Chuyên đề luyện thi đại học Hình không gian

74 243 0
Chuyên đề luyện thi đại học  Hình không gian

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

NGUYỄN TRUNG KIÊN 1 Chuyên đề luyện thi đại học PHƯƠNG PHÁP GIẢI CÁC BÀI TẬP HÌNH KHÔNG GIAN TRONG KỲ THI TSĐH Biên soạn: Nguyễn Trung Kiên Hình không gian là bài toán không khó trong đề thi TSĐH nhưng luôn làm cho rất nhiều học sinh bối rối. Thông qua chuyên đề này tôi hy vọng sẽ giúp các bạn học sinh hiểu rõ hơn bản chất của bài toán để từ đó tìm ra chìa khóa giải quyết triệt để dạng toán này Phần 1: Những vấn đề cần nắm chắc khi tính toán ⊻ Trong tam giác vuông ABC (vuông tại A) đường cao AH thì ta luôn có: - tan b c B = , tan c b C = , 2 . AH HB HC = - 2 2 2 2 2 1 1 1 .AB AC AH AH AB AC AB AC = + ⇒ = + ⊻ Trong tam giác thường ABC ta có: 2 2 2 2 2 2 2 cos ;cos 2 b c a a b c bc A A bc + − = + − = . Tương tự ta có hệ thức cho cạng b, c và góc B, C: - 1 1 1 sin sin sin 2 2 2 ABC S ab C bc A ac B ∆ = = = - . S p r = (Trong đó p là nữa chu vi, r là bán kính vòng tròn nội tiếp tam giác) - 4 abc S R = H C B A NGUYỄN TRUNG KIÊN 2 ⊻ Thể tích khối đa diện: - 1 . 3 chop V B h = (B là diện tích đáy, h là chiều cao) - . LT V B h = Phần 2) Phương pháp xác định đường cao các loại khối chóp: - Loại 1: Khối chóp có 1 cạnh góc vuông với đáy đó chính là chiều cao. - Loại 2: Khối chóp có 1 mặt bên vuông góc với đáy thì đường cao chính là đường kẻ từ mặt bên đến giao tuyến. - Loại 3: Khối chóp có 2 mặt kề nhau cùng vuông góc với đáy thì đường cao chính là giao tuyến của 2 mặt kề nhau đó. - Loại 4: Khối chóp có các cạnh bên bằng nhau hoặc các cạnh bên cùng tạo với đáy 1 góc bằng nhau thì chân đường cao chính là tâm vòng tròn ngoại tiếp đáy. - Loại 5: Khối chóp có các mặt bên đều tạo với đáy 1 góc bằng nhau thì chân đường cao chính là tâm vòng tròn nội tiếp đáy. Sử dụng các giả thiết mở: - Hình chóp SABCD có mặt phẳng ( ) SAB và ( ) SAC cùng tạo với đáy góc α thì chân đường cao hạ từ đỉnh S thuộc phân giác trong góc BAC - Hình chóp SABCD có SB SC = hoặc , SB SC cùng tạo với đáy một góc α thì chân đường cao hạ từ S rơi vào đường trung trực của BC Việc xác định được chân đường cao là yếu tố đặc biệt quan trọng để giải quyết các câu hỏi trong bài toán hình không gian cổ điển Phần 3: Các bài toán về tính thể tích A. Tính thể tích trực tiếp bằng cách tìm đường cao: Để giải quyết tốt dạng bài tập này các em cần nắm chắc các dấu hiệu để xác định đường cao và sử dụng các công thức + óp 1 . 3 ch V B h = + . LT V B h = Ta xét các ví dụ sau: Ví dụ 1) (TSĐH A 2009) Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại A và D , có 2 , AB AD a CD a = = = . Góc giữa 2 mặt phẳng ( ),( ) SCB ABCD bằng 60 0 . Gọi I là trung điểm AD biết 2 mặt phẳng ( ) SBI và ( ) SCI cùng vuông góc với đáy ABCD . Tính thể tích khối chóp SABCD . HD giải: Dấu hiệu nhận biết đường cao trong bài toán này là: ‘’2 mặt phẳng ( ) SBI và ( ) SCI cùng vuông góc với đáy ABCD ’’ NGUYỄN TRUNG KIÊN 3 Vì 2 mặt phẳng ( ) SBI và ( ) SCI cùng vuông góc với đáy ABCD mà ( ) SBI và ( ) SCI có giao tuyến là SI nên ( ) SI ABCD ⊥ . Kẻ IH BC ⊥ ta có góc giữa 2 mặt phẳng ( ),( ) SCB ABCD là 0 ˆ 60 SHI = . Từ đó ta tính được: 2 1 2; 5; ( ) ( ) 3 2 IC a IB BC a S ABCD AD AB CD a = = = = + = 2 2 2 2 1 3 . ( ) ( ) ( ) ( ) 3 2 2 2 a a IH BC S IBC S ABCD S ABI S CDI a a= = − − = − − = nên 2 IBC S IH BC ∆ = = 3 3 5 a . Từ đó tính được 3 3 15 5 SABCD V a = . Ví dụ 2) (TSĐH D 2009) Cho lăng trụ đứng ' ' ' ABCA B C có đáy ABC là tam giác vuông tại B , , ' 2 , ' 3 AB a AA a A C a = = = . Gọi M là trung điểm của đoạn ' ' B C , I là giao điểm của BM và ' B C . Tính thể tích khối chóp IABC theo a HD giải: Dấu hiệu để nhận biết đường cao trong bài toán này là:’’ I nằm trong mặt bên ( ' ') BCC B vuông góc với đáy ( ) ABC ’’ Ta có: - ' ' ' ABCA B C là lăng trụ đứng nên các mặt bên đều vuông góc với đáy. ( ' ) I B BC ⊂ ⊥ (ABC), từ I ta kẻ IH BC ⊥ thì ( ) IH ABC ⊥ và I chính là trọng tâm tam giác ' ' BB C 2 4 ' ' 3 3 IH CI a IH BB CB ⇒ = = ⇒ = H I S D C B A NGUYỄN TRUNG KIÊN 4 Có 2 2 2 2 2 2 AA 9 4 5 2 AC A C a a a BC AC AB a ′ ′ = − = = = ⇒ = − = 3 1 1 4 1 4 . ( ) . . .2 . 3 3 3 2 9 IABC a V IH dt ABC a a a = = = ( đvtt) Ví dụ 3: Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với , 2, AB a AD a SA a = = = và vuông góc với mặt phẳng ( ) ABCD . Gọi , M N lần lượt là trung điểm của AD và SC ; I là giao điểm của BM và AC . Chứng minh rằng mặt phẳng ( ) SAC vuông góc với mặt phẳng ( ) SMB . Tính thể tích khối tứ diện ANIB . Lời giải: +) Chứng minh ( ) ( ) SAC SMB ⊥ . Ta có: 2 2 2 2 2 2 2 2 2 6 2 3; 4 2 a a AC AB BC a a a BM AB AM a= + = + = = + = + = Gọi O AC BD = ∩ ;do I là giao điểm của hai đường trung tuyến AO và BM nên là trọng tâm của tam giác ABD . Theo tính chất trọng tâm của tam giác ta có: 2 1 3 2 6 ; 3 3 3 3 3 a a AI AO AC BI BM= = = = = A M O B I H C C' B' A' NGUYỄN TRUNG KIÊN 5 Nhận xét: 2 2 2 2 2 2 2 3 3 a a AI BI a AB + = + = = , suy ra tam giác AIB vuông tại I . Do đó BM AI ⊥ (1) Mặt khác: ( ) SA ABCD ⊥ nên SA BM ⊥ (2) Từ (1) và (2) suy ra ( ) BM SAC ⊥ +) Tính thể tích khối tứ diện ANIB Ta thấy khối chóp ANIB cũng chính là khối chóp NAIB Dấu hiệu nhận biết đường cao trong bài toán này là: ‘’Điểm N nằm trong mặt phẳng ( ) SAC vuông góc với đáy ( ) ABCD ’’ Do NO là đường trung bình của tam giác SAC nên ta có: / / NO SA và 1 2 2 a NO SA = = Do đó NO là đường cao của tứ diện ANIB Diện tích tam giác đều AIB là: 2 1 1 3 6 2 . . 2 2 3 3 6 AIB a a a S AI BI= = = Thể tích khối tứ diện ANIB là: 2 3 1 1 2 2 . . 3 3 6 2 36 AIB a a a V S NO= = = N M I D C B A S O NGUYỄN TRUNG KIÊN 6 Ví dụ 4) Cho hình chóp SABC có đáy ABC là tam giác cân với 3 , 2 AB AC a BC a = = = . Các mặt bên đều hợp với đáy một góc 0 60 . Tính thể tích khối chóp SABC Lời giải: Dấu hiệu nhận biết đường cao trong bài toán này là: ‘’Hình chóp có các mặt bên hợp với đáy các góc bằng nhau thì chân đường cao là tâm đường tròn nội tiếp đáy hình chóp’’ Từ đó ta có lời giải sau: Gọi O là hình chiếu của S trên mặt phẳng ( ) ABC và , , I H J lần lượt là hình chiếu của O trên , , AB BC CA . Theo định lý ba đường vuông góc ta có: , , SI AB SJ AC SH BC ⊥ ⊥ ⊥ Suy ra:    , , SIO SJO SHO lần lượt là góc hợp bởi các mặt bên ( ) ( ) ( ) , , SAB SAC SBC và mặt đáy Theo giả thiết ta có:    0 60 SIO SJO SHO= = = Các tam giác vuông , , SOI SOJ SOH bằng nhau nên OI OJ OH = = Do đó O là tâm đường tròn nội tiếp tam giác ABC Mặt khác: ABC là tam giác cân tại A nên AH vừa là đường phân giác, vừa là đường cao, vừa là đường trung tuyến Suy ra , , A O H thẳng hàng và H là trung điểm của BC Tam giác ABH vuông tại H , ta có: 2 2 2 2 9 2 2 AH AB BH a a a = − = − = Diện tích tam giác ABC là: 2 1 1 . .2 .2 2 2 2 2 2 ABC S BC AH a a a= = = Ngoài ra: ABC S pr = , với ( ) 1 4 2 p AB AC BC a = + + = và r : bán kính đường tròn nội tiếp ABC ∆ . 2 2 2 2 4 2 ABC S a a r OH p a ⇒ = = = = NGUYỄN TRUNG KIÊN 7 Tam giác SOH vuông tại O , ta có: 0 6 tan 60 2 a SO OH= = Thể tích khối chóp SABC là: 3 2 1 1 6 2 3 . .2 2. 3 3 2 3 ABC a a V S SO a= = = Ví dụ 5) Cho hình lăng trụ tam giác ' ' ' ABCA B C có đáy ABC là tam giác vuông tại A 3, AB a AC a = = . Biết đỉnh ' C cách đều các đỉnh , , A B C và khoảng cách từ đỉnh B đến mặt phẳng (C’AC) bằng 6 15 a .Tính thể tích khối chóp ' ' A ABC theo a và tính cosin góc tạo bởi mặt phẳng ( ' ') ABB A và mặt phẳng đáy ( ) ABC . Giải: Dấu hiệu nhận biết đường cao trong bài toán này là: ‘’Đỉnh ' C cách đều các đỉnh , ,A B C ⇔ ' ' ' C A C B C C = = ’’ J H I S O C B A N H M C C' B' A' I K B A NGUYỄN TRUNG KIÊN 8 - Hạ ' ( ) ' ' ' C H ABC C HA C HB C HC HA HB HC ⊥ ⇒ ∆ = ∆ = ∆ ⇔ = = Suy ra H là tâm vòng trong ngoại tiếp tam giác ABC . Vì tam giác ABC vuông tại A nên H là trung điểm của BC . Ta có: /( ') /( ') 2 B ACC H ACC d d = . Hạ /( ') /( ') 1 3 , ' ( ') 2 15 H ACC B ACC a HM AC HN C M HN ACC d HN d⊥ ⊥ ⇒ ⊥ ⇒ = = = . Ta có: 1 3 ' 3 2 2 a HM AB C H a = = ⇒ = từ đó tính được ' 2 . CC a = Có 3 ' ' 1 1 1 1 ' . ( ) . 3. . 3. 3 3 3 2 2 A ABC LT a V V C H dt ABC a a a= = = = - Hạ ' ( ) A K ABC ⊥ thì ' ' C HKA là hình chữ nhật . Gọi I HK AB = ∩ thì 1 / / 2 OI AC = suy ra I là trung điểm của AB . Tam giác ABC vuông tại A nên KI AB ⊥ ⇒ Góc tạo bởi ( ' ') ABB A và đáy ( ) ABC là  ' A IK Ta có:  cos ' ' IK A IK A I = . Tính được  2 2 1 13 13 ; ' ' cos ' 2 2 2 ' 13 a a IK IK HK A I IK A K A IK A I = = = + = ⇒ = = Ví dụ 6) Cho hình chóp SABCD có đáy ABCD là hình bình hành  0 2 , , 60 AB a AD a BAD= = = SAB là tam giác đều . Gọi H là trung điểm của AB , K là hình chiếu vuông góc của H lên mặt phẳng ( ) SCD . Tính thể tích khối chóp SABCD biết 15 5 a HK = và điểm K nằm trong tam giác SCD Giải: Bài toán này được cho theo kiểu giả thiết mở. Dấu hiệu để tìm ra đường cao khối chóp là:’’ SAB là tam giác đều Tức là '' SA SB = NGUYỄN TRUNG KIÊN 9 Gọi E là trung điểm của , CD F là trung điểm của ED Với giả thiết SA SB = ta suy ra chân đường cao hạ từ S lên mặt phẳng ABCD thuộc đường trung trực của đoạn thẳng AB Nói cách khác chân đường cao hạ từ S lên ( ) ABCD thuộc đường thẳng chứa HF Hạ ( ) HK SF HK SCD ⊥ ⇒ ⊥ Ta có: 2 2 . ( ) 3 SABCD SHCD V V HK dt SCD = = Ta cần tính diện tích tam giác SCD Ta có: 1 ( ) . ; 2 dt SCD SF CD = Mà 2 2 2 2 ; ; SF SK KF SK SH HK KF HF HK = + = − = − SH là đường cao tam giác đều SAB suy ra: 3, SH a HF = là đường cao tam giác đều HDE suy ra: 3 2 a HF = Thay số ta có: 3 15 10 a SF = Vậy: 3 2 . 3 1 3 15 3 . . .2 3 2 10 5 5 SABCD a a a V a= = 120° A H K E F D C B S NGUYỄN TRUNG KIÊN 10 Ví dụ 7) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 3 a khoảng cách từ A đến mặt phẳng (SBC) bằng 2 a và   0 90 SAB SCB= = . Tính thể tích khối chóp S.ABC theo a . Giải: Đây là bài toán dễ làm cho học sinh bối rối khi xác định đường cao hình chóp. Hạ ( ) SH ABCD ⊥ vì ( ) AB SH AB SHA AB HA AB SA ⊥  ⇒ ⊥ ⇒ ⊥  ⊥  . Chứng minh tương tự ta có BC HC HABC ⊥ ⇒ là hình vuông. Ta có HC BC ⊥ kẻ ( ) 2 HK SC HK SBC HK a ⊥ ⇒ ⊥ ⇒ = Mặt khác ta có: 2 2 2 2 2 1 1 1 . 6 HK HC SH a HK HC HS HC HK = + ⇒ = = − Thể tích khối chóp 2 3 1 1 3 6 . 6. 3 3 2 2 SABC ABC a a V SH S a ∆ = = = Ví dụ 8) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng a, SA SB a = = , 2 SD a = và mặt phẳng (SBD) vuông góc với mặt phẳng (ABCD). Tính theo a thể tích khối chóp S.ABCD Giải: K S C B A H [...]... toán này ta đã dựng mặt phẳng trung gian là mp(AMN) để tận dụng điều kiện B’C song song với (AMN) Tại sao không tìm mặt phẳng chứa B’C các em học sinh tự suy nghĩ điều này Chú ý 2) Nếu mặt phẳng (P) đi qua trung điểm M của đoạn AB thì khoảng cách từ A đến (P) cũng bằng khoảng cách từ B đến (P)) NGUYỄN TRUNG KIÊN 27 Ví dụ 2) Cho hình chóp tứ giác đều SABCD có đáy là hình vuông cạnh a Gọi E là điểm đối... /( BMN ) = A' = a 14 4 71 3a 14 4 71 C' M B' M Q I K N N A C E A E C P H H B B B Khoảng cách giữa 2 đường thẳng chéo nhau trong không gian Khi tính khoảng cách giữa 2 đường thẳng chéo nhau a và b trong không gian ta tiến hành theo trình tự sau: - Dựng (tìm) mặt phẳng trung gian (P) chứa a song song với b sau đó tính khoảng cách từ 1 điểm bất kỳ trên b đến mp(P) - Khi tính khoảng cách từ 1 điểm đến mặt... khi việc tìm hình chiếu khó khăn, thì ta nên sử dụng công thức 1 3V V = B.h ⇒ h = 3 B Ví dụ 1) Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a Hình chiếu của S lên mặt phẳng ABCD trùng với trọng tâm tam giác ABD Mặt bên SAB tạo với đáy một góc 600 Tính theo a thể tích của khối chóp SABCD và khoảng cách từ B đến mặt phẳng SAD Lời giải: Gọi G là trọng tâm của tam giác ABD , E là hình chiếu của... dụ 7) Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với AB = 2a Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy Biết AC vuông góc với SD tính thể tích khối chóp SABCD và khoảng cách giữa hai đường thẳng BD và SC Giải: - Tính thể tích khối chóp SABCD NGUYỄN TRUNG KIÊN 32 Gọi H là trung điểm AB, O là giao điểm của hai đường chéo hình chữ nhật ABCD ; SAB là tam giác đều và nằm... O C Chú ý: Trong bài toán này ta đã dựng đường cao NK để quy về bài toán cơ bản Phần 6 Các bài toán tính góc giữa 2 đường thẳng chéo nhau trong không gian Khi cần tính góc giữa 2 đường thẳng chéo nhau a và b trong không gian ta phải tìm 1 đường thẳng trung gian là c song song với a và c cắt b Khi đó góc tạo bởi a và b cũng chính là góc tạo bởi b và c Hoặc ta dựng liên tiếp 2 đường thẳng c và d cắt... Ví dụ 2) Cho hình lăng trụ đứng ABCD A′B ′C ′D ′ có đáy ABCD là hình thoi , AB = a 3 , ∠BAD = 1200 Biết góc giữa đường thẳng AC ′ và mặt phẳng ( ADD ′A′) bằng 300 Tính thể tích khối lăng trụ trên theo a và khoảng cách từ trung điểm N của BB ' đến mặt phẳng (C ' MA) Biết M là trung điểm của A ' D ' Giải: Ta có VABCD A ' B 'C ' D ' = AA '.S ABCD (1) Đáy ABCD là hình thoi gồm 2 tam giác đều ABC , ACD... cách, các em học sinh cần chú ý điều này) Ví dụ 5) Cho hình chóp SABC có đáy ABC là tam giác đều cạnh bằng a Chân đường cao hạ từ S lên mặt phẳng ( ABC ) là điểm H thuộc AB sao cho HA = −2 HB Góc tạo bởi SC và mặt phẳng ( ABC ) bằng 600 Tính thể tích khối chóp SABC và khoảng cách giữa hai đường thẳng SA, BC theo a Giải: S K F H B A M E D C - Tính thể tích: Vì SH ⊥ ( ABCD ) nên HC là hình chiếu vuông... về bài toán cơ bản là yếu tố quan trọng quyết định thành công Ví dụ 3) Cho hình chóp SABC có góc tạo bởi 2 mặt phẳng SBC và ABC là 600 Các tam giác SBC và ABC là các tam giác đều cạnh a Tính khoảng cách từ đỉnh B đến mặt phẳng SAC (Đề dự bị khối A 2007) HD giải: NGUYỄN TRUNG KIÊN 21 Cách 1: Coi B là đỉnh khối chóp BSAC từ giả thi t ta suy ra BS = BA = BC Gọi O là chân đường cao hạ từ B xuống mp (... tìm thể tích khối đa diện cần tính thông qua 1 khối đa diện trung gian đơn giản hơn Các em học sinh cần nắm vững các công thức sau: NGUYỄN TRUNG KIÊN 11 VSA′B′C ′ SA′.SB′.SC ′ (1) = VSABC SA.SB.SC VSA′ABC A ' A (2) Công thức (2) có thể mở rộng cho khối chóp bất kỳ = VSABC SA S C' A' B' A C B ˆ Ví dụ 3) Cho hình chóp SABCD có đáy ABCD là hình thoi cạnh a , BAD = 600 , SA vuông góc với đáy ABCD , SA =... Từ giả thi t ta suy ra ∆ASC = ∆ADC = ∆ABC ⇒ OB = SO = OD ⇔ ∆SBD vuông tại S Tính được BD = a 3, SH = SB.SD SB 2 + SD 2 1 1 a 6 a2 3 VSABCD = SH S ABCD = = 3 3 3 2 = a 6 ,suy ra tam giác ABC là tam giác đều 3 2a 3 6 2 Chú ý: Ta có thể tính thể tích theo cách: VSABCD = 2VCSBD = CO.S ∆SBD 3 Trong ví dụ này chìa khóa để giải quyết bài toán là phát hiện ra tam giác SBD vuông tại S Các em hãy rèn luyện . TRUNG KIÊN 1 Chuyên đề luyện thi đại học PHƯƠNG PHÁP GIẢI CÁC BÀI TẬP HÌNH KHÔNG GIAN TRONG KỲ THI TSĐH Biên soạn: Nguyễn Trung Kiên Hình không gian là bài toán không khó trong đề thi TSĐH nhưng. toán không khó trong đề thi TSĐH nhưng luôn làm cho rất nhiều học sinh bối rối. Thông qua chuyên đề này tôi hy vọng sẽ giúp các bạn học sinh hiểu rõ hơn bản chất của bài toán để từ đó tìm ra chìa. = ⇒ = = Ví dụ 6) Cho hình chóp SABCD có đáy ABCD là hình bình hành  0 2 , , 60 AB a AD a BAD= = = SAB là tam giác đều . Gọi H là trung điểm của AB , K là hình chiếu vuông góc của

Ngày đăng: 18/06/2015, 19:30

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan