches 219–20; per egg in small patches 219 impact of nutrition on 113 practical approaches to 33–4 theoretical approach to 34–41 time limitation of 59 fixed number rule 362–3, 366 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 435 INDEX fixed time rule 366 flies 119, 129–30, 142 caddis 139 conopid 324 filth 12 house 4, 97, 241, 327 parasitoid 133, 144, 245 phorid 142–3 robber 82 sarcophagid 55, 82, 245 flight 143 fueling of 137 flocking behavior 360 flowers 12, 136 food assimilation of 134 –5 biochemical composition of 134 –5 choice of, risk-sensitive 217 digestion of 134 –5 non-host 133–9: location and recognition of 145– searching for 129–71 supplementation 162 types of 133 utilization of 136 –9 webs 246 ‘whereabouts’ of 135– food-foraging models 130 –1, 162 foraging active 64 and adaptation 376 behavior 173: optimal 3–30, 213–14; and plant cues 236 –7; risk-sensitive 213–16; state-dependence of 146 –7 by single female 174 – decisions distance 22 in the field 51–70 group 172, 184 –7 and learning 376 –7 and natural selection 376 optimal 10 –11, 213–14, 296 –9, 297, 392: Bayesian approach to 357– 83 and population dynamics 292–314, 377– and risk sensitivity 214 –16 sit-and-wait 64 and superparasitism 377 theories 294 –5: Bayesian 368 –77; quantitative treatment of 366 – France 5, 178 frass 102 435 free radicals 318 frequency distributions 178 fructose 135, 137 fruits carob 178 citrus 12, 54, 87, 261 cranberry 146 dried 135, 145 fallen 187 fermenting 59 medlar 178 functional response models 294–5, 295, 378, 394 fungi 4, 323 entomopathogenic 323 mycorrhizal 238 galls 359 game theory 385, 388 adaptive dynamic 308 GATA signaling pathway 118 gene function, and ecology 240 generalized linear models (GLMs) 402–19 accelerated failure time models 419 analysis of covariance (ANCOVA) 402–3, 405, 408 analysis of variance (ANOVA) 402–5, 407–10, 419–22, 420, 423–7, 427 Cox regression model 417 exponential regression model 416–17 F-statistic 409–10 the Gaussian case 405–11 goodness of fit 411 Hotteling’s T test 421 linear regression 402–3, 410 log-linear model 413 multi-dimensional analysis of variance (MANCOVA) 420 the non-Gaussian case 411–19 Pearson residual 411 pseudoreplication 422–5, 425 stratified model 418 t-test 423–4 and unbalanced set-ups 425–8 Wilks’ lambda 421 genetic algorithms (GA) 392 coding in 386, 387, 395–6 and fitness gain 394 flow chart of 387 and optimal behaviors 384–401 outline of 386–92 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 436 436 INDEX genetic algorithms (GA) (cont’d) recombination and mutation in 390 –1, 391 selection processes in 388 –90, 389 genic balance sex determination (GBSD) 273– genomic imprinting sex determination (GISD) 274 genomics 233, 240, 247 Geographic Mosaic Coevolution hypothesis 317 Giraudiella 87 giving-up time (GUT) 362 global changes 231, 242–5 glucocorticoids 119 glucose 119, 136 –7, 142 α-glucosidase 135 glucosinolates 239, 241 glycogen 114 –16, 120, 136, 139, 142, 160 goldenrod 359 Gonatocerus 267 ashmeadi 266 –7, 269, 270, 271 fasciatus 266 –7, 269 triguttatus 266 –7, 269 Goniozus nephantidis 274 granulocytes 318 grapefruit 87 grasshoppers 82 grazing 146 green leaf volatiles (GGLV) 94 – 6, 94 greenhouses 262 group foraging 172, 184 –7 habitat fragmentation 242–3 manipulation 18 Habrobracon brevicornis 276 hebetor 102, 274, 276 serinopae 276 Hamilton’s theory of local mate competition (LMC) 265–71, 266 –7 handling times 56, 59, 294, 374 haplodiploid genetic system 232 Harmonia axyridis 17, 85 hatching 46 Hemiptera 265, 269 hemocoel 317–18 hemocytes 118 –19, 317–19, 321– hemolymph 114, 116 –18, 319, 322 hemopoietic organ 318, 322 herbivore-induced plant volatiles (HIPVs) 234 – herbivores 231 belowground 238–40 population densities of 238 suppression by parasitoids 71–91 heuristics 375 hill-climbing 386 Hippodamia convergens 85 Homoptera 84, 133, 136, 261 honey 134 honeydew 96, 116, 129–30, 133–6, 144, 146, 160–1 artificial 162 host quality model (Charnov) 257–9, 258 host-parasitoid dynamics 246, 259 and foraging 292–314 host-parasitoid interactions 306, 307, 321 in continuous time 43 and intra-guild predation (IGP) 76, 80 spatial ecology of host(s) behavior of 324–5: manipulation 84 dead 60–1, 61 decremental effects of encounters 176–8, 177 densities of 9, 301: assessment deprivation 10 discrimination of 337: lack of 180–1 exploitation of 55–7, 212–27: decisions 13 feeding on 338 handling time 53 immune defense by 117–19 incremental effect of encounters 175–6 informative value of volatiles from 96 marking of 45 monophagous 95 nutritional physiology 113–28 oligophagous 95 and parasitism rate 60–1 population dynamics of 75, 79 quality of 3, 6, 56 refuges for 56 resistance in 321–4: and behavioral ecology 315–34 rover–sitter polymorphism in 324, 328 searching for, energy cost of 19 selection of, optimal 338 size of 3, 6, 14–15: discrimination 339 species selection in the field 59–60 suppression of 3, 8–9 use patterns 61–3 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 437 INDEX Howard’s algorithm 343– 4, 347, 352 Howardula aeronymphium 323 huckleberry, dwarf 217 humans, and parasitoids 375 hunting by expectation hypothesis 362 hydrocarbons 83, 96 Hymenoptera (hymenopterans) 10, 55, 116, 134, 140, 143– 4, 195, 219, 232, 254, 255, 258, 262, 266 –7, 273– 4, 276, 277– 8, 293, 320 hyperglycemia 119 hyperparasitism 56 hyperparasitoids 73, 78, 84, 220, 231, 239, 239, 244 facultative 85–7 heteronomous 86 impact on fitness function 222–3 and mark persistence 396 – and plant toxins 237 Hyposoter horticola 57 Icerya purchasi Ichneumonidae (ichneumonids) 10, 57, 244, 274 –5, 276, 278, 297, 319–20 Ichnovirus 319–20 ideal despotic distribution 298 –9 ideal free distribution (IFD) 7– 8, 184 –5, 194, 297– 8, 303–5 idiobionts 16, 113, 115–16, 120, 259 immune defense 316 costs of 118 immune deficiency pathways 118 immune pathway 119 importation 4, 5, –11, 22 behavioral context 7–9 holding period 10 and optimal foraging 10 –11 regional scale of time scale of inbreeding effects of 276 –7 risk of 56 income resources 113 incremental mechanism 369 incremental processes 372–5, 373, 376 –7 incremental rule 176 –7, 182, 375 individual behaviors 299–302 individual-based models 368 Indonesia infinite patch model 371, 372 infochemical detour 96 437 infochemicals 6–7, 17, 19, 93, 234 blends of 99, 102 manipulation of 246 information acquisition 172–92 information processing 172–92 information state 337 inoculation 4, 5, 11–12, 22 time scale of 5–6 insecticides, removal of insects blood-sucking 96 phytophagous 10, 243 risk-sensitivity of 217–18 root-feeding 238 variable perception of volatiles by 102–4 instars 339 insulin 119 pathway 114 interactions, above/below ground 238–40, 239 interference 302–3, 303 coefficient (m) 7–8 internal state, and patch time 183–4 intra-guild predation (IGP) avoidance by parasitoids 83–5 and herbivore suppression 71–91 and host-parasitoid interactions 76, 80 physical defenses against 84–5 reciprocal 73 specialist 85–7 unidirectional 73 inundation 4, 5, 12 and optimal foraging 14–17 time scale of invertase 137 isothiocyanates 94, 95 iteration on the policies 343 iteration on the value 343 JAK-STAT (Janus kinase and signal transducers) signaling pathway 118 Jensen’s inequality 216 kairomones 13, 17, 19, 96–7, 175–7, 181–2, 369 habituation to 183 kakapo 279 kittiwakes 360 koinobionts 113, 115–17, 259, 316, 339 Kolmogorov’s equation 347 Lacanobia oleracea 319 Lack clutch size 13–14 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 438 438 INDEX ladybirds 73, 83–5, 88 Laelius pedatus 258 Lamachus 83 lamellocytes 318 landmarks, use of 55 leaf rollers 271 leafminers 14, 15, 16, 53, 60 –1, 241, 262–3 learning effects of 147– and foraging 376 –7 and optimal patch visitation 392–5 species specific 237 lemon 87 Lepidoptera (lepidopterans) 12, 51, 117, 119, 138, 269, 278, 318, 328 Leptomastyx dactylopii 374, 377 Leptopilina 59, 306, 321, 324 boulardi 118, 180 –1, 320 –2, 324 –5 clavipes 59 heterotoma 33, 45, 59, 97– 8, 147, 180 –2, 301, 320, 324, 374 victorae 306, 306, 307 life-span 142 lifetime reproductive success 34, 34, 36, 41–2, 44, 47, 338 Linepithema humile 82 link function 404 lipids 114 –17, 120, 121, 134, 139– 40, 142–4, 160 lipogenesis 116, 143– 4, 184 lipoproteins 114 Liriomyza 14 langei 16, 262, 264 local mate competition (LMC) 14, 16, 253–4, 265–71, 266 –7, 280 population level consequences of 268 locomotion 137– 8, 143 locusts 328 Lotka–Volterra host–parasitoid model 19, 20, 378 Lotka–Volterra predator–prey model 39, 378 lucerne 85–7 lupine 54 Lyapunov exponent 41 Lysibia nana 239, 239 Lysiphlebus fabarum 84, 222 testaceipes 8, 85, 183 macaques 375 Macrocentrus cingulum 58, 64 grandii 55, 58, 64 –5, 136, 138, 142, 145, 160 Macrosiphum euphorbiae 84–5, 103 maize 234 Malacosoma disstria 244–5 maltose 135 marginal value theorem (MVT) 12–13, 185, 193, 347, 363, 385 and behavioral decisions 33 and foraging 392–3 and leaving strategy 198, 362, 366 and patch depletion 63, 195–6, 196, 207 and patch residence time 32, 44, 63–5, 173, 222, 362, 395 and rate of oviposition 32, 222 marks, persistence of 396–8 mass rearing 275, 276 programs 194, 209 Mastrus ridibundus 10–11 maternal effect sex determination (MESD) 274 maternal investment patterns (Trivers–Willard theory) 257 maternal sex ratio (MSR) 277 optimal 265 mealybug 374 cassava 5, 261, 265 mango 265 pink hibiscus 16 medfly 241 Medicago sativa 87 melanin 317–18 melanization 117–18, 318, 321 Melanoplus sanguinipes 82 melezitose 135 melibiose 135 Mellitaea cinxia 57, 244 Mesochorus 147, 158 metabolic resources (MRs) 129, 132, 132, 139, 144, 149, 152, 156–7, 160 metabolome profiles 241 metabolomics 233 Metaphycus flavus 16 stanleyi 16 metazoans 317 methodological issues, in behavioral ecology 335–429 Micoplitus demolitor 320 Microgastrinae 319 Microplitis croceipes 95, 147 mediator 136–7 microsporidians 323 midges, gall 87, 359 mites 73 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 439 INDEX models analysis of 153 assumptions of 149, 152 Bernstein and Jervis 150 –1 deterministic 213 future work 160 –1 optimality 213 parameter values 153, 154 of patch leaving 178 – 84 pro-ovigenic 149, 152–7, 154, 155 Sirot and Bernstein 19, 150 –1 state dependent 149 synovigenic 152, 154, 157–9, 158 Tenhumberg et al 150 –1 z-score 216 molecular genetics 247 monosaccharides 135–7 monoterpenes 98 mortality risks 129–30, 132, 136, 182 mosquitoes 278 moths codling 10 diamondback 53, 84 hawk 143 seed-mining 54 silk 241 western tussock 54 winter 11 motivational variable 371 multiparasitism 310 multitrophic interactions (MTI) and behavioral ecology 231–52 in a changing world 242–5 and plant defense 233– mummy cases 84 –5, 87– 8, 222 Musca domestica 4, 97, 327 Muscidifurax 12 raptor 272 mutant strain 35, 39 Mutillidae 133 mutualism, plant–parasitoid 234 –5 Mymaridae (mymarids) 56, 255, 267, 269–70 nabids 88 Nasonia 241, 327 vitripennis 137, 143, 241, 272– 4, 277– 8, 327 natural selection 231, 386 and foraging 376 nectar 84, 116, 129–30, 133–5, 144, 160 –1, 239 contents of 139 as source of water 134 439 subsidies 3–4, 6, 20, 22: optimal use of 18–19 nematodes 4, 238, 323 Nemeritis 297 canescens 369 Nemestrinidae 134 Neodiprion pratti banksiana 83 swainei 83 Nesticodes rufipes 73 nesting behavior 360 neuroeconomics 375, 379 Nicholson–Bailey model 33, 35, 39–40, 43–4, 46, 293, 302 modified 74 Nicotiana attenuata 240–1 nitrogen 160 noctuids 318–19, 328 North America 12, 86 Nova Scotia 11 nutrient budget, power of 120–2 nutrient dynamics and behavioral and population ecology 122–3 and host immune defense 117–19 of parasitoids 115–17 and resistance 118–19 nutrient tracking 138 nutrients, acquisition and allocation 121 nutritional physiology, background 114 nutritional state 130, 337 oak, holm 101 Oaten’s model 363 advantages and disadvantages 363–4 odors background 92–3, 97–8, 104–5, 236 blends of 236–7 coding of 98–100 complex environment of 92–112 detection of 97–100 floral 19 high specificity of 93 informative value of 94–7 and nutritional state-dependence 147 olfatory responses to 236 plant, informative value of 94–6 preferences for 147–8 variation in complex environment 100–4 yeast 97 oenocytoid 318 olfactometer 423 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 440 440 olfactory contrast hypothesis 92, 99, 100 optimal behaviors, and genetic algorithms (GA) 384 – 401 optimal foraging theory 32, 358, 361–2, 392 optimal marginal gain 377 optimal sex ratio theory 253– optimality models 384 optimization theory 385 orange 87 Ostrinia furnacalis 278 nubilalis 54, 102 ovigenesis 138, 144 –5, 147 ovigeny index 19, 115, 131, 138 – 42, 145 oviposition 10, 31, 38, 301–2, 319–20, 374 behavior to avoid intra-guild predation (IGP) 83– cues 183: from damage 95– decision to 148, 337– in the field 51–70 as function of egg load 62 and host density 57– injections during 319–20 instantaneous rate of 173 and patch time 175, 176, 181, 183 response to 180 –1 substantially submaximal 56 Pachycrepoideus 323 vindemiae 320, 323 Pandora 327 neoaphidis 327 panmixis 256 –7, 268 papaya 73 Parallorhogas pyralophagus 16 parasites parasitism density dependent 52– density independent 56 and egg production 115 and host density 296 and host quality 60 –1 reduction in 243– parasitoid–host interactions 233 parasitoid–host population dynamics 161–2, 188 parasitoids aggregation ambulatory behavior 103 assessment of host densities avoidance of intra-guild predation (IGP) 83–5 INDEX behavior of 326–7 behavioral ecology of 402–29 chemical and behavioral ecology of 92–112 cognitive process of 184 competing 50, 193–211, 395–6 conservation of activity by counter-resistance in 315–34 decisions by 148: modeling optimal 148–59, 155, 158 defenses against intra-guild predation (IGP) 84–5 density of 56 discrimination of parasitized/unparasitized hosts 180–1 of Drosophila 320–7 effects of weather on 103–4 establishment phase of 6–7 extension of behavioral ecology 229–334 fitness 31–50 flightless mutants 17 food searching in 129–71 foraging 51–70: distance 22 gregarious 16, 208, 269, 338–51 haplo-diploid 273 herbivore suppression by 71–91 and higher host density 53–5 host exploitation by 55–7, 212–27 host feeding by 36–8, 62 and host patch choice 218–20 and humans 375 idiobionts 16, 113, 115–16, 120, 259 and IGPredators 82–3 information acquisition in 172–92 information processing in 172–92 internal state of 183–4, 186 koinobionts 113, 115–17, 259, 316, 339 learning volatiles by 136 location of food 145–6 longevity of 46, 137 mark persistence in 396–8 Nicholson–Bailey 9, 12 nutrient acquisition and allocation 115 nutrient dynamics 115–17 nutritional physiology 113–28 oviposition 51–70 patch time allocation in 172–92 physiological state 61–3 polyvoltine 102 population dynamics of 75, 79 pro-ovigenic 32, 46, 129, 131, 133, 338: and body size 141; and capital reserves 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 441 INDEX 115–16, 144 –5; fidelity in gregarious parasitoids 339– 48; and fitness 161; and food choice 148, 159; optimal clutch size 345, 348, 351 quasi-gregarious 269, 270 recognizing of food by 145– responsiveness to cues by 19 risk assessment in 212–27 risk-sensitivity in egg laying 221–3 sex ratio of 16 size acceptance policy 351–2 solitary 32, 36, 351, 360 species richness of 243 state-dependent problems for 337–56 synovigenic 32, 46, 129–33, 338: and capital reserves 115–16, 144 –5, 147, 298; dynamics of 63; and egg resorption 161; fidelity in gregarious parasitoids 349–51; and fitness 161; and food choice 148, 158 –9; and host feeding 138; optimal clutch size 350, 351 uniparental strains of 22 wars of attrition in 184, 186, 193–211 Parasitylenchus diplogenus 323 Parlatoria oleae parrot 279 parthenogenesis induction (PI) 278 partial local mating 268 Parus caeruleus 87 patch(es) catastrophic failure of 56 choice 22, 218 –20: decisions 3, 6, 11; optimal 7–9 defense 187, 208 –9 density 301: variance in depletion: and marginal value theorem (MVT) 195– 6; with superparasitism 200 –7, 203– 6; without superparasitism 196 –200, 197 exploitation 43– 4, 55–7, 296 guarding 186 –7 leaving 194, 196, 200, 207, 358 –9: decisions 172, 296, 337; mechanism (Waage) 369–74, 370, 372–3; models of 178 – 84, 363; problems 341, 341; rules 13, 17, 301, 359– 60, 364 – 6, 365; tendencies 307; times 297 residence: risk-sensitive 218; time 13, 222, 301, 362– state, and competition 198, 199, 203, 203– 6, 208 441 time 44, 175: allocation of 3, 172–92, 338, 395–6; and competition/competitors 182, 186–7; and environmental factors 183; and internal state 183–4; model 181 types 364 use: decisions 13; mechanisms 13; optimal 63–5 visitation: and learning 392–5; previous 183 paternal sex ratio (PSR) 277 pathogens pentatomids 83 peptides, antimicrobial 317, 323 Perilampus hyalinus 83 permutation encoding 388, 394 perturbation test 257 pest control, and rearing technique 264 pest resurgence 18 pesticides, synthetic 18 Phanerotoma franklini 138, 146 phenolics 241 phenoloxidase cascade 118 pheromones 94, 96 decay of 397–8 marking by 194: response to trails 181–3 sexual 97, 103, 223 spacing 223 species-specific 98 phorids 142–3 phosphoglucose isomerase (Pgi) 119 Phragmites australis 87 Picard iteration 343 Pieris 60, 95, 236, 242 brassicae 60, 239, 239 rapae 60, 64, 84 Pimpla hypochondriaca 319 pine, jack 83 α-pinene 101 β -pinene 101 Pinus banksiana 83 halepensis 101 plant cues, and foraging behavior 236–7 plant defense mechanisms for 233–4 and multitrophic interactions (MTI) 233–8 plant–parasitoid mutualism 234–5 planthopper, brown plants defense mechanisms 231 informative value of odors 94–6 variable emission of volatiles by 101–2 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 442 442 INDEX plasmatocytes 318 Plectritis congesta 217 Plutella xylostella 84 Podisus modestus 83 pollen-feeding 133 poly-DNA-viruses (PDVs) 319–20 Polydnaviridae 319 population dynamics 161–2, 302– and foraging 377– population ecology, and nutrient dynamics 122–3 population processes Praon pequodorum 85– predation 8, 56 predator–prey model 368 predators 4, 220, 357– detection of 222 intra-guild 71, 73, 81–2, 88 –9: avoidance of 84; generalist 74 –7, 75– 6, 81; parasitoids attacked by 82–3; specialist 77– 81, 79– 80, 85–7 preference, behavioral 54 prey 358 distribution 367 intra-guild 73, 78, 81–2, 86 – priming 17 pro-ovigenic model 149, 152–7, 154, 155 pro-ovigeny 32, 46, 129, 131, 133, 338 and body size 141 and capital reserves 115–16, 144 –5 fidelity in gregarious parasitoids 339– 48 and fitness 161 and food choice 148, 159 optimal clutch size 345, 348, 351 proline 144 prophenoloxidase (PPO) system 318, 323 proportional hazard model 179– 83, 359, 374, 376, 417, 419 proteinase inhibitors 241 proteins 114, 116 –17, 120, 121, 139, 142, 144 –5 α-proteobacteria 277 Prunus dulcis 82 Pseudacteon tricuspis 142–3 Pseudococcidae 265 Pseudomonas entomophila 323 Pseudoplusia includens 318 pseudoreplication 422–5, 425 Psix tunetanus 270 Pteromalidae (pteromalids) 241, 255, 262, 272, 320 Pteromalus albipennis 298 elevatus 298 sequester 62, 63 Pterostichus melanarius 87 pupa 323 puparium 323 Quadraspidiotus perniciosus 82 Quantitative Trait Loci (QTL) mapping 241, 247 Quercus ilex 101 queues 299–302, 300 queuing models 307 quinones 318 Rastrococcus invadens 265 rats 368 rearing costs 253 rearing technique, and pest control 264 relative fitness rule 220 reproduction ratio (R0) 33, 40, 50 reproductive strategies 52, 58–65 reserves, utilization of 142–5 resident strain 35, 39 resistance 45–6 costs of 322 mechanisms 317–20 resource pool 131–2 rhamnose 135 rhizosphere 231 rice Rickettsia 279 risk assessment 212–27 risk-aversion 216 risk-proneness 216 risk-sensitivity in egg laying 221–3 in food choice 217 and host patch choice 218–20 in patch residence 218 Rodolia cardinalis Rohani and Miramontes model root pathogens 238 rootworm, corn 97 Rorippa indica 84 roulette wheel selection 388–9, 389 sabinene 101 Sarcophagidae (sarcophagids) 55, 82, 245 sawflies 83, 99 pine 96–7 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 443 INDEX scale insects 60, 135 scales arrowhead 11 California red 11–12, 17, 54, 61, 87, 261, 265, 271 cottony cushion diaspid 11 oleander 17 olive 6, 11 San Jose 57, 61, 82 soft 16 Scaptomyza flava 241 scelionids 187, 270 Schizolachnus pineti 57 Scoliidae 133 seablush 217 searching efficiency 303 selective pressure, evaluation of 347– semi-quinones 318 semiochemicals 93 sesquiterpenes 98 sex allocation 13–14, 52, 253–5, 360 host-quality dependent 257–9, 258 theory 32, 245, 256, 272 sex determination 253, 255 haplo-diploid 256 mechanisms of 272–7 sex ratio 3, 6, 219, 232, 253–91, 255, 379 changes in 263 and complementary sex determination (CSD) 276 differential returns: and host quality 257– 65, 260; and structured populations 265–71 distorters 277–9: and biological control 278 –9 equal investment returns 256 –7 female bias in 268 Fisher’s theory of 256 –7 and foundress number 266 –7 genetic variation of 272 and host quality 13–14, 16 maternal control of 256 –71: compromised 271–9 and realized fecundity 272 sharpshooter, glassy-winged 269 shrew, common 218 signal-transduction pathway 237 sinigrin 239, 239 Sirot and Bernstein dynamic programming model 19 443 size discrimination 339 soil, interactions above/below 238–40, 239 soma/non-soma trade-off 139 somatic maintenance 136–7 Sorex araneus 218 South America 12 soybean 234 Spalangia 12 cameroni Spathimeigenia spingera 83 spatial heterogeneity 295–6 sphecids 55 spiders 73, 82 Spodoptera exempta 328 exigua 238 squash 17 stachyose 135 state model 339–41 state-dependence 337–56 statistical tools software packages for 428 use in behavioral ecology 402–29 see also under generalized linear models (GLMs) stemborer 16 sterols 116, 120 Stethorus siphonulus 73 stochastic dynamic programming (SDP) 45, 47, 337–8, 384, 393 and fitness 33, 36, 385 and foraging models 129–31, 133, 378, 385, 395 and host choice 44–5, 393 and patch leaving strategy 376 stochastic state variable model 337 stopping rule 372, 373 sucrose 117, 135, 137, 147 sprays 20 sugars 114–15, 117, 120, 121, 135, 137–9, 142, 160 superparasitism 44–5, 178, 184, 220, 245, 310 and competition 186, 195, 208–9 and egg load 337 and foraging 377 and host density 53 and marginal value theorem (MVT) 193 and patch depletion 200–7, 202–6 risk of self- 56–7, 178, 193 in solitary species 32–3, 58, 193 and virus infections 181 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 444 444 survival analysis 374 Symphyta 134 Sympiesis 60 synomones 13, 19 synovigenic model 152, 154, 157–9, 158 synovigeny 32, 46, 129–33, 338 and capital reserves 115–16, 144 –5, 147, 298 dynamics of 63 and egg resorption 161 fidelity in gregarious parasitoids 349–51 and fitness 161 and food choice 148, 159 and host feeding 138 optimal clutch size 350, 351 systems biology 240 Tachinidae (tachinids) 11, 54, 245 Tachinomyia similis 54 target of rapamycin (TOR) pathway 114, 119 teneral resources 139– 45 allocation patterns of 139– 42 teosinte 234 tephritids 298 teratocyte 319 Terellia ruficauda 298 terpenes 101 terpenoids 238, 241 Tetranychus cinnabarinus 73 tetrasaccharides 135 thelytoky 278 –9 ticks 103 tiphiids 136 Toll pathway 118 tomato 4, 12 tortricids 271 torymids 359 Torymus 298 toxins 319 cascading of 237– travel, inter-patch 149 traveling salesman problem (TSP) 386, 388 –91 trees almond 57, 61, 82, 136 sap fluxes of 59 trehalose 114, 135–7, 142 trematodes 96 Trialeurodes vaporariorum INDEX Tribolium confusum 278 Trichogramma 12, 16–17, 278 brassicae 5, 17, 138 chilonis 95 cordubensis 16, 279 deion 16, 279 kaykai 277 minutum 137 turkestanica 160 Trichogrammatidae (trichogrammatids) 255, 272, 277 Trichoptera 139 triglycerides 114, 116 trisaccharides 135 Trissolcus basalis 270 utahensis 270 tuberculosis 119 Tubulinosema kingi 323 Ulex europaeus 62 undepletable patch model 371, 372 Uscana semifumipennis 272, 277 Vaccinium caespitosum 217 vegetables 12 venoms 116, 319 Venturia 177 canescens 8, 19, 116, 135–8, 142, 144–7, 175–7, 178, 183, 297–8, 301, 319, 372 vetch, bush 243 Vicia 244 faba 83 sepium L 243, 243 vinegar 97 virus-like particles (VLPs) 321 viruses 4, 180–1, 319–20 vitamins 139 vitellogenin 114 volatiles 92–4 blends of 98–9, 236–7 corn 97 diurnal variation in 101 from hosts 96 general characters of 94 green leaf (GGLV) 94–6, 94 herbivore-induced plant (HIPVs) 231, 234 –6 masking 97 variability in perception of 102–4 variable emission by plants 101–2 9781405163477_6_ind.qxd 30/08/2007 05:05PM Page 445 INDEX walnuts 136 war of attrition 184, 186, 193–211 warbler, Seychelles 273 wasps 17, 82– 4, 116, 121, 142–3, 146 –7, 182, 236, 254 bethylid 255, 258, 269, 271, 274 cavity nesting 244 chrysidid 55 eulophid 60, 96 –7, 99, 255, 262, 271 generalist 339 ground-nesting hunting 55, 57 ichneumonid 10, 57, 244, 274 –5, 276, 278, 297, 319–20 mymarid 56, 255, 267, 269, 270 paper 217 parasitic 93, 97, 277 parasitoid 129–31, 132, 133, 138 – 40, 143– 4, 301 pro-ovigenic 149 pteromalid 241, 255, 262, 272, 320 solitary 350 sphecid 55 synovigenic 149 tiphiid 136 torymid 359 trichogrammatid 255, 272, 277 weather 321 effects on parasitoid flight 103–4 weevils alfalfa 20 cotton boll 16, 262 seed 62 whiteflies 86–7 greenhouse 4–5, 11–12 silverleaf 86 sweet potato 85–6 wind, effects on parasitoid flight 103–4 wireworms, root-feeding 238 Wolbachia 3, 6, 16, 277–9, 323 yeast 97, 117, 147 z-score model 216 Zelus renardii 82 445 ... 10:31 AM Page iii Behavioral Ecology of Insect Parasitoids From Theoretical Approaches to Field Applications Edited by Éric Wajnberg, Carlos Bernstein, and Jacques van Alphen 9781405163477_1_pre.qxd... Parasitic insects—Behavior Parasitoids? ??Behavior Parasitic insects? ?Ecology Parasitoids? ? ?Ecology Insect pests—Biological control I Wajnberg, E II Bernstein, Carlos III Alphen, Jacques van QL496.B384... Behavioral ecology of insect parasitoids : from theoretical approaches to field applications / edited by Eric Wajnberg, Carlos Bernstein, and Jacques J.M van Alphen p cm Includes bibliographical references

Ngày đăng: 07/12/2015, 20:20

Tài liệu cùng người dùng

Tài liệu liên quan