Human embryonic stem cell derived neural stem cells derivation, differentiation and MicroRNA regulation

146 511 0
Human embryonic stem cell derived neural stem cells derivation, differentiation and MicroRNA regulation

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

HUMAN EMBRYONIC STEM CELL-DERIVED NEURAL STEM CELLS: DERIVATION, DIFFERENTIATION AND MICRORNA REGULATION KWANG WEI XIN TIMOTHY NATIONAL UNIVERSITY OF SINGAPORE 2013 HUMAN EMBRYONIC STEM CELL-DERIVED NEURAL STEM CELLS: DERIVATION, DIFFERENTIATION AND MICRORNA REGULATION KWANG WEI XIN TIMOTHY (B.Sc (Hons), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NUS GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES AND ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2013 Declara ation declare that this thesis is my origin work and it has bee written by me in nal d en y I hereby d its entirety I have duly acknowled y dged all the sources of informatio n which hav been e f ve used in the thesis e This thesis has also not been su s n ubmitted for any degree in any uniiversity prev r e viously _ Kw wang Wei Xin Timothy X 24 Januar 2013 ry i Acknowledgements Firstly, I would like to express my gratitude to my supervisor, A/P Wang Shu, for his support and guidance through my PhD stint His encouragement, patience and instruction whilst allowing me to conduct my research independently has made this journey a valuable experience I thank my fellow lab-mates, past and present, for their assistance in my research work and for making this journey a less arduous and more enjoyable one; Mohammad Shahbazi, Dang Hoang Lam, Yovita Ida Purwanti, Jiakai Lin, Chrishan Ramachandra, Yukti Choudhury, Detu Zhu, Kai Ye, Esther Lee, Ghayathri Balasundaram, Poonam Balani, Seong Loong Lo, Chunxiao Wu, Jieming Zeng, and Ying Zhao I would like to express my sincere thanks to my family, especially my parents for their unceasing support and provision in all my endeavors I am also grateful to all my friends for their prayers and encouragement through this season I would like to thank the Institute of Bioengineering and Nanotechnology (IBN) for the resources and support granted to me to carry out my research work I also thank NUS Graduate School of Science and Engineering (NGS) for this opportunity to a PhD Additionally, I would also like to appreciate the NGS administrative staff for ever being ready to address my queries and to alleviate the administrative challenges that I may have encountered Most of all I would like to thank God for His abundant favor “He makes me lie down in green pastures He leads me beside still waters.” – Psalm 23:2 ii Table of Contents Summary vi  List of Tables viii  List of Figures ix  List of Abbreviations xi  Chapter 1: Introduction 1  1.1  Neural stem cells 1  1.1.1  A brief history of NSCs 1  1.1.2  The “definition” of an NSC 2  1.1.3  NSCs in development and regenerative medicine 4  1.1.4  NSCs in cancer therapy 6  1.1.5  Sources of human NSCs 8  1.1.5.1 1.1.5.2 1.2  Fetal and adult NSCs Pluripotent stem cell-derived NSCs Factors regulating self-renewal and differentiation of NSCs 11  1.2.1  1.2.1.1 1.2.1.2 Transcription factors 12  PAX6 13 SOX2 15 1.2.2  Extracellular factors 19  1.2.3  Epigenetic factors 21  1.3  MicroRNAs 22  1.3.1  Overview 22  1.3.2  Biogenesis 23  1.3.3  Mechanism of action 26  1.3.3.1 1.3.3.2 1.3.4  1.4  Target recognition 26 Target gene silencing 27 miRNAs in NSC self-renewal and fate commitment 30  Aims and objectives 32  Chapter 2: Materials and Methods 35  iii 2.1  Cell culture 35  2.2  Generation of NSCs from hESCs 35  2.3  Generation of GPCs from hESC-derived NSCs 37  2.4  Terminal differentiation of hESC-derived NSCs into glial cells and neurons 38  2.5  Immunocytochemistry 38  2.6  RNA isolation 39  2.7  Reverse transcriptase-PCR and Quantitative RT-PCR of mRNA 39  2.8  Flow cytometry 41  2.9  Western blot analysis 41  2.10  In vitro migration assay 43  2.11  MicroRNA microarray 43  2.12  MicroRNA target prediction 44  2.13  Quantitative RT-PCR of miRNA 45  2.14  miRNA mimics, miRNA expression vectors and transfection 46  2.15  Luciferase reporter assay 47  2.16  Baculovirus preparation and transduction 49  2.17  Statistical analysis 51  Chapter 3: Derivation of neural progenitors from hESCs 52  3.1  Introduction and aims 52  3.1.1  Deriving NSCs 52  3.1.2  Deriving GPCs 53  3.2  Results 55  3.2.1  NSCs derived from hESCs via neurosphere culture display neuroectodermal identity 55  3.2.2  NSCs derived from hESCs via neural rosette formation display neuroectodermal identity 59  iv 3.2.3  Downregulation of early neuroectodermal genes and upregulation of GPC markers during differentiation from NSCs to GPCs 61  3.2.4  In vitro glioma-tropic properties of genetically modified hESC-derived NSCs and GPCs 67  3.3  Discussion 73  3.3.1  hESC-derived NSCs 73  3.3.2  hESC-derived GPCs 75  3.3.3  Future work 78  Chapter 4: Regulation of neuroectodermal genes by miRNA 80  4.1  Introduction and aims 80  4.2  Results 82  4.2.1  miR-22, -21, -221 and -145 are upregulated in GPCs compared to NSCs and are predicted to target PAX6 mRNA 82  4.2.2  PAX6 is a prospective target of miR-22 and miR-221 88  4.2.3  miR-145 is predicted to target SOX2 94  4.2.4  SOX2 is downregulated by miR-145 in NSCs 95  4.3  Discussion 105  4.3.1  Future work 108  Chapter 5: Summary and conclusion 110  References 113  Appendices 131    v Summary Over the last two decades there is burgeoning interest in neural stem/progenitor cells (NSCs) for both developmental research and cell-based therapeutic applications Although functional properties of human NSCs, in terms of their tumor-homing, in vivo regenerative and in vitro differentiation capacities, have been extensively studied, the molecular mechanisms underlying their self-renewal and differentiation are incompletely, if not poorly, understood Human embryonic stem cells (hESCs) offer a valuable source of NSCs to elucidate these mechanisms Here, we derived NSCs from hESCs and further differentiated these hESC-derived NSCs into NG2+ glial progenitor cells (GPCs) PAX6 and SOX2 are two transcription factors that characterize NSCs, and function as key determinants of the human neuroectodermal fate that drive neurogenesis or self-renewal, respectively Accordingly, we observed the downregulation of PAX6 and SOX2 expression in hESC-derived NSCs upon differentiation into GPCs microRNAs (miRNAs) are negative regulators of gene expression that have reportedly been implicated in NSC self-renewal and fate commitment, and thus are plausibly involved in the downregulation of PAX6 and SOX2 in NSCs during differentiation towards the glial lineage Utilizing miRNA microarrays, we have identified four miRNAs, miR-21, -22, -145 and -221, to be upregulated in GPCs compared with NSCs, among which miR-22 and miR-221 were demonstrated to be putative PAX6-targeting miRNAs The ectopic expression of miR145 by baculoviral vectors repressed SOX2 protein expression in human NSCs, while inhibition of miR-145 using baculoviral decoy vectors induced the opposite Thus, this study extends upon previous findings that miR-145 regulates SOX2 expression in hESCs and glioma cells, and indicates that miR-145 modulates the transition from multipotency to fate commitment in NSCs Together, this study demonstrates a facile approach to derive GPCs from NSCs and uncovers a vi mechanistic role of miRNAs in regulating self-renewal and lineage specification in human NSCs by possibly acting on key fate determining transcription factors vii List of Tables Table 2.1 List of primers used in RT-PCR and qRT-PCR of mRNA 40  Table 2.2 List of forward primers used in qRT-PCR of miRNA 45  Table 2.3 List of primers used for amplifying fragments of PAX6 3’ UTR 48  Table 4.1 miRNAs identified by miRNA microarray analysis with increased expression during differentiation towards GPC 84  Table 4.2 RNA22 analysis of predicted target sites in PAX6 transcript for miRNAs identified by microarray analysis 85  Table 4.3 Predicted target sites in SOX2 transcript for miR-21, -22, -221 and -145 94    viii He, L., and Hannon, G.J (2004) MicroRNAs: small RNAs with a big role in gene regulation Nature reviews Genetics 5, 522-531 Heins, N., Malatesta, P., Cecconi, F., Nakafuku, M., Tucker, K.L., Hack, M.A., Chapouton, P., Barde, Y.-A., and Götz, M (2002) Glial cells generate neurons: the role of the transcription factor Pax6 Nature neuroscience 5, 308-315 Hirabayashi, Y., and Gotoh, Y (2010) Epigenetic control of neural precursor cell fate during development Nat Rev Neurosci 11, 377-388 His, W (1874) Unsere Koă rperform und das physiologische Problem ihrer Entstehung: Briefe an einen befreundeten Naturforscher (Leipzig: F.C.W Vogel) His, W (1904) Die Entwicklung des menschlichen Gehirns wahrend der ersten Monate (Leipzig: Hirzel) Hitchman, R.B., Siaterli, E.A., Nixon, C.P., and King, L.A (2007) Quantitative realtime PCR for rapid and accurate titration of recombinant baculovirus particles Biotechnology and bioengineering 96, 810-814 Hotta, A., Cheung, A.Y., Farra, N., Vijayaragavan, K., Seguin, C.A., Draper, J.S., Pasceri, P., Maksakova, I.A., Mager, D.L., Rossant, J., et al (2009) Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency Nat Methods 6, 370-376 Hu, Y.C (2006) Baculovirus vectors for gene therapy Adv Virus Res 68, 287-320 Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., and Melton, D.A (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds Nature biotechnology 26, 795797 Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, P.D (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA Science 293, 834-838 Israel, M.A., Yuan, S.H., Bardy, C., Reyna, S.M., Mu, Y., Herrera, C., Hefferan, M.P., Van Gorp, S., Nazor, K.L., Boscolo, F.S., et al (2012) Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells Nature 482, 216-220 Ito, S., Natsume, A., Shimato, S., Ohno, M., Kato, T., Chansakul, P., Wakabayashi, T., and Kim, S.U (2010) Human neural stem cells transduced with IFN-beta and cytosine deaminase genes intensify bystander effect in experimental glioma Cancer gene therapy 17, 299-306 Itsykson, P., Ilouz, N., Turetsky, T., Goldstein, R.S., Pera, M.F., Fishbein, I., Segal, M., and Reubinoff, B.E (2005) Derivation of neural precursors from human embryonic stem cells in the presence of noggin Molecular and cellular neurosciences 30, 24-36 Jensen, J.B., and Parmar, M (2006) Strengths and limitations of the neurosphere culture system Molecular neurobiology 34, 153-161 Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., and Greenberg, D.A (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo Proceedings of the National Academy of Sciences of the United States of America 99, 11946-11950 Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B (2006) MicroRNAS and their regulatory roles in plants Annual review of plant biology 57, 19-53 Jordan, T., Hanson, I., Zaletayev, D., Hodgson, S., Prosser, J., Seawright, A., Hastie, N., and van Heyningen, V (1992) The human PAX6 gene is mutated in two patients with aniridia Nature genetics 1, 328-332 Kageyama, R., Ohtsuka, T., Hatakeyama, J., and Ohsawa, R (2005) Roles of bHLH genes in neural stem cell differentiation Experimental cell research 306, 343348 118 Kallur, T., Gisler, R., Lindvall, O., and Kokaia, Z (2008) Pax6 promotes neurogenesis in human neural stem cells Molecular and cellular neurosciences 38, 616-628 Kalyani, A., Hobson, K., and Rao, M.S (1997) Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis Developmental biology 186, 202-223 Kamachi, Y., Uchikawa, M., Tanouchi, A., Sekido, R., and Kondoh, H (2001) Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development Genes & development 15, 1272-1286 Kaneko, Y., Sakakibara, S., Imai, T., Suzuki, A., Nakamura, Y., Sawamoto, K., Ogawa, Y., Toyama, Y., Miyata, T., and Okano, H (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells Developmental neuroscience 22, 139-153 Kang, S.-M., Cho, M.S., Seo, H., Yoon, C.J., Oh, S.K., Choi, Y.M., and Kim, D.-W (2007) Efficient induction of oligodendrocytes from human embryonic stem cells Stem cells (Dayton, Ohio) 25, 419-424 Kaplan, M.S., and Hinds, J.W (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs Science 197, 1092-1094 Keirstead, H.S., Nistor, G., Bernal, G., Totoiu, M., Cloutier, F., Sharp, K., and Steward, O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 4694-4705 Kelberman, D., Rizzoti, K., Avilion, A., Bitner-Glindzicz, M., Cianfarani, S., Collins, J., Chong, W.K., Kirk, J.M., Achermann, J.C., Ross, R., et al (2006) Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamopituitary-gonadal axis in mice and humans The Journal of clinical investigation 116, 2442-2455 Kelly, S., Bliss, T.M., Shah, A.K., Sun, G.H., Ma, M., Foo, W.C., Masel, J., Yenari, M.A., Weissman, I.L., Uchida, N., et al (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex Proceedings of the National Academy of Sciences of the United States of America 101, 11839-11844 Kerr, D.A., Lladó, J., Shamblott, M.J., Maragakis, N.J., Irani, D.N., Crawford, T.O., Krishnan, C., Dike, S., Gearhart, J.D., and Rothstein, J.D (2003) Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 5131-5140 Khvorova, A., Reynolds, A., and Jayasena, S.D (2003) Functional siRNAs and miRNAs exhibit strand bias Cell 115, 209-216 Kim, J.-H., Auerbach, J.M., Rodríguez-Gómez, J.A., Velasco, I., Gavin, D., Lumelsky, N., Lee, S.-H., Nguyen, J., Sánchez-Pernaute, R., Bankiewicz, K., et al (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease Nature 418, 50-56 Kim, J., and Lauderdale, J.D (2006) Analysis of Pax6 expression using a BAC transgene reveals the presence of a paired-less isoform of Pax6 in the eye and olfactory bulb Developmental biology 292, 486-505 Kim, K.S., Lee, H.J., Jeong, H.S., Li, J., Teng, Y.D., Sidman, R.L., Snyder, E.Y., and Kim, S.U (2011) Self-renewal induced efficiently, safely, and effective therapeutically with one regulatable gene in a human somatic progenitor cell Proceedings of the National Academy of Sciences of the United States of America 108, 4876-4881 Kim, S.U (2011) Neural stem cell-based gene therapy for brain tumors Stem cell reviews 7, 130-140 119 Kishi, M., Mizuseki, K., Sasai, N., Yamazaki, H., Shiota, K., Nakanishi, S., and Sasai, Y (2000) Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm Development 127, 791-800 Kishi, N., and Macklis, J.D (2004) MECP2 is progressively expressed in postmigratory neurons and is involved in neuronal maturation rather than cell fate decisions Molecular and cellular neurosciences 27, 306-321 Kondo, T., and Raff, M (2004) Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells Genes & development 18, 2963-2972 Kopp, J.L., Ormsbee, B.D., Desler, M., and Rizzino, A (2008) Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells Stem cells 26, 903-911 Kordower, J.H., Freeman, T.B., Snow, B.J., Vingerhoets, F.J., Mufson, E.J., Sanberg, P.R., Hauser, R.A., Smith, D.A., Nauert, G.M., and Perl, D.P (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease The New England journal of medicine 332, 1118-1124 Kost, T.A., Condreay, J.P., and Jarvis, D.L (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells Nature biotechnology 23, 567-575 Kozmik, Z., Czerny, T., and Busslinger, M (1997) Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8 The EMBO journal 16, 6793-6803 Kozomara, A., and Griffiths-Jones, S (2011) miRBase: integrating microRNA annotation and deep-sequencing data Nucleic acids research 39, D152-157 Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., et al (2005) Combinatorial microRNA target predictions Nature genetics 37, 495-500 Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S (2003) A microRNA array reveals extensive regulation of microRNAs during brain development Rna 9, 1274-1281 Krichevsky, A.M., Sonntag, K.C., Isacson, O., and Kosik, K.S (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis Stem cells 24, 857-864 Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T (2002) Identification of tissue-specific microRNAs from mouse Current biology : CB 12, 735-739 Lal, A., Navarro, F., Maher, C.A., Maliszewski, L.E., Yan, N., O'Day, E., Chowdhury, D., Dykxhoorn, D.M., Tsai, P., Hofmann, O., et al (2009) miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements Molecular cell 35, 610-625 Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al (2001) Initial sequencing and analysis of the human genome Nature 409, 860-921 Lee, H.J., Kim, K.S., Park, I.H., and Kim, S.U (2007) Human neural stem cells overexpressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model PloS one 2, e156 Lee, R.C., Feinbaum, R.L., and Ambros, V (1993) The C elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 Cell 75, 843-854 Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al (2003) The nuclear RNase III Drosha initiates microRNA processing Nature 425, 415-419 120 Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N (2004) MicroRNA genes are transcribed by RNA polymerase II EMBO J 23, 40514060 Lei, L., Sonabend, A.M., Guarnieri, P., Soderquist, C., Ludwig, T., Rosenfeld, S., Bruce, J.N., and Canoll, P (2011) Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype PloS one 6, e20041 Lendahl, U., Zimmerman, L.B., and McKay, R.D (1990) CNS stem cells express a new class of intermediate filament protein Cell 60, 585-595 Levesque, M.F., Neuman, T., and Rezak, M (2009) Therapeutic microinjection of autologous adult human neural stem cells and differentiated neurons for Parkinson's disease: five-year post-operative outcome The Open Stem Cell Journal 1, 20-29 Li, J., Wang, Y., Yu, W., Chen, J., and Luo, J (2011) Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance Biochemical and biophysical research communications 406, 70-73 Lillien, L (1995) Changes in retinal cell fate induced by overexpression of EGF receptor Nature 377, 158-162 Lindvall, O (1997) Neural transplantation: a hope for patients with Parkinson's disease Neuroreport 8, iii-x Lindvall, O., Sawle, G., Widner, H., Rothwell, J.C., Björklund, A., Brooks, D., Brundin, P., Frackowiak, R., Marsden, C.D., and Odin, P (1994) Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease Annals of neurology 35, 172-180 Liu, C., Teng, Z.Q., Santistevan, N.J., Szulwach, K.E., Guo, W., Jin, P., and Zhao, X (2010) Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation Cell stem cell 6, 433-444 Livak, K.J., and Schmittgen, T.D (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods 25, 402-408 Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T.C., and Wernig, M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells Proceedings of the National Academy of Sciences of the United States of America 109, 2527-2532 Lytle, J.R., Yario, T.A., and Steitz, J.A (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR Proceedings of the National Academy of Sciences of the United States of America 104, 9667-9672 Maciaczyk, J., Singec, I., Maciaczyk, D., Klein, A., and Nikkhah, G (2009) Restricted spontaneous in vitro differentiation and region-specific migration of long-term expanded fetal human neural precursor cells after transplantation into the adult rat brain Stem cells and development 18, 1043-1058 Maekawa, M., Takashima, N., Arai, Y., Nomura, T., Inokuchi, K., Yuasa, S., and Osumi, N (2005) Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis Genes to cells : devoted to molecular & cellular mechanisms 10, 1001-1014 Magill, S.T., Cambronne, X.A., Luikart, B.W., Lioy, D.T., Leighton, B.H., Westbrook, G.L., Mandel, G., and Goodman, R.H (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus Proceedings of the National Academy of Sciences of the United States of America 107, 20382-20387 Makeyev, E.V., Zhang, J., Carrasco, M.A., and Maniatis, T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing Molecular cell 27, 435-448 121 Malatesta, P., Hack, M.A., Hartfuss, E., Kettenmann, H., Klinkert, W., Kirchhoff, F., and Gotz, M (2003) Neuronal or glial progeny: regional differences in radial glia fate Neuron 37, 751-764 Marin, O., and Rubenstein, J.L (2001) A long, remarkable journey: tangential migration in the telencephalon Nat Rev Neurosci 2, 780-790 Massirer, K.B., Carromeu, C., Griesi-Oliveira, K., and Muotri, A.R (2011) Maintenance and differentiation of neural stem cells Wiley interdisciplinary reviews Systems biology and medicine 3, 107-114 Mateizel, I., De Temmerman, N., Ullmann, U., Cauffman, G., Sermon, K., Van de Velde, H., De Rycke, M., Degreef, E., Devroey, P., Liebaers, I., et al (2006) Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders Human reproduction (Oxford, England) 21, 503-511 McBride, J.L., Behrstock, S.P., Chen, E.Y., Jakel, R.J., Siegel, I., Svendsen, C.N., and Kordower, J.H (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington's disease The Journal of comparative neurology 475, 211-219 Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs Molecular cell 15, 185-197 Merkle, F.T., Tramontin, A.D., Garcia-Verdugo, J.M., and Alvarez-Buylla, A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone Proceedings of the National Academy of Sciences of the United States of America 101, 17528-17532 Messam, C.A., Hou, J., Berman, J.W., and Major, E.O (2002) Analysis of the temporal expression of nestin in human fetal brain derived neuronal and glial progenitor cells Brain research Developmental brain research 134, 87-92 Mikkelsen, T.S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B.E., Jaenisch, R., Lander, E.S., and Meissner, A (2008) Dissecting direct reprogramming through integrative genomic analysis Nature 454, 49-55 Ming, G.L., and Song, H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions Neuron 70, 687-702 Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A.M., Lim, B., and Rigoutsos, I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes Cell 126, 1203-1217 Mo, Z., and Zecevic, N (2008) Is Pax6 critical for neurogenesis in the human fetal brain? Cerebral cortex (New York, NY : 1991) 18, 1455-1465 Murchison, E.P., Partridge, J.F., Tam, O.H., Cheloufi, S., and Hannon, G.J (2005) Characterization of Dicer-deficient murine embryonic stem cells Proceedings of the National Academy of Sciences of the United States of America 102, 1213512140 Murphy, M., Reid, K., Brown, M.A., and Bartlett, P.F (1993) Involvement of leukemia inhibitory factor and nerve growth factor in the development of dorsal root ganglion neurons Development 117, 1173-1182 Najbauer, J., Danks, M.K., Kim, S.U., and et al (2008) Neural stem cell mediated tumor-selective gene delivery: toward high grade glioma clinical trials Mol Ther 16, S136 Nakatomi, H., Kuriu, T., Okabe, S., Yamamoto, S., Hatano, O., Kawahara, N., Tamura, A., Kirino, T., and Nakafuku, M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors Cell 110, 429-441 Nan, X., Campoy, F.J., and Bird, A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin Cell 88, 471-481 122 Neri, M., Maderna, C., Ferrari, D., Cavazzin, C., Vescovi, A.L., and Gritti, A (2010) Robust generation of oligodendrocyte progenitors from human neural stem cells and engraftment in experimental demyelination models in mice PloS one 5, e10145 Ni, H.T., Hu, S., Sheng, W.S., Olson, J.M., Cheeran, M.C., Chan, A.S., Lokensgard, J.R., and Peterson, P.K (2004) High-level expression of functional chemokine receptor CXCR4 on human neural precursor cells Brain research Developmental brain research 152, 159-169 Nikoletopoulou, V., Plachta, N., Allen, N.D., Pinto, L., Götz, M., and Barde, Y.-A (2007) Neurotrophin receptor-mediated death of misspecified neurons generated from embryonic stem cells lacking Pax6 Cell stem cell 1, 529-540 Nishiyama, A., Komitova, M., Suzuki, R., and Zhu, X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity Nature reviews Neuroscience 10, 9-22 Nistor, G.I., Totoiu, M.O., Haque, N., Carpenter, M.K., and Keirstead, H.S (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation Glia 49, 385-396 Nunes, M.C., Roy, N.S., Keyoung, H.M., Goodman, R.R., McKhann, G., 2nd, Jiang, L., Kang, J., Nedergaard, M., and Goldman, S.A (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain Nat Med 9, 439-447 Okamura, K., Phillips, M.D., Tyler, D.M., Duan, H., Chou, Y.T., and Lai, E.C (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution Nature structural & molecular biology 15, 354363 Oshima, K., Teo, D.T., Senn, P., Starlinger, V., and Heller, S (2007) LIF promotes neurogenesis and maintains neural precursors in cell populations derived from spiral ganglion stem cells BMC developmental biology 7, 112 Ourednik, J., Ourednik, V., Lynch, W.P., Schachner, M., and Snyder, E.Y (2002) Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons Nature biotechnology 20, 1103-1110 Packer, A.N., Xing, Y., Harper, S.Q., Jones, L., and Davidson, B.L (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 14341-14346 Palmer, T.D., Willhoite, A.R., and Gage, F.H (2000) Vascular niche for adult hippocampal neurogenesis The Journal of comparative neurology 425, 479494 Pankratz, M.T., Li, X.-J., Lavaute, T.M., Lyons, E.A., Chen, X., and Zhang, S.-C (2007) Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage Stem cells (Dayton, Ohio) 25, 1511-1520 Park, I.-H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., and Daley, G.Q (2008) Disease-specific induced pluripotent stem cells Cell 134, 877-886 Parker, M.A., Anderson, J.K., Corliss, D.A., Abraria, V.E., Sidman, R.L., Park, K.I., Teng, Y.D., Cotanche, D.A., and Snyder, E.Y (2005) Expression profile of an operationally-defined neural stem cell clone Experimental neurology 194, 320332 Parr, A.M., Kulbatski, I., Zahir, T., Wang, X., Yue, C., Keating, A., and Tator, C.H (2008) Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury Neuroscience 155, 760-770 Patel, J.R., McCandless, E.E., Dorsey, D., and Klein, R.S (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination Proceedings of 123 the National Academy of Sciences of the United States of America 107, 1106211067 Pekny, M., and Pekna, M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration J Pathol 204, 428-437 Petersen, C.P., Bordeleau, M.E., Pelletier, J., and Sharp, P.A (2006) Short RNAs repress translation after initiation in mammalian cells Molecular cell 21, 533542 Pevny, L.H., and Nicolis, S.K (2010) Sox2 roles in neural stem cells Int J Biochem Cell Biol 42, 421-424 Philips, G.T., Stair, C.N., Young Lee, H., Wroblewski, E., Berberoglu, M.A., Brown, N.L., and Mastick, G.S (2005) Precocious retinal neurons: Pax6 controls timing of differentiation and determination of cell type Developmental biology 279, 308-321 Pineau, P., Volinia, S., McJunkin, K., Marchio, A., Battiston, C., Terris, B., Mazzaferro, V., Lowe, S.W., Croce, C.M., and Dejean, A (2010) miR-221 overexpression contributes to liver tumorigenesis Proceedings of the National Academy of Sciences of the United States of America 107, 264-269 Pitman, M., Emery, B., Binder, M., Wang, S., Butzkueven, H., and Kilpatrick, T.J (2004) LIF receptor signaling modulates neural stem cell renewal Molecular and cellular neurosciences 27, 255-266 Polajeva, J., Swartling, F.J., Jiang, Y., Singh, U., Pietras, K., Uhrbom, L., Westermark, B., and Roswall, P (2012) miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma BMC cancer 12, 378 Qian, X., Shen, Q., Goderie, S.K., He, W., Capela, A., Davis, A.A., and Temple, S (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells Neuron 28, 69-80 Quinn, J.C., Molinek, M., Martynoga, B.S., Zaki, P.A., Faedo, A., Bulfone, A., Hevner, R.F., West, J.D., and Price, D.J (2007) Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism Developmental biology 302, 50-65 Qureshi, I.A., Gokhan, S., and Mehler, M.F (2010) REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions Cell cycle 9, 4477-4486 Raballo, R., Rhee, J., Lyn-Cook, R., Leckman, J.F., Schwartz, M.L., and Vaccarino, F.M (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 50125023 Ramachandra, C.J., Shahbazi, M., Kwang, T.W., Choudhury, Y., Bak, X.Y., Yang, J., and Wang, S (2011) Efficient recombinase-mediated cassette exchange at the AAVS1 locus in human embryonic stem cells using baculoviral vectors Nucleic acids research 39, e107 Rao, R.C., Boyd, J., Padmanabhan, R., Chenoweth, J.G., and McKay, R.D (2009) Efficient Serum-Free Derivation of Oligodendrocyte Precursors from Neural Stem Cell-Enriched Cultures Stem cells 27, 116-125 Rao, X., Di Leva, G., Li, M., Fang, F., Devlin, C., Hartman-Frey, C., Burow, M.E., Ivan, M., Croce, C.M., and Nephew, K.P (2011) MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways Oncogene 30, 1082-1097 Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R (2004) Fast and effective prediction of microRNA/target duplexes Rna 10, 1507-1517 Reubinoff, B.E., Itsykson, P., Turetsky, T., Pera, M.F., Reinhartz, E., Itzik, A., and Ben-Hur, T (2001) Neural progenitors from human embryonic stem cells Nature biotechnology 19, 1134-1140 124 Reynolds, B.A., and Rietze, R.L (2005) Neural stem cells and neurospheres reevaluating the relationship Nat Methods 2, 333-336 Reynolds, B.A., Tetzlaff, W., and Weiss, S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes The Journal of neuroscience : the official journal of the Society for Neuroscience 12, 45654574 Reynolds, B.A., and Weiss, S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system Science 255, 1707-1710 Richards, L.J., Kilpatrick, T.J., Dutton, R., Tan, S.S., Gearing, D.P., Bartlett, P.F., and Murphy, M (1996) Leukaemia inhibitory factor or related factors promote the differentiation of neuronal and astrocytic precursors within the developing murine spinal cord The European journal of neuroscience 8, 291-299 Rietze, R.L., Valcanis, H., Brooker, G.F., Thomas, T., Voss, A.K., and Bartlett, P.F (2001) Purification of a pluripotent neural stem cell from the adult mouse brain Nature 412, 736-739 Ring, K.L., Tong, L.M., Balestra, M.E., Javier, R., Andrews-Zwilling, Y., Li, G., Walker, D., Zhang, W.R., Kreitzer, A.C., and Huang, Y (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor Cell stem cell 11, 100-109 Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L., and Bradley, A (2004) Identification of mammalian microRNA host genes and transcription units Genome research 14, 1902-1910 Roy, N.S., Wang, S., Harrison-Restelli, C., Benraiss, A., Fraser, R.A., Gravel, M., Braun, P.E., and Goldman, S.A (1999) Identification, isolation, and promoterdefined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter The Journal of neuroscience : the official journal of the Society for Neuroscience 19, 9986-9995 Sansom, S.N., Griffiths, D.S., Faedo, A., Kleinjan, D.-J., Ruan, Y., Smith, J., van Heyningen, V., Rubenstein, J.L., and Livesey, F.J (2009) The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis PLoS genetics 5, e1000511 Santa-Olalla, J., Baizabal, J.M., Fregoso, M., del Carmen Cardenas, M., and Covarrubias, L (2003) The in vivo positional identity gene expression code is not preserved in neural stem cells grown in culture The European journal of neuroscience 18, 1073-1084 Schmahl, W., Knoedlseder, M., Favor, J., and Davidson, D (1993) Defects of neuronal migration and the pathogenesis of cortical malformations are associated with Small eye (Sey) in the mouse, a point mutation at the Pax-6locus Acta neuropathologica 86, 126-135 Schmidt, N.O., Przylecki, W., Yang, W., Ziu, M., Teng, Y., Kim, S.U., Black, P.M., Aboody, K.S., and Carroll, R.S (2005) Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor Neoplasia (New York, NY) 7, 623-629 Schmitz, M., Temme, A., Senner, V., Ebner, R., Schwind, S., Stevanovic, S., Wehner, R., Schackert, G., Schackert, H.K., Fussel, M., et al (2007) Identification of SOX2 as a novel glioma-associated antigen and potential target for T cellbased immunotherapy Br J Cancer 96, 1293-1301 Schratt, G.M., Tuebing, F., Nigh, E.A., Kane, C.G., Sabatini, M.E., Kiebler, M., and Greenberg, M.E (2006) A brain-specific microRNA regulates dendritic spine development Nature 439, 283-289 Schuurmans, C., and Guillemot, F (2002) Molecular mechanisms underlying cell fate specification in the developing telencephalon Current opinion in neurobiology 12, 26-34 125 Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D (2003) Asymmetry in the assembly of the RNAi enzyme complex Cell 115, 199-208 Seaberg, R.M., and van der Kooy, D (2003) Stem and progenitor cells: the premature desertion of rigorous definitions Trends in neurosciences 26, 125131 Selden, N.R., Guillaume, D.J., Steiner, R.D., and Huhn, S.L (2008) Cellular therapy for childhood neurodegenerative disease Part II: clinical trial design and implementation Neurosurgical focus 24, E23 Shen, Q., Goderie, S.K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K., and Temple, S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells Science 304, 1338-1340 Shen, S., Li, J., and Casaccia-Bonnefil, P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain J Cell Biol 169, 577-589 Shi, Y., Chichung Lie, D., Taupin, P., Nakashima, K., Ray, J., Yu, R.T., Gage, F.H., and Evans, R.M (2004) Expression and function of orphan nuclear receptor TLX in adult neural stem cells Nature 427, 78-83 Shi, Y., Zhao, X., Hsieh, J., Wichterle, H., Impey, S., Banerjee, S., Neveu, P., and Kosik, K.S (2010) MicroRNA regulation of neural stem cells and neurogenesis The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 14931-14936 Shimato, S., Natsume, A., Takeuchi, H., Wakabayashi, T., Fujii, M., Ito, M., Ito, S., Park, I.H., Bang, J.H., Kim, S.U., et al (2007) Human neural stem cells target and deliver therapeutic gene to experimental leptomeningeal medulloblastoma Gene therapy 14, 1132-1142 Shin, S., Mitalipova, M., Noggle, S., Tibbitts, D., Venable, A., Rao, R., and Stice, S.L (2006) Long-term proliferation of human embryonic stem cell-derived neuroepithelial cells using defined adherent culture conditions Stem cells 24, 125-138 Shukla, G.C., Singh, J., and Barik, S (2011) MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions Molecular and cellular pharmacology 3, 83-92 Si, M.L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y.Y (2007) miR-21-mediated tumor growth Oncogene 26, 2799-2803 Sim, F.J., McClain, C.R., Schanz, S.J., Protack, T.L., Windrem, M.S., and Goldman, S.A (2011) CD140a identifies a population of highly myelinogenic, migrationcompetent and efficiently engrafting human oligodendrocyte progenitor cells Nature biotechnology 29, 934-941 Singh, S.K., Kagalwala, M.N., Parker-Thornburg, J., Adams, H., and Majumder, S (2008) REST maintains self-renewal and pluripotency of embryonic stem cells Nature 453, 223-227 Sirko, S., von Holst, A., Weber, A., Wizenmann, A., Theocharidis, U., Gotz, M., and Faissner, A (2010) Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny Stem cells 28, 775-787 Sisodiya, S.M., Ragge, N.K., Cavalleri, G.L., Hever, A., Lorenz, B., Schneider, A., Williamson, K.A., Stevens, J.M., Free, S.L., Thompson, P.J., et al (2006) Role of SOX2 mutations in human hippocampal malformations and epilepsy Epilepsia 47, 534-542 Smart, I.H., Dehay, C., Giroud, P., Berland, M., and Kennedy, H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey Cerebral cortex 12, 37-53 126 Song, H., Stevens, C.F., and Gage, F.H (2002) Astroglia induce neurogenesis from adult neural stem cells Nature 417, 39-44 Spizzo, R., Nicoloso, M.S., Lupini, L., Lu, Y., Fogarty, J., Rossi, S., Zagatti, B., Fabbri, M., Veronese, A., Liu, X., et al (2010) miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells Cell death and differentiation 17, 246-254 Stolt, C.C., Lommes, P., Sock, E., Chaboissier, M.C., Schedl, A., and Wegner, M (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord Genes & development 17, 1677-1689 Stoykova, A., and Gruss, P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns The Journal of neuroscience : the official journal of the Society for Neuroscience 14, 1395-1412 Sugiarto, S., Persson, A.I., Munoz, E.G., Waldhuber, M., Lamagna, C., Andor, N., Hanecker, P., Ayers-Ringler, J., Phillips, J., Siu, J., et al (2011) Asymmetrydefective oligodendrocyte progenitors are glioma precursors Cancer cell 20, 328-340 Sugimori, M., Nagao, M., Bertrand, N., Parras, C.M., Guillemot, F., and Nakafuku, M (2007) Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord Development (Cambridge, England) 134, 1617-1629 Suh, H., Consiglio, A., Ray, J., Sawai, T., D'Amour, K.A., and Gage, F.H (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus Cell stem cell 1, 515-528 Sun, W., Julie Li, Y.S., Huang, H.D., Shyy, J.Y., and Chien, S (2010) microRNA: a master regulator of cellular processes for bioengineering systems Annual review of biomedical engineering 12, 1-27 Suslov, O.N., Kukekov, V.G., Ignatova, T.N., and Steindler, D.A (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres Proceedings of the National Academy of Sciences of the United States of America 99, 14506-14511 Suzuki, M., McHugh, J., Tork, C., Shelley, B., Klein, S.M., Aebischer, P., and Svendsen, C.N (2007) GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS PloS one 2, e689 Svendsen, C.N., Caldwell, M.A., Shen, J., ter Borg, M.G., Rosser, A.E., Tyers, P., Karmiol, S., and Dunnett, S.B (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease Experimental neurology 148, 135-146 Swistowski, A., Peng, J., Han, Y., Swistowska, A.M., Rao, M.S., and Zeng, X (2009) Xeno-Free Defined Conditions for Culture of Human Embryonic Stem Cells, Neural Stem Cells and Dopaminergic Neurons Derived from Them PloS one 4, e6233 Swistowski, A., Peng, J., Liu, Q., Mali, P., Rao, M.S., Cheng, L., and Zeng, X (2010) Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions Stem cells (Dayton, Ohio) 28, 1893-1904 Szulwach, K.E., Li, X., Smrt, R.D., Li, Y., Luo, Y., Lin, L., Santistevan, N.J., Li, W., Zhao, X., and Jin, P (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis J Cell Biol 189, 127-141 Takizawa, T., Nakashima, K., Namihira, M., Ochiai, W., Uemura, A., Yanagisawa, M., Fujita, N., Nakao, M., and Taga, T (2001) DNA methylation is a critical cellintrinsic determinant of astrocyte differentiation in the fetal brain Developmental cell 1, 749-758 127 Taranova, O.V., Magness, S.T., Fagan, B.M., Wu, Y., Surzenko, N., Hutton, S.R., and Pevny, L.H (2006) SOX2 is a dose-dependent regulator of retinal neural progenitor competence Genes & development 20, 1187-1202 Tatsumi, K., Takebayashi, H., Manabe, T., Tanaka, K.F., Makinodan, M., Yamauchi, T., Makinodan, E., Matsuyoshi, H., Okuda, H., Ikenaka, K., et al (2008) Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes Journal of neuroscience research 86, 3494-3502 Tay, Y., Zhang, J., Thomson, A.M., Lim, B., and Rigoutsos, I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation Nature 455, 1124-1128 Thier, M., Worsdorfer, P., Lakes, Y.B., Gorris, R., Herms, S., Opitz, T., Seiferling, D., Quandel, T., Hoffmann, P., Nothen, M.M., et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells Cell stem cell 10, 473-479 Thompson, J.A., and Ziman, M (2011) Pax genes during neural development and their potential role in neuroregeneration Progress in neurobiology 95, 334-351 Tropepe, V., Hitoshi, S., Sirard, C., Mak, T.W., Rossant, J., and van der Kooy, D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism Neuron 30, 65-78 Uchida, N., Buck, D.W., He, D., Reitsma, M.J., Masek, M., Phan, T.V., Tsukamoto, A.S., Gage, F.H., and Weissman, I.L (2000) Direct isolation of human central nervous system stem cells Proceedings of the National Academy of Sciences of the United States of America 97, 14720-14725 Valencia-Sanchez, M.A., Liu, J., Hannon, G.J., and Parker, R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs Genes & development 20, 515-524 Vasudevan, S., Tong, Y., and Steitz, J.A (2007) Switching from repression to activation: microRNAs can up-regulate translation Science 318, 1931-1934 Vescovi, A.L., Parati, E.A., Gritti, A., Poulin, P., Ferrario, M., Wanke, E., FrolichsthalSchoeller, P., Cova, L., Arcellana-Panlilio, M., Colombo, A., et al (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation Experimental neurology 156, 71-83 Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M (2010) Direct conversion of fibroblasts to functional neurons by defined factors Nature 463, 1035-1041 Visvanathan, J., Lee, S., Lee, B., Lee, J.W., and Lee, S.K (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development Genes & development 21, 744-749 Walton, N.M., Snyder, G.E., Park, D., Kobeissy, F., Scheffler, B., and Steindler, D.A (2009) Gliotypic neural stem cells transiently adopt tumorigenic properties during normal differentiation Stem cells (Dayton, Ohio) 27, 280-289 Wang, L., Wang, L., Huang, W., Su, H., Xue, Y., Su, Z., Liao, B., Wang, H., Bao, X., Qin, D., et al (2012) Generation of integration-free neural progenitor cells from cells in human urine Nat Methods 10, 84-89 Wegner, M., and Stolt, C.C (2005) From stem cells to neurons and glia: a Soxist's view of neural development Trends in neurosciences 28, 583-588 Wen, S., Li, H., and Liu, J (2009) Epigenetic background of neuronal fate determination Progress in neurobiology 87, 98-117 Wernig, M., Zhao, J.-P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., and Jaenisch, R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease Proceedings of the National Academy of Sciences of the United States of America 105, 5856-5861 128 Wilson, P.G., and Stice, S.S (2006) Development and differentiation of neural rosettes derived from human embryonic stem cells Stem cell reviews 2, 67-77 Windrem, M.S., Nunes, M.C., Rashbaum, W.K., Schwartz, T.H., Goodman, R.A., McKhann, G., 2nd, Roy, N.S., and Goldman, S.A (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain Nat Med 10, 93-97 Windrem, M.S., Roy, N.S., Wang, J., Nunes, M., Benraiss, A., Goodman, R., McKhann, G.M., 2nd, and Goldman, S.A (2002) Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain Journal of neuroscience research 69, 966-975 Wood, H.B., and Episkopou, V (1999) Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages Mechanisms of development 86, 197-201 Wright, L.S., Li, J., Caldwell, M.A., Wallace, K., Johnson, J.A., and Svendsen, C.N (2003) Gene expression in human neural stem cells: effects of leukemia inhibitory factor Journal of neurochemistry 86, 179-195 Wu, L., Fan, J., and Belasco, J.G (2006) MicroRNAs direct rapid deadenylation of mRNA Proceedings of the National Academy of Sciences of the United States of America 103, 4034-4039 Wu, P., Tarasenko, Y.I., Gu, Y., Huang, L.Y., Coggeshall, R.E., and Yu, Y (2002) Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat Nature neuroscience 5, 1271-1278 Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., and Kellis, M (2005) Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals Nature 434, 338345 Xu, D., Takeshita, F., Hino, Y., Fukunaga, S., Kudo, Y., Tamaki, A., Matsunaga, J., Takahashi, R.-U., Takata, T., Shimamoto, A., et al (2011) miR-22 represses cancer progression by inducing cellular senescence The Journal of cell biology 193, 409-424 Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J.A., and Kosik, K.S (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells Cell 137, 647-658 Yamanaka, S (2007) Strategies and new developments in the generation of patientspecific pluripotent stem cells Cell stem cell 1, 39-49 Yang, C.-R., and Yu, R.K (2009) Intracerebral transplantation of neural stem cells combined with trehalose ingestion alleviates pathology in a mouse model of Huntington's disease Journal of neuroscience research 87, 26-33 Yang, J.S., Phillips, M.D., Betel, D., Mu, P., Ventura, A., Siepel, A.C., Chen, K.C., and Lai, E.C (2011) Widespread regulatory activity of vertebrate microRNA* species Rna 17, 312-326 Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs Genes & development 17, 3011-3016 Yip, S., Sabetrasekh, R., Sidman, R.L., and Snyder, E.Y (2006) Neural stem cells as novel cancer therapeutic vehicles European journal of cancer 42, 12981308 Yoo, A.S., Sun, A.X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., Lee-Messer, C., Dolmetsch, R.E., Tsien, R.W., and Crabtree, G.R (2011) MicroRNA-mediated conversion of human fibroblasts to neurons Nature 476, 228-231 Yuan, S.H., Martin, J., Elia, J., Flippin, J., Paramban, R.I., Hefferan, M.P., Vidal, J.G., Mu, Y., Killian, R.L., Israel, M.A., et al (2011) Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells PloS one 6, e17540 129 Yun, S.J., Byun, K., Bhin, J., Oh, J.H., Nhung le, T.H., Hwang, D., and Lee, B (2010) Transcriptional regulatory networks associated with self-renewal and differentiation of neural stem cells J Cell Physiol 225, 337-347 Zappone, M.V., Galli, R., Catena, R., Meani, N., De Biasi, S., Mattei, E., Tiveron, C., Vescovi, A.L., Lovell-Badge, R., Ottolenghi, S., et al (2000) Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells Development 127, 2367-2382 Zeng, J., Du, J., Lin, J., Bak, X.Y., Wu, C., and Wang, S (2009) High-efficiency transient transduction of human embryonic stem cell-derived neurons with baculoviral vectors Mol Ther 17, 1585-1593 Zeng, J., Du, J., Zhao, Y., Palanisamy, N., and Wang, S (2007) Baculoviral vectormediated transient and stable transgene expression in human embryonic stem cells Stem cells 25, 1055-1061 Zhang, J., Yang, Y., Yang, T., Liu, Y., Li, A., Fu, S., Wu, M., Pan, Z., and Zhou, W (2010a) microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity British journal of cancer 103, 1215-1220 Zhang, N., An, M.C., Montoro, D., and Ellerby, L.M (2010b) Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells PLoS currents 2, RRN1193 Zhang, S.C., Wernig, M., Duncan, I.D., Brustle, O., and Thomson, J.A (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells Nature biotechnology 19, 1129-1133 Zhang, X., Huang, C.T., Chen, J., Pankratz, M.T., Xi, J., Li, J., Yang, Y., Lavaute, T.M., Li, X.-J., Ayala, M., et al (2010c) Pax6 is a human neuroectoderm cell fate determinant Cell stem cell 7, 90-100 Zhao, C., Sun, G., Li, S., Lang, M.F., Yang, S., Li, W., and Shi, Y (2010) MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling Proceedings of the National Academy of Sciences of the United States of America 107, 1876-1881 Zhao, C., Sun, G., Li, S., and Shi, Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination Nature structural & molecular biology 16, 365-371 Zhao, J.-J., Lin, J., Yang, H., Kong, W., He, L., Ma, X., Coppola, D., and Cheng, J.Q (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer The Journal of biological chemistry 283, 31079-31086 Zhao, S., Nichols, J., Smith, A.G., and Li, M (2004) SoxB transcription factors specify neuroectodermal lineage choice in ES cells Molecular and cellular neurosciences 27, 332-342 Zhao, T., Zhang, Z.N., Rong, Z., and Xu, Y (2011) Immunogenicity of induced pluripotent stem cells Nature 474, 212-215 Zhao, Y., and Wang, S (2010) Human NT2 neural precursor-derived tumorinfiltrating cells as delivery vehicles for treatment of glioblastoma Human gene therapy 21, 683-694 Zheng, C., Yinghao, S., and Li, J (2011) MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2 Medical oncology (Northwood, London, England) Zheng, K., Li, H., Zhu, Y., Zhu, Q., and Qiu, M (2010) MicroRNAs are essential for the developmental switch from neurogenesis to gliogenesis in the developing spinal cord The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 8245-8250 130 Zhu, S., Si, M.-L., Wu, H., and Mo, Y.-Y (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin (TPM1) The Journal of biological chemistry 282, 14328-14336 Relative expression Appendices 1.2 0.8 0.6 0.4 0.2 NS GPC 7-days post-diff (7.2) (7.4) (5.8) (3.2) (81) (156) miR-145 miR 21 Hela (3.3) U87 (7.3) (4.2) miR-22 (2.8) (11.8) (2.2) miR-221 Appendix Figure A1 Relative endogenous expression levels of miR-145, -21, -22 and -221 in HeLa and U87 cells Real-time qPCR analysis of miR-22, -21, -221 and -145 expression in hESC-derived neurosphere NSCs (NS), GPCs days post-differentiation from hESC-derived neurosphere NSCs, HeLa and U87 Values in ( ) represent relative fold decrease in expression normalized to 5S rRNA and expressed relative to GPC Data represents mean + SD of triplicates Xu, N., et al (2009) Cell 137: 647-658 Appendix Figure A2 Validation of miR-145 targeting of the OCT4, SOX2, and KLF4 3′ UTRs Luciferase reporter assay where HeLa cells were transfected with luciferase reporter constructs, which carry wildtype (WT) or mutant 3’ UTRs of OCT4, SOX2 and KLF4, along with miR-145 precursor mimics Mutant UTRs have a bp deletion in the miR-145 target site miR-145 specifically represses its targets Image is from Figure of Xu et al (2009) 131 Xu, N., et al (2009) Cell 137: 647-658 Appendix Figure A3 Effect of miR-145 on endogenous OCT4, KLF4, and SOX2 in hESCs (B–C) Relative mRNA (B) and protein (C) levels of OCT4, SOX2, and KLF4 in control Lenti-scr or Lenti-miR-145 transduced hESCs (E–F) Relative mRNA (E) and protein (F) levels of OCT4, SOX2, and KLF4 in LNA-scr or LNA-miR-145 transfected hESCs In real-time RT-PCR, GAPDH mRNA is the normalization control (B and E) In western blot (C and F), protein level quantification was normalized to GAPDH Image is from Figure of Xu et al (2009) PAX6 0.9 0.9 0.9 1.0 1.1 1.0 1.1 1.1 0.9 1.2 1.0 1.0 SOX2 ReN GAPDH Appendix Figure A4 Effect of miR-21, -22, -221 and -145 on PAX6 and SOX2 expression in ReNcell NSCs Western blot analysis of PAX6 and SOX2 in ReNcell NSCs 72 hours after transfection with miR-21, miR-22, miR-221, miR-145, or negative control mimics Densitometry was performed using ImageJ software and protein amounts are normalized to β-actin loading control and presented relative to miRNA mimic negative control 132 .. .HUMAN EMBRYONIC STEM CELL- DERIVED NEURAL STEM CELLS: DERIVATION, DIFFERENTIATION AND MICRORNA REGULATION KWANG WEI XIN TIMOTHY (B.Sc (Hons), NUS)... mechanisms of regulation of NSC differentiation 1.1.5.2 Pluripotent stem cell- derived NSCs Human embryonic stem cells (hESCs), which are pluripotent cells derived from the inner cell mass of blastocyst-stage... of Human Embryonic Stem Cells in mTeSRTM1” (STEMCELL Technologies Inc.) In brief, H1 hESCs were maintained on BD matrigel hESC-qualified matrix (BD Biosciences) with mTeSRTM1 medium (STEMCELL

Ngày đăng: 10/09/2015, 09:08

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan