Mypt1 mediated spatial positioning of bmp2 producing cells is essential for liver organogenesis

195 233 0
Mypt1 mediated spatial positioning of bmp2 producing cells is essential for liver organogenesis

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Mypt1-Mediated Spatial Positioning of Bmp2-Producing Cells Is Essential for Liver Organogenesis HUANG HONG HUI NATIONAL UNIVERSITY OF SINGAPORE 2008 Mypt1-Mediated Spatial Positioning of Bmp2-Producing Cells Is Essential for Liver Organogenesis HUANG HONG HUI (M.Sc., China Pharmaceutical University, P.R.China) (B.Sc., Wuhan University, P.R.China) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSITUTE OF MOLECULAR AND CELL BIOLOGY DEPARTMENT OF BIOLOGICAL SCIENCE NATIONAL UNIVERSITY OF SINGAPORE 2008 Acknowledgement My Ph.D. study is really a long and tough journey and I am glad I am reaching the destination. I would like to thank my supervisor Dr. Peng Jinrong and my ex-supervisor Dr. Zhang Lianhui. Starting with a bacterial quorum sensing project in Dr. Zhang Lianhui’s lab, I learned the first molecular biology experiment, and when Dr. Peng Jinrong showed me the fantastic zebrafish model, I decided to initiate the liver development study in this organism under his supervision. During past nearly seven years, he has put extensive effort to systematically train me to be a good scientist, not only the correct way of doing science, but also the right attitude to thinking about science which definitely will benefit me in my career. At the same time, I want to thank my supervisory committee, Dr. Wen Zilong, Dr. Li Baojie, and Dr. Lim Seng Gee for their invaluable comments and advice throughout this study. I would like to express my sincere gratitude to my colleagues in the Functional Genomics Laboratory, Dr. Lee Sorcheng, Dr. Chen Jun, Dr. Cheng Wei, Dr. Alamgir Hussain, Aw Meng Yuan, Aw Siqi, Cao Dongni, Chang Changqing, Cheng Hui, Gao Chuan, Guo Lin, Lo Lijan, Low Swee Ling, Lu Peiying, Ma Weiping, Ng Sok Meng, Ruan Hua, Xu Min, Yang Shulan, Wen Chaoming, Wu Wei, Zhang Zhenhai and all other ex-members. Together with Guo Lin we carried out a fruitful genetic screening for liver defective mutant in zebrafish. My special thanks go to Ruan Hua and Aw Meng Yuan, they help me to perform huge amount of bench work. I would like to thank Dr. Alamgir Hussain for his great help of biochemical assay of the Mypt1-PP1c complex and stress fibres. My thanks also go to all the members of Molecular and Developmental Immunology Laboratory, especially Qian Feng, Jin Hao, Xu Jin, Liu Yanmei, Du Linsen. We shared the great experience of collaboration in the genetic screening and positional cloning. The constructive discussions and suggestions in the joint lab meeting indeed were of great help to my study, particularly the valuable comments from Dr. Chen Jun, Qian Feng, Jin Hao and Xu Jin. I would like also thank Zhang Zhenhai, my badminton partner and friend; I really enjoyed the friendship and joy in badminton game he brought to me. My special thanks go to Dr. Wen Zilong, his helpful suggestions and encouragements always are pushing me forward. I would like to say thanks to Prof. David Kimelman, Dr. Thomas Leung, and Dr. Song Haiwei for their precious help and suggestion to make my work publishable. I would like to thank for the financial support from the Institute of Molecular and Cell Biology and ex-Institute of Molecular Agrobiology for my Ph.D. study. My thanks also go to the fish facility, the sequencing facility, administration team, and technical supporting team of these two institutes for their great support. Finally, I would like to thank my parents and my family. My wife, Ruan Hua, and my lovely son, Huang Zhaoxi, always are my spiritual support and source of strength to move forward. i Table of Contents Acknowledgement . i Table of Contents ii Summary vi List of Abbreviations . viii List of Tables . ix List of Figures . x List of Publications . xii Chapter Introduction 1.1 The liver structure and functions 1.1.1 The liver structure 1.1.1.1 The hepatic vascular system . 1.1.1.2 The biliary system . 1.1.1.3 The three dimensional arrangements of the liver cells . 1.1.2 The liver functions . 1.2 Liver organogenesis 1.2.1 Liver is an endoderm derived organ 1.2.2 The liver morphogenesis 1.2.3 Molecular mechanism involved in the liver development . 11 1.2.3.1 Acquisition of competency . 11 1.2.3.2 Hepatic specification . 15 1.2.3.3 The liver bud formation and growth . 17 1.2.3.3.1 The liver bud formation . 17 1.2.3.3.2 Growth and apoptosis of hepatoblasts . 20 1.2.3.4 Hepatocyte differentiation and establishment of hepatic architecture 23 1.2.3.5 Cholangiocyte differentiation . 25 1.3 Zebrafish: an ideal model for studies of the liver development 29 1.3.1 Advantages of zebrafish . 29 1.3.2 Liver development study in zebrafish 34 1.4. Rationality and aim of the project 43 Chapter Material and method . 45 2.1 Zebrafish . 45 2.1.1 Fish strains and maintenance . 45 2.1.2 zebrafish embryos 46 2.1.3 Collection of unfertilized eggs . 46 2.2 General DNA application . 46 2.2.1 DNA fragment Cloning 46 2.2.1.1 Polymerase Chain Reaction (PCR) . 46 2.2.1.2 Purification of PCR product/DNA fragments . 47 2.2.1.3 Ligation of DNA inserts into vectors 47 2.2.1.4 Heat-shock transformation 48 2.2.1.4.1 Preparation of DH5α competent cells 48 2.2.1.4.2 Heat-shock transformation . 48 2.2.1.5 Colony PCR 49 2.2.1.6 Plasmid miniprep from bacteria 49 ii 2.2.2 DNA sequencing 49 2.2.3 Site directed mutagenesis . 50 2.3 Zebrafish genomic DNA extraction 50 2.3.1. Genomic DNA extraction from adult zebrafish 50 2.3.2 Isolation of genomic DNA from embryos or scales of adult zebrafish . 51 2.4 General RNA application 51 2.4.1 Total RNA extraction from embryos or adult zebrafish 51 2.4.2 Removal of genomic DNA from total RNA 52 2.4.3 mRNA isolation . 52 2.4.4 Reverse Transcription PCR (RT-PCR) 52 2.4.4.1 One-step RT-PCR . 52 2.4.4.2 Two-step RT-PCR 53 2.4.5 Capped mRNA synthesis by in vitro transcription 53 2.4.6 Northern Blot analysis . 53 2.4.6.1 Probe preparation 53 2.4.6.2 RNA sample preparation . 54 2.4.6.3 RNA denaturing gel electrophoresis . 54 2.4.6.4 Hybridization and autoradiography 55 2.5 Western Blot . 55 2.5.1 Protein sample preparation 55 2.5.2 SDS-PAGE and blot 56 2.6 Cryosectioning of zebrafish embryo . 57 2.7 Immunochemistry . 58 2.7.1 Whole mount antibody staining . 58 2.7.2 Antibody staining on sectioned samples 58 2.8 Microinjection . 59 2.8.1 Preparation of injected materials . 59 2.8.2 Preparation of accessory items, needles and supporter dishes . 59 2.8.3 Microinjection 60 2.9 Whole Mount in situ Hybridization (WISH) 60 2.9.1 Preparation of labeled RNA probe . 60 2.9.2 High-resolution WISH . 61 2.9.3 Two-color WISH . 62 2.9.4 High throughput WISH protocol . 63 2.10 SSLP and SNP marker detection 64 2.11 Assay of the Mypt1-PP1c Complex 64 2.11.1 Constructs 64 2.11.2 Co-immunoprecipitation (Co-IP) and Immunoblotting . 65 2.12 Stress Fiber Assay . 65 2.13 Mosaic Analysis via Cell Transplantation 66 2.13.1 Mutant donor cells to WT embryos for endoderm replacement 66 2.13.2 Wild-type mesoderm donor cells to mypt1 morphants for mesoderm replacement . 66 2.14 Mutant Rescue 67 2.15 Heatshock Treatment 67 2.16 p-Histone H3 Immunostaining and TUNEL Assay 68 iii Chapter Forward genetic screen for zebrafish liver defective mutants 74 3.1 Introduction . 74 3.2 Results . 74 3.2.1 Mutagenesis and generation of families for screen 74 3.2.2 Forward genetic screen 76 3.2.2.1 Setup of a high-throughput whole mount in situ hybridization (WISH) method for screen 76 3.3.2.2 The scheme of screen 76 3.2.2.3 First round screen (screen in F2 families) . 79 3.2.2.4 Second round screen (screen in F3 families) 81 3.2.2.5 Allelism test 84 3.2.2.6 Third round screen (screen in F4 families) . 84 3.3 Discussions . 91 Chapter Positional cloning reveals that a mutation alters a conserved motif in Mypt1 in sq181 . 95 4.1 Introduction . 95 4.2 Results . 99 4.2.1 Construction of the initial mapping panel 99 4.2.2 Positional cloning of sq181 100 4.2.2.1 Initial mapping of sq181 . 100 4.2.2.2 Fine mapping and chromosomal walking on BAC contig 103 4.2.2.3 The sq181 mutation alters a conserved motif in Mypt1 . 108 4.2.3 V36 to M36 substitution in Mypt1 causes the liverless phenotype in sq181 . 108 4.2.4 An insertion allele of sq181 also confers a liverless phenotype 111 4.2.5 Knockdown of mypt1 gene phenocopies the liverless phenotype in sq181 . 112 4.3 Discussions . 112 Charpter Mypt1-mediated spatial positioning of Bmp2-producing cells is essential for liver organogenesis . 115 5.1 Introductions . 115 5.2 Results . 118 5.2.1 The mypt1sq181 mutation confers a liverless phenotype . 118 5.2.2 The mypt1sq181 mutation does not block hepatic competency 118 5.2.3 The mypt1sq181 mutant hepatoblasts are not maintained . 120 5.2.4 The mutant Mypt1 binds PP1c poorly and is functionally attenuated . 123 5.2.5 Knockdown of PP1c phenocopy mypt1sq181 . 124 5.2.6 mypt1 is expressed in the liver primordium and surrounding lateral plate mesoderm 128 5.2.7 The mypt1sq181 mutation causes the liverless phenotype in a tissue nonautonomous manner 130 5.2.8 The mypt1sq181 mutation causes abnormal bundling of actomyosin filaments and disorganization of LPM cells . 130 5.2.9 Bmp2a rescues the liver development in mypt1sg181 135 5.2.10 Blocking Bmp signaling causes the liverless phenotype . 137 5.2.11 M36-Mypt1 disrupts the spatial coordination between the liver primordium and Bmp2a-producing cells 140 5.2.12 Mutant hepatoblasts are impaired in proliferation . 146 iv 5.2.13 Mutant hepatoblasts undergo apoptosis to cause the liverless phenotype . 146 5.3 Discussions . 149 5.3.1 V36 to M36 in Mypt1 confers the liverless phenotype 149 5.3.2 The myptsq181 mutation causes defective LPM displacement . 150 5.3.3 The defective LPM displacement leads to the failure of establishment a proper spatial positioning between Bmp2a producing cells and the liver primordium to support hepatoblasts proliferation . 150 5.3.4 Bmp signaling is essential for the hepatoblasts specification and proliferation . 152 5.3.5 A posterior shift of the liver primordium also appears in the mypt1sq181 mutant . 153 Chapter General conclusion and future prospects . 156 Appendix1………………………………………………………………………………160 Appendix2………………………………………………………………………………162 Reference list ………………………………………………………………………… 163 v Summary The liver is an essential organ and carries out many essential functions. Most studies in the liver development are carried out in mice and chick using reverse genetics and explants culture method, however, the whole picture of liver organogenesis is still mysterious due to limitations of such approaches and the early lethality of liver defect in mouse. Zebrafish emerges as an ideal model for forward genetics and liver organogenesis. To investigate molecular mechanism of the liver development without bias, we carried out a forward genetic screen for liver defective mutants in zebrafish assisted with a high throughput whole mount in-situ hybridization method using the liver specific marker prox1 as a probe. After screening 524 mutagenized genomes, we obtained 71 putative mutants which came from 51 F2 families. Of these mutants 19 lines showed liver defects with relatively normal morphology and were considered as interesting mutants for further study. To initiate positional cloning to reveal molecular lesion in a liverless mutant sq181 obtained in our screen, a total of 451 simple sequence length polymorphism (SSLP) markers from established panels were tested in our lines, and 226 markers that showed polymorphism were selected for construction of the initial mapping panel. Positional cloning identified a G to A substitution in the myosin phosphatase targeting subunit (mypt1) gene in sq181 mutants, which results in the V36 to M36 substitution in an RVxF motif in Mypt1. Genetic analyses unequivocally prove that the mypt1sq181 mutation is responsible for the liverless phenotype. Previous studies showed that mesodermal tissues produce various inductive signals essential for morphogenesis of endodermal organs. However, little is known about how vi the spatial relationship between the mesodermal signal-producing cells and their target endodermal organs is established during morphogenesis. The mypt1sq181 mutation attenuates the binding of Mypt1 to PP1c and leads to a compromised myosin phosphatase activity, and causes abnormal bundling of actin filaments and disorganization of lateral plate mesoderm (LPM) cells around the hepatic endoderm. As a result, the coordination between mesoderm and endoderm cell movements is disrupted. Consequently, the two stripes of Bmp2a-expressing cells in the LPM fail to align in a V-shaped pocket sandwiching the liver primordium. Mispositioning Bmp2a producing cells with respect to the liver primordium leads to a reduction of hepatoblast proliferation and final abortion of hepatoblasts by apoptosis that causes the liverless phenotype. Our results demonstrate that Mypt1 mediates coordination between mesoderm and endoderm cell movements in order to carefully position the liver primordium such that it receives a Bmp signal that is essential for liver formation in zebrafish. vii List of Abbreviations aa AP BCIP BMP BSA bp CIP DEPC DIG DMSO DNA dNTP dpf DTT EGFP ENU GFP hpf IPTG Kb LPM M MO mRNA NBT ng nl ORF PAGE PBS PCR PFA PTU RT-PCR SSC STM UV μl WISH amino acid alkaline phosphatase 5-bromo-4-chloro-3-indolyl phosphate bone morphogenetic protein bovine serum albumin base pair calf intestinal alkaline phosphatase diethylpyrocarbonate digoxigenin dimethyl sulfoxide deoxyribonucleic acid deoxyribonucleotide triphosphate days post-fertilization dithiothreitol enhanced green fluorescence protein N-ethyl-N-nitrosourea green fluorescent protein hours post-fertilization isopropyl b-D-thiogalactopyranoside kilo base pair lateral plate mesoderm mole per liter morpholino messenger ribonucleic acid nitro blue tetrazolium nanogram nanoliter open reading frame polyacrylamide gel electrophoresis phosphate-buffered saline polymerase chain reaction paraformaldehyde 1-phenyl-2-thiourea reverse-transcription polymerase chain reaction sodium chloride-trisodium citrate solution septum transversum mesenchyme ultraviolet microliter whole mount in situ hybridization viii Davidson, A.E., Balciunas, D., Mohn, D., Shaffer, J., Hermanson, S., Sivasubbu, S., Cliff, M.P., Hackett, P.B., and Ekker, S.C. (2003). Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263, 191-202. Deutsch, G., Jung, J., Zheng, M., Lora, J., and Zaret, K.S. (2001). A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871-881. diIorio, P.J., Moss, J.B., Sbrogna, J.L., Karlstrom, R.O., and Moss, L.G. (2002). Sonic hedgehog is required early in pancreatic islet development. Dev Biol 244, 75-84. Dong, P.D., Munson, C.A., Norton, W., Crosnier, C., Pan, X., Gong, Z., Neumann, C.J., and Stainier, D.Y. (2007). Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat Genet. 39, 397-402. Dooley, K. and Zon, L.I. (2000). Zebrafish: a model system for the study of human disease. Curr Opin Genet. Dev 10, 252-256. Douarin, N.M. (1975). An experimental analysis of liver development. Med. Biol 53, 427-455. Driever, W., Solnica-Krezel, L., Schier, A.F., Neuhauss, S.C., Malicki, J., Stemple, D.L., Stainier, D.Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J., and Boggs, C. (1996). A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37-46. Dufort, D., Schwartz, L., Harpal, K., and Rossant, J. (1998). The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development 125, 3015-3025. Duncan, S.A. (2003). Mechanisms controlling early development of the liver. Mech. Dev 120, 19-33. Duncan, S.A., Nagy, A., and Chan, W. (1997). Murine gastrulation requires HNF-4 regulated gene expression in the visceral endoderm: tetraploid rescue of Hnf-4(-/-) embryos. Development 124, 279-287. Egloff, M.P., Johnson, D.F., Moorhead, G., Cohen, P.T., Cohen, P., and Barford, D. (1997). Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J 16, 1876-1887. Farber, S.A., Pack, M., Ho, S.Y., Johnson, I.D., Wagner, D.S., Dosch, R., Mullins, M.C., Hendrickson, H.S., Hendrickson, E.K., and Halpern, M.E. (2001). Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292, 1385-1388. Fassler, R. and Meyer, M. (1995). Consequences of lack of beta integrin gene expression in mice. Genes Dev 9, 1896-1908. 166 Field, H.A., Ober, E.A., Roeser, T., and Stainier, D.Y. (2003). Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 253, 279-290. Fitz, J.G. (2002). Regulation of cholangiocyte secretion. Semin. Liver Dis. 22, 241-249. Friedman, J.R. and Kaestner, K.H. (2006). The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci 63, 2317-2328. Fruman, D.A., Mauvais-Jarvis, F., Pollard, D.A., Yballe, C.M., Brazil, D., Bronson, R.T., Kahn, C.R., and Cantley, L.C. (2000). Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat Genet. 26, 379382. Fukuda-Taira, S. (1981). Hepatic induction in the avian embryo: specificity of reactive endoderm and inductive mesoderm. J Embryol. Exp Morphol. 63, 111-125. Gaiano, N., Allende, M., Amsterdam, A., Kawakami, K., and Hopkins, N. (1996). Highly efficient germ-line transmission of proviral insertions in zebrafish. Proc Natl Acad Sci U S A 93, 7777-7782. Ganiatsas, S., Kwee, L., Fujiwara, Y., Perkins, A., Ikeda, T., Labow, M.A., and Zon, L.I. (1998). SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci U S A 95, 6881-6886. Gao, X., Sedgwick, T., Shi, Y.B., and Evans, T. (1998). Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 18, 2901-2911. Germain, L., Blouin, M.J., and Marceau, N. (1988). Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res 48, 4909-4918. Giroux, S. and Charron, J. (1998). Defective development of the embryonic liver in Nmyc-deficient mice. Dev Biol 195, 16-28. Gissen, P., Johnson, C.A., Morgan, N.V., Stapelbroek, J.M., Forshew, T., Cooper, W.N., McKiernan, P.J., Klomp, L.W., Morris, A.A., Wraith, J.E., McClean, P., Lynch, S.A., Thompson, R.J., Lo, B., Quarrell, O.W., Di Rocco, M., Trembath, R.C., Mandel, H., Wali, S., Karet, F.E., Knisely, A.S., Houwen, R.H., Kelly, D.A., and Maher, E.R. (2004). Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat Genet. 36, 400404. Golling, G., Amsterdam, A., Sun, Z., Antonelli, M., Maldonado, E., Chen, W., Burgess, S., Haldi, M., Artzt, K., Farrington, S., Lin, S.Y., Nissen, R.M., and Hopkins, N. (2002). 167 Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet. 31, 135-140. Granato, M., van Eeden, F.J., Schach, U., Trowe, T., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C.P., Jiang, Y.J., Kane, D.A., Kelsh, R.N., Mullins, M.C., Odenthal, J., and Nusslein-Volhard, C. (1996). Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399-413. Gresh, L., Fischer, E., Reimann, A., Tanguy, M., Garbay, S., Shao, X., Hiesberger, T., Fiette, L., Igarashi, P., Yaniv, M., and Pontoglio, M. (2004). A transcriptional network in polycystic kidney disease. EMBO J 23, 1657-1668. Gualdi, R., Bossard, P., Zheng, M., Hamada, Y., Coleman, J.R., and Zaret, K.S. (1996). Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10, 1670-1682. Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., and Nusslein-Volhard, C. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1-36. Hayhurst, G.P., Lee, Y.H., Lambert, G., Ward, J.M., and Gonzalez, F.J. (2001). Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21, 1393-1403. Heasman, J. (2002). Morpholino oligos: making sense of antisense? Dev Biol 243, 209214. Hentsch, B., Lyons, I., Li, R., Hartley, L., Lints, T.J., Adams, J.M., and Harvey, R.P. (1996). Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev 10, 70-79. Hiesberger, T., Bai, Y., Shao, X., McNally, B.T., Sinclair, A.M., Tian, X., Somlo, S., and Igarashi, P. (2004). Mutation of hepatocyte nuclear factor-1beta inhibits Pkhd1 gene expression and produces renal cysts in mice. J Clin Invest 113, 814-825. Hilberg, F., Aguzzi, A., Howells, N., and Wagner, E.F. (1993). c-jun is essential for normal mouse development and hepatogenesis. Nature 365, 179-181. Holtzinger, A. and Evans, T. (2005). Gata4 regulates the formation of multiple organs. Development 132, 4005-4014. Horne-Badovinac, S., Lin, D., Waldron, S., Schwarz, M., Mbamalu, G., Pawson, T., Jan, Y., Stainier, D.Y., and Abdelilah-Seyfried, S. (2001). Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr Biol 11, 14921502. 168 Horne-Badovinac, S., Rebagliati, M., and Stainier, D.Y. (2003). A cellular framework for gut-looping morphogenesis in zebrafish. Science 302, 662-665. Houssaint, E. (1980). Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ. 9, 269-279. Huang, H., Vogel, S.S., Liu, N., Melton, D.A., and Lin, S. (2001). Analysis of pancreatic development in living transgenic zebrafish embryos. Mol Cell Endocrinol 177, 117-124. Hunter, M.P., Wilson, C.M., Jiang, X., Cong, R., Vasavada, H., Kaestner, K.H., and Bogue, C.W. (2007). The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol 308, 355-367. Ito, M., Nakano, T., Erdodi, F., and Hartshorne, D.J. (2004). Myosin phosphatase: structure, regulation and function. Mol Cell Biochem 259, 197-209. Jochheim-Richter, A., Rudrich, U., Koczan, D., Hillemann, T., Tewes, S., Petry, M., Kispert, A., Sharma, A.D., Attaran, F., Manns, M.P., and Ott, M. (2006). Gene expression analysis identifies novel genes participating in early murine liver development and adult liver regeneration. Differentiation 74, 167-173. Johnson, G.R. and Moore, M.A. (1975). Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature 258, 726-728. Johnson, R.S., van Lingen, B., Papaioannou, V.E., and Spiegelman, B.M. (1993). A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7, 1309-1317. Jung, J., Zheng, M., Goldfarb, M., and Zaret, K.S. (1999). Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998-2003. Junqueira et al. (1996) Basic Histology, 8th edition. Appleton & Lange. Kaestner, K.H., Hiemisch, H., and Schutz, G. (1998). Targeted disruption of the gene encoding hepatocyte nuclear factor 3gamma results in reduced transcription of hepatocyte-specific genes. Mol Cell Biol 18, 4245-4251. Kaestner, K.H., Katz, J., Liu, Y., Drucker, D.J., and Schutz, G. (1999). Inactivation of the winged helix transcription factor HNF3alpha affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev 13, 495-504. Kaestner, K.H., Lee, K.H., Schlondorff, J., Hiemisch, H., Monaghan, A.P., and Schutz, G. (1993). Six members of the mouse forkhead gene family are developmentally regulated. Proc Natl Acad Sci U S A 90, 7628-7631. Kageyama, R. and Ohtsuka, T. (1999). The Notch-Hes pathway in mammalian neural development. Cell Res 9, 179-188. 169 Kalinichenko, V.V., Zhou, Y., Bhattacharyya, D., Kim, W., Shin, B., Bambal, K., and Costa, R.H. (2002). Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development. J Biol Chem 277, 12369-12374. Kamiya, A., Kinoshita, T., Ito, Y., Matsui, T., Morikawa, Y., Senba, E., Nakashima, K., Taga, T., Yoshida, K., Kishimoto, T., and Miyajima, A. (1999). Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J 18, 2127-2136. Kamiya, A., Kojima, N., Kinoshita, T., Sakai, Y., and Miyaijma, A. (2002). Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase. Hepatology 35, 1351-1359. Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., and Mishina, M. (2004). A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7, 133-144. Keijzer, R., van Tuyl, M., Meijers, C., Post, M., Tibboel, D., Grosveld, F., and Koutsourakis, M. (2001). The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development. Development 128, 503-511. Keng, V.W., Fujimori, K.E., Myint, Z., Tamamaki, N., Nojyo, Y., and Noguchi, T. (1998). Expression of Hex mRNA in early murine postimplantation embryo development. FEBS Lett. 426, 183-186. Keng, V.W., Yagi, H., Ikawa, M., Nagano, T., Myint, Z., Yamada, K., Tanaka, T., Sato, A., Muramatsu, I., Okabe, M., Sato, M., and Noguchi, T. (2000). Homeobox gene Hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem Biophys. Res Commun. 276, 1155-1161. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn. 203, 253-310. Kimmel, C.B., Warga, R.M., and Schilling, T.F. (1990). Origin and organization of the zebrafish fate map. Development 108, 581-594. Koch, A., Denkhaus, D., Albrecht, S., Leuschner, I., von Schweinitz, D., and Pietsch, T. (1999). Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 59, 269-273. Kodama, Y., Hijikata, M., Kageyama, R., Shimotohno, K., and Chiba, T. (2004). The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 127, 1775-1786. Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R., and Grosveld, F. (1999). The transcription factor GATA6 is essential for early extraembryonic development. Development 126, 723-732. 170 Krupczak-Hollis, K., Wang, X., Kalinichenko, V.V., Gusarova, G.A., Wang, I.C., Dennewitz, M.B., Yoder, H.M., Kiyokawa, H., Kaestner, K.H., and Costa, R.H. (2004). The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol 276, 74-88. Kuo, C.T., Morrisey, E.E., Anandappa, R., Sigrist, K., Lu, M.M., Parmacek, M.S., Soudais, C., and Leiden, J.M. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11, 1048-1060. Lai, E., Prezioso, V.R., Smith, E., Litvin, O., Costa, R.H., and Darnell, J.E., Jr. (1990). HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev 4, 1427-1436. Lai, E., Prezioso, V.R., Tao, W.F., Chen, W.S., and Darnell, J.E., Jr. (1991). Hepatocyte nuclear factor alpha belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev 5, 416-427. Lam, S.H., Wu, Y.L., Vega, V.B., Miller, L.D., Spitsbergen, J., Tong, Y., Zhan, H., Govindarajan, K.R., Lee, S., Mathavan, S., Murthy, K.R., Buhler, D.R., Liu, E.T., and Gong, Z. (2006). Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol. 24, 73-75. Latimer, A.J., Dong, X., Markov, Y., and Appel, B. (2002). Delta-Notch signaling induces hypochord development in zebrafish. Development 129, 2555-2563. Laverriere, A.C., MacNeill, C., Mueller, C., Poelmann, R.E., Burch, J.B., and Evans, T. (1994). GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269, 23177-23184. Lawson, K.A., Meneses, J.J., and Pedersen, R.A. (1986). Cell fate and cell lineage in the endoderm of the presomite mouse embryo, studied with an intracellular tracer. Dev Biol 115, 325-339. Lee, A. and Treisman, J.E. (2004). Excessive Myosin activity in mbs mutants causes photoreceptor movement out of the Drosophila eye disc epithelium. Mol Biol Cell 15, 3285-3295. Lee, C.S., Sund, N.J., Behr, R., Herrera, P.L., and Kaestner, K.H. (2005a). Foxa2 is required for the differentiation of pancreatic alpha-cells. Dev Biol 278, 484-495. Lee, C.S., Friedman, J.R., Fulmer, J.T., and Kaestner, K.H. (2005b). The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944-947. Lemaigre, F.P. (2003). Development of the biliary tract. Mech. Dev 120, 81-87. Li, H., Arber, S., Jessell, T.M., and Edlund, H. (1999). Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet. 23, 67-70. 171 Li, J., Ning, G., and Duncan, S.A. (2000). Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes Dev 14, 464-474. Li, L., Krantz, I.D., Deng, Y., Genin, A., Banta, A.B., Collins, C.C., Qi, M., Trask, B.J., Kuo, W.L., Cochran, J., Costa, T., Pierpont, M.E., Rand, E.B., Piccoli, D.A., Hood, L., and Spinner, N.B. (1997). Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 16, 243-251. Li, W.C., Yu, W.Y., Quinlan, J.M., Burke, Z.D., and Tosh, D. (2005). The molecular basis of transdifferentiation. J Cell Mol Med. 9, 569-582. Lin, S., Gaiano, N., Culp, P., Burns, J.C., Friedmann, T., Yee, J.K., and Hopkins, N. (1994). Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265, 666-669. Liu, Y.W., Gao, W., Teh, H.L., Tan, J.H., and Chan, W.K. (2003). Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebra fish interrenal primordium. Mol Cell Biol 23, 7243-7255. Lorent, K., Yeo, S.Y., Oda, T., Chandrasekharappa, S., Chitnis, A., Matthews, R.P., and Pack, M. (2004). Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development 131, 5753-5766. Martinez Barbera, J.P., Clements, M., Thomas, P., Rodriguez, T., Meloy, D., Kioussis, D., and Beddington, R.S. (2000). The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127, 2433-2445. Matsumoto, K., Yoshitomi, H., Rossant, J., and Zaret, K.S. (2001). Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559-563. Matthews, R.P., Lorent, K., and Pack, M. (2008). Transcription factor onecut3 regulates intrahepatic biliary development in zebrafish. Dev Dyn. 237, 124-131. Matthews, R.P., Lorent, K., Russo, P., and Pack, M. (2004). The zebrafish onecut gene hnf-6 functions in an evolutionarily conserved genetic pathway that regulates vertebrate biliary development. Dev Biol 274, 245-259. Matthews, R.P., Plumb-Rudewiez, N., Lorent, K., Gissen, P., Johnson, C.A., Lemaigre, F., and Pack, M. (2005). Zebrafish vps33b, an ortholog of the gene responsible for human arthrogryposis-renal dysfunction-cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development 132, 5295-5306. Mayer, A.N. and Fishman, M.C. (2003). Nil per os encodes a conserved RNA recognition motif protein required for morphogenesis and cytodifferentiation of digestive organs in zebrafish. Development 130, 3917-3928. 172 McCright, B., Gao, X., Shen, L., Lozier, J., Lan, Y., Maguire, M., Herzlinger, D., Weinmaster, G., Jiang, R., and Gridley, T. (2001). Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128, 491-502. McCright, B., Lozier, J., and Gridley, T. (2002). A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129, 1075-1082. Medlock, E.S. and Haar, J.L. (1983). The liver hemopoietic environment: I. Developing hepatocytes and their role in fetal hemopoiesis. Anat. Rec. 207, 31-41. Medvinsky, A. and Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897-906. Micsenyi, A., Tan, X., Sneddon, T., Luo, J.H., Michalopoulos, G.K., and Monga, S.P. (2004). Beta-catenin is temporally regulated during normal liver development. Gastroenterology 126, 1134-1146. Mizuno, T., Tsutsui, K., and Nishida, Y. (2002). Drosophila myosin phosphatase and its role in dorsal closure. Development 129, 1215-1223. Molkentin, J.D., Lin, Q., Duncan, S.A., and Olson, E.N. (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11, 1061-1072. Monaghan, A.P., Kaestner, K.H., Grau, E., and Schutz, G. (1993). Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119, 567-578. Morrisey, E.E., Ip, H.S., Lu, M.M., and Parmacek, M.S. (1996). GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol 177, 309-322. Morrisey, E.E., Tang, Z., Sigrist, K., Lu, M.M., Jiang, F., Ip, H.S., and Parmacek, M.S. (1998). GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12, 3579-3590. Motoyama, J., Kitajima, K., Kojima, M., Kondo, S., and Takeuchi, T. (1997). Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice. Mech. Dev 66, 27-37. Muller, A.M., Medvinsky, A., Strouboulis, J., Grosveld, F., and Dzierzak, E. (1994). Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1, 291301. 173 Mullins, M.C., Hammerschmidt, M., Haffter, P., and Nusslein-Volhard, C. (1994). Largescale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4, 189-202. Murphey, R.D. and Zon, L.I. (2006). Small molecule screening in the zebrafish. Methods 39, 255-261. Narita, N., Bielinska, M., and Wilson, D.B. (1997). Wild-type endoderm abrogates the ventral developmental defects associated with GATA-4 deficiency in the mouse. Dev Biol 189, 270-274. Nasevicius, A. and Ekker, S.C. (2000). Effective targeted gene 'knockdown' in zebrafish. Nat Genet. 26, 216-220. Ng, A.N., Jong-Curtain, T.A., Mawdsley, D.J., White, S.J., Shin, J., Appel, B., Dong, P.D., Stainier, D.Y., and Heath, J.K. (2005). Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286, 114-135. Nishina, H., Vaz, C., Billia, P., Nghiem, M., Sasaki, T., De la Pompa, J.L., Furlonger, K., Paige, C., Hui, C., Fischer, K.D., Kishimoto, H., Iwatsubo, T., Katada, T., Woodgett, J.R., and Penninger, J.M. (1999). Defective liver formation and liver cell apoptosis in mice lacking the stress signaling kinase SEK1/MKK4. Development 126, 505-516. Norton, W.H., Mangoli, M., Lele, Z., Pogoda, H.M., Diamond, B., Mercurio, S., Russell, C., Teraoka, H., Stickney, H.L., Rauch, G.J., Heisenberg, C.P., Houart, C., Schilling, T.F., Frohnhoefer, H.G., Rastegar, S., Neumann, C.J., Gardiner, R.M., Strahle, U., Geisler, R., Rees, M., Talbot, W.S., and Wilson, S.W. (2005). Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones. Development 132, 645-658. Ober, E.A., Field, H.A., and Stainier, D.Y. (2003). From endoderm formation to liver and pancreas development in zebrafish. Mech. Dev 120, 5-18. Ober, E.A., Verkade, H., Field, H.A., and Stainier, D.Y. (2006). Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442, 688-691. Oda, T., Elkahloun, A.G., Pike, B.L., Okajima, K., Krantz, I.D., Genin, A., Piccoli, D.A., Meltzer, P.S., Spinner, N.B., Collins, F.S., and Chandrasekharappa, S.C. (1997). Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 16, 235-242. Odenthal, J. and Nusslein-Volhard, C. (1998). fork head domain genes in zebrafish. Dev Genes Evol 208, 245-258. Odom, D.T., Zizlsperger, N., Gordon, D.B., Bell, G.W., Rinaldi, N.J., Murray, H.L., Volkert, T.L., Schreiber, J., Rolfe, P.A., Gifford, D.K., Fraenkel, E., Bell, G.I., and Young, R.A. (2004). Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378-1381. 174 Okamoto, R., Ito, M., Suzuki, N., Kongo, M., Moriki, N., Saito, H., Tsumura, H., Imanaka-Yoshida, K., Kimura, K., Mizoguchi, A., Hartshorne, D.J., and Nakano, T. (2005). The targeted disruption of the MYPT1 gene results in embryonic lethality. Transgenic Res 14, 337-340. Oliver, G., Sosa-Pineda, B., Geisendorf, S., Spana, E.P., Doe, C.Q., and Gruss, P. (1993). Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev 44, 3-16. Pack, M., Solnica-Krezel, L., Malicki, J., Neuhauss, S.C., Schier, A.F., Stemple, D.L., Driever, W., and Fishman, M.C. (1996). Mutations affecting development of zebrafish digestive organs. Development 123, 321-328. Pan, X., Wan, H., Chia, W., Tong, Y., and Gong, Z. (2005). Demonstration of sitedirected recombination in transgenic zebrafish using the Cre/loxP system. Transgenic Res 14, 217-223. Parviz, F., Matullo, C., Garrison, W.D., Savatski, L., Adamson, J.W., Ning, G., Kaestner, K.H., Rossi, J.M., Zaret, K.S., and Duncan, S.A. (2003). Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet. 34, 292-296. Patton, E.E. and Zon, L.I. (2001). The art and design of genetic screens: zebrafish. Nat Rev Genet. 2, 956-966. Piekny, A.J., Johnson, J.L., Cham, G.D., and Mains, P.E. (2003). The Caenorhabditis elegans nonmuscle myosin genes nmy-1 and nmy-2 function as redundant components of the let-502/Rho-binding kinase and mel-11/myosin phosphatase pathway during embryonic morphogenesis. Development 130, 5695-5704. Pontoglio, M., Barra, J., Hadchouel, M., Doyen, A., Kress, C., Bach, J.P., Babinet, C., and Yaniv, M. (1996). Hepatocyte nuclear factor inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 84, 575-585. Postlethwait, J.H., Johnson, S.L., Midson, C.N., Talbot, W.S., Gates, M., Ballinger, E.W., Africa, D., Andrews, R., Carl, T., Eisen, J.S., and . (1994). A genetic linkage map for the zebrafish. Science 264, 699-703. Pyati, U.J., Cooper, M.S., Davidson, A.J., Nechiporuk, A., and Kimelman, D. (2006). Sustained Bmp signaling is essential for cloaca development in zebrafish. Development 133, 2275-2284. Pyati, U.J., Webb, A.E., and Kimelman, D. (2005). Transgenic zebrafish reveal stagespecific roles for Bmp signaling in ventral and posterior mesoderm development. Development 132, 2333-2343. 175 Rastegar, S., Albert, S., Le, R., I, Fischer, N., Blader, P., Muller, F., and Strahle, U. (2002). A floor plate enhancer of the zebrafish netrin1 gene requires Cyclops (Nodal) signalling and the winged helix transcription factor FoxA2. Dev Biol 252, 1-14. Reimold, A.M., Etkin, A., Clauss, I., Perkins, A., Friend, D.S., Zhang, J., Horton, H.F., Scott, A., Orkin, S.H., Byrne, M.C., Grusby, M.J., and Glimcher, L.H. (2000). An essential role in liver development for transcription factor XBP-1. Genes Dev 14, 152157. Reiter, J.F., Alexander, J., Rodaway, A., Yelon, D., Patient, R., Holder, N., and Stainier, D.Y. (1999). Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 13, 2983-2995. Reiter, J.F., Kikuchi, Y., and Stainier, D.Y. (2001). Multiple roles for Gata5 in zebrafish endoderm formation. Development 128, 125-135. Rossi, J.M., Dunn, N.R., Hogan, B.L., and Zaret, K.S. (2001). Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15, 1998-2009. Roy, S., Qiao, T., Wolff, C., and Ingham, P.W. (2001). Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr Biol 11, 1358-1363. Rudolph, D., Yeh, W.C., Wakeham, A., Rudolph, B., Nallainathan, D., Potter, J., Elia, A.J., and Mak, T.W. (2000). Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev 14, 854-862. Sadler, K.C., Amsterdam, A., Soroka, C., Boyer, J., and Hopkins, N. (2005). A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132, 3561-3572. Sadler, K.C., Krahn, K.N., Gaur, N.A., and Ukomadu, C. (2007). Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci U S A 104, 1570-1575. Sasaki, H. and Hogan, B.L. (1993). Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118, 47-59. Schmidt, C., Bladt, F., Goedecke, S., Brinkmann, V., Zschiesche, W., Sharpe, M., Gherardi, E., and Birchmeier, C. (1995). Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699-702. Schulte-Merker, S., Hammerschmidt, M., Beuchle, D., Cho, K.W., De Robertis, E.M., and Nusslein-Volhard, C. (1994). Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120, 843-852. 176 Seiliez, I., Thisse, B., and Thisse, C. (2006). FoxA3 and goosecoid promote anterior neural fate through inhibition of Wnt8a activity before the onset of gastrulation. Dev Biol 290, 152-163. Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.F., Breitman, M.L., and Schuh, A.C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1deficient mice. Nature 376, 62-66. Shepard, J.L., Amatruda, J.F., Stern, H.M., Subramanian, A., Finkelstein, D., Ziai, J., Finley, K.R., Pfaff, K.L., Hersey, C., Zhou, Y., Barut, B., Freedman, M., Lee, C., Spitsbergen, J., Neuberg, D., Weber, G., Golub, T.R., Glickman, J.N., Kutok, J.L., Aster, J.C., and Zon, L.I. (2005). A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc Natl Acad Sci U S A 102, 13194-13199. Shih, D.Q., Navas, M.A., Kuwajima, S., Duncan, S.A., and Stoffel, M. (1999). Impaired glucose homeostasis and neonatal mortality in hepatocyte nuclear factor 3alpha-deficient mice. Proc Natl Acad Sci U S A 96, 10152-10157. Shim, E.Y., Woodcock, C., and Zaret, K.S. (1998). Nucleosome positioning by the winged helix transcription factor HNF3. Genes Dev 12, 5-10. Shimoda, N., Knapik, E.W., Ziniti, J., Sim, C., Yamada, E., Kaplan, S., Jackson, D., de Sauvage, F., Jacob, H., and Fishman, M.C. (1999). Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219-232. Shin, D., Shin, C.H., Tucker, J., Ober, E.A., Rentzsch, F., Poss, K.D., Hammerschmidt, M., Mullins, M.C., and Stainier, D.Y. (2007). Bmp and Fgf signaling are essential for liver specification in zebrafish. Development 134, 2041-2050. Shiojiri, N. (1984). The origin of intrahepatic bile duct cells in the mouse. J Embryol. Exp Morphol. 79, 25-39. Shiojiri, N. and Katayama, H. (1987). Secondary joining of the bile ducts during the hepatogenesis of the mouse embryo. Anat. Embryol. (Berl) 177, 153-163. Shiojiri, N. and Koike, T. (1997). Differentiation of biliary epithelial cells from the mouse hepatic endodermal cells cultured in vitro. Tohoku J Exp Med. 181, 1-8. Shiojiri, N., Lemire, J.M., and Fausto, N. (1991). Cell lineages and oval cell progenitors in rat liver development. Cancer Res 51, 2611-2620. Solnica-Krezel, L., Schier, A.F., and Driever, W. (1994). Efficient recovery of ENUinduced mutations from the zebrafish germline. Genetics 136, 1401-1420. Sosa-Pineda, B., Wigle, J.T., and Oliver, G. (2000). Hepatocyte migration during liver development requires Prox1. Nat Genet. 25, 254-255. 177 Sprague, J., Doerry, E., Douglas, S., and Westerfield, M. (2001). The Zebrafish Information Network (ZFIN): a resource for genetic, genomic and developmental research. Nucleic Acids Res 29, 87-90. Stafford, D. and Prince, V.E. (2002). Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol 12, 1215-1220. Stafford, D., White, R.J., Kinkel, M.D., Linville, A., Schilling, T.F., and Prince, V.E. (2006). Retinoids signal directly to zebrafish endoderm to specify insulin-expressing beta-cells. Development 133, 949-956. Stainier, D.Y. (2001). Zebrafish genetics and vertebrate heart formation. Nat Rev Genet. 2, 39-48. Stemple, D.L. (2004). TILLING--a high-throughput harvest for functional genomics. Nat Rev Genet. 5, 145-150. Stuart, G.W., McMurray, J.V., and Westerfield, M. (1988). Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103, 403-412. Sumazaki, R., Shiojiri, N., Isoyama, S., Masu, M., Keino-Masu, K., Osawa, M., Nakauchi, H., Kageyama, R., and Matsui, A. (2004). Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet. 36, 83-87. Summerton, J. and Weller, D. (1997). Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7, 187-195. Sun, Z. and Hopkins, N. (2001). vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 15, 3217-3229. Suzuki, A., Iwama, A., Miyashita, H., Nakauchi, H., and Taniguchi, H. (2003). Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. Development 130, 2513-2524. Suzuki, A., Zheng, Y.W., Kaneko, S., Onodera, M., Fukao, K., Nakauchi, H., and Taniguchi, H. (2002). Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J Cell Biol 156, 173-184. Suzuki, E., Evans, T., Lowry, J., Truong, L., Bell, D.W., Testa, J.R., and Walsh, K. (1996). The human GATA-6 gene: structure, chromosomal location, and regulation of expression by tissue-specific and mitogen-responsive signals. Genomics 38, 283-290. Talbot, W.S. and Schier, A.F. (1999). Positional cloning of mutated zebrafish genes. Methods Cell Biol 60, 259-286. 178 Talbot, W.S., Trevarrow, B., Halpern, M.E., Melby, A.E., Farr, G., Postlethwait, J.H., Jowett, T., Kimmel, C.B., and Kimelman, D. (1995). A homeobox gene essential for zebrafish notochord development. Nature 378, 150-157. Tan, C., Stronach, B., and Perrimon, N. (2003). Roles of myosin phosphatase during Drosophila development. Development 130, 671-681. Tanaka, M., Fuentes, M.E., Yamaguchi, K., Durnin, M.H., Dalrymple, S.A., Hardy, K.L., and Goeddel, D.V. (1999). Embryonic lethality, liver degeneration, and impaired NFkappa B activation in IKK-beta-deficient mice. Immunity. 10, 421-429. Terrak, M., Kerff, F., Langsetmo, K., Tao, T., and Dominguez, R. (2004). Structural basis of protein phosphatase regulation. Nature 429, 780-784. Thisse, C. and Zon, L.I. (2002). Organogenesis--heart and blood formation from the zebrafish point of view. Science 295, 457-462. Thomas, P.Q., Brown, A., and Beddington, R.S. (1998). Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125, 85-94. Trede, N.S., Zapata, A., and Zon, L.I. (2001). Fishing for lymphoid genes. Trends Immunol 22, 302-307. Tremblay, K.D. and Zaret, K.S. (2005). Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol 280, 87-99. Uehara, Y., Minowa, O., Mori, C., Shiota, K., Kuno, J., Noda, T., and Kitamura, N. (1995). Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702-705. van Eeden, F.J., Granato, M., Odenthal, J., and Haffter, P. (1999). Developmental mutant screens in the zebrafish. Methods Cell Biol 60, 21-41. Vassy, J., Kraemer, M., Chalumeau, M.T., and Foucrier, J. (1988). Development of the fetal rat liver: ultrastructural and stereological study of hepatocytes. Cell Differ. 24, 9-24. Wallace, K.N. and Pack, M. (2003). Unique and conserved aspects of gut development in zebrafish. Dev Biol 255, 12-29. Wallace, K.N., Yusuff, S., Sonntag, J.M., Chin, A.J., and Pack, M. (2001). Zebrafish hhex regulates liver development and digestive organ chirality. Genesis 30, 141-143. Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007). Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proc Natl Acad Sci U S A 104, 12428-12433. 179 Warga, R.M. and Nusslein-Volhard, C. (1999). Origin and development of the zebrafish endoderm. Development 126, 827-838. Watt, A.J., Zhao, R., Li, J., and Duncan, S.A. (2007). Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC. Dev Biol 7, 37. Wei, Y., Fabre, M., Branchereau, S., Gauthier, F., Perilongo, G., and Buendia, M.A. (2000). Activation of beta-catenin in epithelial and mesenchymal hepatoblastomas. Oncogene 19, 498-504. Weinstein, D.C., Altaba, A., Chen, W.S., Hoodless, P., Prezioso, V.R., Jessell, T.M., and Darnell, J.E., Jr. (1994). The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78, 575-588. Weinstein, M., Monga, S.P., Liu, Y., Brodie, S.G., Tang, Y., Li, C., Mishra, L., and Deng, C.X. (2001). Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on beta1-integrin to promote normal liver development. Mol Cell Biol 21, 5122-5131. Weiser, D.C., Pyati, U.J., and Kimelman, D. (2007). Gravin regulates mesodermal cell behavior changes required for axis elongation during zebrafish gastrulation. Genes Dev 21, 1559-1571. Wells, J.M. and Melton, D.A. (1999). Vertebrate endoderm development. Annu Rev Cell Dev Biol 15, 393-410. Westerfield, M. (1989). The zebrafish book: A guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon Press, Eugene, OR. Wienholds, E., Schulte-Merker, S., Walderich, B., and Plasterk, R.H. (2002). Targetselected inactivation of the zebrafish rag1 gene. Science 297, 99-102. Wienholds, E., van Eeden, F., Kosters, M., Mudde, J., Plasterk, R.H., and Cuppen, E. (2003). Efficient target-selected mutagenesis in zebrafish. Genome Res 13, 2700-2707. Wissmann, A., Ingles, J., and Mains, P.E. (1999). The Caenorhabditis elegans mel-11 myosin phosphatase regulatory subunit affects tissue contraction in the somatic gonad and the embryonic epidermis and genetically interacts with the Rac signaling pathway. Dev Biol 209, 111-127. Xia, D., Stull, J.T., and Kamm, K.E. (2005). Myosin phosphatase targeting subunit affects cell migration by regulating myosin phosphorylation and actin assembly. Exp Cell Res 304, 506-517. Yamada, Y., Kirillova, I., Peschon, J.J., and Fausto, N. (1997). Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci U S A 94, 1441-1446. 180 Ye, H., Kelly, T.F., Samadani, U., Lim, L., Rubio, S., Overdier, D.G., Roebuck, K.A., and Costa, R.H. (1997). Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol 17, 1626-1641. Yong, J., Tan, I., Lim, L., and Leung, T. (2006). Phosphorylation of myosin phosphatase targeting subunit (MYPT3) and regulation of protein phosphatase by protein kinase A. J Biol Chem 281, 31202-31211. Zaret, K.S. (1996). Molecular genetics of early liver development. Annu Rev Physiol 58, 231-251. Zaret, K.S. (2001). Hepatocyte differentiation: from the endoderm and beyond. Curr Opin Genet. Dev 11, 568-574. Zaret, K.S. (2002). Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet. 3, 499-512. Zhang, J., Talbot, W.S., and Schier, A.F. (1998). Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241-251. Zhao, R. and Duncan, S.A. (2005). Embryonic development of the liver. Hepatology 41, 956-967. Zhao, R., Watt, A.J., Li, J., Luebke-Wheeler, J., Morrisey, E.E., and Duncan, S.A. (2005). GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol 25, 2622-2631. Zon, L.I. (1999). Zebrafish: a new model for human disease. Genome Res 9, 99-100. Zon, L.I. and Peterson, R.T. (2005). In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 4, 35-44. 181 [...]... functions of the adult liver, the fetal liver serves as a site for haematopoiesis by mid-gestation Though the liver has diverse functions, only a small number of cell types is found in liver, which makes the liver as an ideal organ for studies of organogenesis Approximately 60% of cells in the adult liver are hepatocytes and the remaining cells are cholangiocytes (bile duct cells) , Kuppfer cells, stellate cells. ..List of Tables Table 2-1 List of methods used for genotyping 70 Table 2-2 List of primer pairs used in this project 71 Table 2-3 Preparation of denaturing agarose gel for northern blot analysis 72 Table 2-4 Preparation of SDS PAGE gel 72 Table 2-5 The sequences of gene specific morpholinos 72 Table 2-6 List of constructs for WISH RNA probes 73 Table 2-7 Duration of Proteinase K permeabilization for. .. Kimelman, Zilong Wen, and Jinrong Peng (2008); Mypt1- mediated spatial positioning of Bmp 2producing cells is essential for liver organogenesis, Development, 135 (19), 3209-3218 Participation at conference 1 Joint EMBO-IMA Workshop: Fish as model organisms in the genomic era, Singapore, 2001 2 3rd European Conference on Zebrafish and Medaka Genetics and Development, Paris, France, 2003 3 International Stem cell... cells and some endothelial cells Since liver plays such critic roles, it is of great importance to study liver development, not only for basic research, but also for clinic application 1.2 Liver organogenesis 1.2.1 Liver is an endoderm derived organ The endoderm is one of the three germ layers established during gastrulation In mouse embryo, gastrulation starts with the formation of the primitive streak... mutation disrupts LPM organization and causes posterior shift of the liver primordium 133 Figure 5-10 Bmp Signaling Is Essential for Liver Organogenesis 138 Figure 5-11 The mypt1sq181 mutation alters the spatial alignment between the liver primordium and the two stripes of LPM expressing Bmp2a 142 Figure 5-12 The has mutant gives rise to two smaller liver 145 Figure 5-13 Mutant hepatoblasts are impaired in... the failure of the formation of endothelial cells and blood vessels (Shalaby et al., 1995), 17 moreover, the formation of liver bud in flk1-/- embryo is blocked after the hepatic specification, indicating that endothelial cells are crucial for the early liver bud formation prior to vascular function, although the molecular mechanism underlying is unclear (Matsumoto et al., 2001) Besides the essential. .. invade STM to form a liver bud (Bort et al., 2004) Further investigation showed the failure of liver budding in hex-/- embryo is due to the disruption of Hex-dependent cell morphological change from columnar epithelia to pseudostratified epithelia which is necessary for hepatoblasts to undergo migration and 18 A Initiation of the liver bud B The liver bud formation Figure 1-6 The liver bud formation (A)... initiate the liver bud formation (B) The liver bud formation at 18-25 somite stage Liver budding morphogenesis is marked by the formation of the rostral diverticulum of the gut, remodelling of the extracellular matrix around the hepatoblasts and of E-cadherin-based connections between the cells, and proliferation and migration into the surrounding STM (beige) During this stage primitive endothelial cells. .. morphologically distinguishable structure of liver, an outgrowth named the primary liver bud, appears in the ventral floor of the foregut by E8.5 to E9.0 (10-12 somites) as a result of the proliferation of the hepatic endoderm, referred as hepatoblasts (Douarin, 1975; Gualdi et al., 1996) Cell linage tracing shows that two distinct populations of endoderm cells, lateral and medial, arising from three spatially... plates of hepatocytes, one or two cells thick, separated by capillaries, the liver sinusoids (Figure 1-3A, B) Sinusoids are vascular channels lined with highly fenestrated endothelial cells Between the sinusoids and the hepatocytes is a subendothelial space called the space of Disse Several types of cells are residents in the sinusoids or the space of Disse: Kupffer cells, stellate cells (Ito cells) . of mypt1 gene phenocopies the liverless phenotype in sq181 112 4.3 Discussions 112 Charpter 5 Mypt1- mediated spatial positioning of Bmp2- producing cells is essential for liver organogenesis. Mypt1- Mediated Spatial Positioning of Bmp2- Producing Cells Is Essential for Liver Organogenesis HUANG HONG HUI NATIONAL UNIVERSITY OF SINGAPORE. Peng (2008); Mypt1- mediated spatial positioning of Bmp2- producing cells is essential for liver organogenesis, Development, 135 (19), 3209-3218. 1 Chapter 1 Introduction The liver, the

Ngày đăng: 11/09/2015, 16:06

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan