Nghiên cứu tính chất từ của hợp kim Fe50Co50 có kích thước nano mét tổng hợp bằng phương pháp hợp kim cơ

68 585 0
Nghiên cứu tính chất từ của hợp kim Fe50Co50 có kích thước nano mét tổng hợp bằng phương pháp hợp kim cơ

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

MỞ ĐẦU Vật liệu từ mềm với các phẩm chất từ tuyệt vời: độ từ hóa bão hòa cao, nhiệt độ Curie cao, lực kháng từ thấp… đã được sử dụng rộng rãi như làm các cực trong mô tô điện và máy phát điện, trong lõi biến áp, các mạch chuyển đổi chuyển tiếp cho các hệ thống thông tin liên lạc và các thiết bị điện khác... Hợp kim từ mềm thường tồn tại dưới các hợp chất của sắt bao gồm thép cacbon thấp, silicon sắt, niken cao sắt và hợp kim sắt coban…14 Gần đây, khoa học và công nghệ nano có sự phát triển vượt bậc bởi những hiện tượng lý thú xuất hiện trong vùng kích thước nano mét cũng như khả năng ứng dụng rất hứa hẹn của chúng trong nhiều lĩnh vực: điện tử học, năng lượng, môi trường, y sinh… Trong số các vật liêu nano, các vật liệu từ mềm thế hệ mới bao gồm các hợp kim vô định hình, nano tinh thể… với điện trở cao, khả năng chống ăn mòn tốt, độ bền cơ học lớn hơn so với hợp kim dạng khối đã nhận được sự quan tâm đặc biệt. Hợp kim FeCo với các đặc trưng từ mềm nổi bật như độ từ thẩm cao, nhiệt độ Curie cao và đặc biệt từ độ bão hòa cao nhất trong số các vật liệu sắt từ đã biết được xem là vật liệu có tiềm năng ứng dụng trong nam châm tổ hợp trao đổi đàn hồi, hấp thụ sóng điện từ, hay các ứng dụng y sinh…22, 24, 32. Hợp kim FeCo có cấu trúc lập phương tâm khối, trong khoảng 30 < x < 70, FeCo chuyển đổi từ cấu trúc bất trật tự sang cấu trúc trật tự dưới nhiệt độ 7300C 10. Hợp kim FeCo dạng hạt có thể được tổng hợp bằng các phương pháp hóa học và vật lý khác nhau: polyol 34, phân hủy nhiệt 28, nghiền bi 22… Hợp kim cơ (MA) là kỹ thuật nghiền bi năng lượng cao có nhiều ưu điểm: tương đối đơn giản, đầu tư thấp, độ lặp lại cao, sản xuất với khối lượng lớn…. Để tổng hợp hệ các hạt FeCo bằng phương pháp MA người ta thường sử dụng các thiết bị nghiền bi có năng lượng cao như máy nghiền hành tinh Fritsch P6, nghiền rung, lắc SPEX 8000D… Trong quá trình hợp kim cơ, các bột kim loại Fe, Co được nghiền trong môi trường khí bảo vệ như Ar để giảm thiểu sự ôxy hóa. Sản phẩm thu từ quá trình nghiền thường có từ độ bão hòa Ms cao và ít thay đổi theo thời gian nghiền, trong khi đó lực kháng từ Hc tăng theo thời gian nghiền 8, 19, 22. Tuy nhiên, trên thế giới có rất ít những công bố về sự tổng hợp và tính chất của hợp kim FeCo được chế tạo trong môi trường không khí 20. Sự ổn định của từ độ của mẫu khi được bảo quản trong không khí cũng chưa được quan tâm nghiên cứu một cách thỏa đáng. Trong thời gian gần đây, tại Viện Khoa học vật liệu, các hợp kim FeCo dạng hạt đã được tổng hợp bằng một số phương pháp như thủy nhiệt, hợp kim cơ… nhằm sử dụng cho các ứng dụng trong nam châm trao đổi đàn hồi và y sinh. Đã có một vài công bố sơ bộ về ảnh hưởng của thời gian nghiền và nhiệt độ ủ tới các đặc trưng cấu trúc, tính chất từ của hợp kim Fe65Co35 12, 13. Tuy nhiên, những nghiên cứu về ảnh hưởng của ôxy hóa tới sự xuất hiện của các pha tinh thể thứ cấp nền Fe và Co bên cạnh pha hợp kim chính FeCo với cấu trúc lập phương tâm khối cũng như những biện luận thỏa đáng về ảnh hưởng của các pha này tới tính chất từ cũng chưa được nghiên cứu tường minh. Xuất phát từ tình hình nghiên cứu hợp kim FeCo dạng hạt trên thế giới cũng như ở Việt Nam, căn cứ vào kinh nghiệm của Thầy hướng dẫn, trang thiết bị tại Viện Khoa học vật liệu và cũng để phát triển, hoàn thiện những kết quả nghiên cứu đã đạt được chúng tôi lựa chọn đề tài của luận văn: “ Nghiên cứu tính chất từ của hợp kim Fe50Co50 có kích thước nano mét tổng hợp bằng phương pháp hợp kim cơ ”

1 MỞ ĐẦU Vật liệu từ mềm với các phẩm chất từ tuyệt vời: độ từ hóa bão hòa cao, nhiệt độ Curie cao, lực kháng từ thấp… đã được sử dụng rộng rãi như làm các cực trong mô tô điện và máy phát điện, trong lõi biến áp, các mạch chuyển đổi chuyển tiếp cho các hệ thống thông tin liên lạc và các thiết bị điện khác Hợp kim từ mềm thường tồn tại dưới các hợp chất của sắt bao gồm thép cacbon thấp, silicon - sắt, niken cao - sắt và hợp kim sắt - coban…[14] Gần đây, khoa học và công nghệ nano có sự phát triển vượt bậc bởi những hiện tượng lý thú xuất hiện trong vùng kích thước nano mét cũng như khả năng ứng dụng rất hứa hẹn của chúng trong nhiều lĩnh vực: điện tử học, năng lượng, môi trường, y sinh… Trong số các vật liêu nano, các vật liệu từ mềm thế hệ mới bao gồm các hợp kim vô định hình, nano tinh thể… với điện trở cao, khả năng chống ăn mòn tốt, độ bền cơ học lớn hơn so với hợp kim dạng khối đã nhận được sự quan tâm đặc biệt. Hợp kim Fe-Co với các đặc trưng từ mềm nổi bật như độ từ thẩm cao, nhiệt độ Curie cao và đặc biệt từ độ bão hòa cao nhất trong số các vật liệu sắt từ đã biết được xem là vật liệu có tiềm năng ứng dụng trong nam châm tổ hợp trao đổi đàn hồi, hấp thụ sóng điện từ, hay các ứng dụng y sinh…[22, 24, 32]. Hợp kim Fe-Co có cấu trúc lập phương tâm khối, trong khoảng 30 < x < 70, Fe-Co chuyển đổi từ cấu trúc bất trật tự sang cấu trúc trật tự dưới nhiệt độ 730 0 C [10]. Hợp kim Fe-Co dạng hạt có thể được tổng hợp bằng các phương pháp hóa học và vật lý khác nhau: polyol [34], phân hủy nhiệt [28], nghiền bi [22]… Hợp kim cơ (MA) là kỹ thuật nghiền bi năng lượng cao có nhiều ưu điểm: tương đối đơn giản, đầu tư thấp, độ lặp lại cao, sản xuất với khối lượng lớn…. Để tổng hợp hệ các hạt Fe-Co bằng phương pháp MA người ta thường sử dụng các thiết bị nghiền bi có năng lượng cao như máy nghiền hành tinh Fritsch P6, nghiền rung, lắc SPEX 8000D… Trong quá trình hợp kim cơ, các bột kim loại Fe, Co được nghiền trong môi trường khí bảo vệ như Ar để giảm thiểu sự ôxy hóa. Sản phẩm thu từ quá trình nghiền thường có từ độ bão hòa M s cao và ít thay đổi theo thời gian nghiền, trong 2 khi đó lực kháng từ H c tăng theo thời gian nghiền [8, 19, 22]. Tuy nhiên, trên thế giới có rất ít những công bố về sự tổng hợp và tính chất của hợp kim Fe-Co được chế tạo trong môi trường không khí [20]. Sự ổn định của từ độ của mẫu khi được bảo quản trong không khí cũng chưa được quan tâm nghiên cứu một cách thỏa đáng. Trong thời gian gần đây, tại Viện Khoa học vật liệu, các hợp kim Fe-Co dạng hạt đã được tổng hợp bằng một số phương pháp như thủy nhiệt, hợp kim cơ… nhằm sử dụng cho các ứng dụng trong nam châm trao đổi đàn hồi và y sinh. Đã có một vài công bố sơ bộ về ảnh hưởng của thời gian nghiền và nhiệt độ ủ tới các đặc trưng cấu trúc, tính chất từ của hợp kim Fe 65 Co 35 [12, 13]. Tuy nhiên, những nghiên cứu về ảnh hưởng của ôxy hóa tới sự xuất hiện của các pha tinh thể thứ cấp nền Fe và Co bên cạnh pha hợp kim chính Fe-Co với cấu trúc lập phương tâm khối cũng như những biện luận thỏa đáng về ảnh hưởng của các pha này tới tính chất từ cũng chưa được nghiên cứu tường minh. Xuất phát từ tình hình nghiên cứu hợp kim Fe-Co dạng hạt trên thế giới cũng như ở Việt Nam, căn cứ vào kinh nghiệm của Thầy hướng dẫn, trang thiết bị tại Viện Khoa học vật liệu và cũng để phát triển, hoàn thiện những kết quả nghiên cứu đã đạt được chúng tôi lựa chọn đề tài của luận văn: “ Nghiên cứu tính chất từ của hợp kim Fe 50 Co 50 có kích thước nano mét tổng hợp bằng phương pháp hợp kim cơ ” Mục tiêu của luận văn: - Chế tạo thành công hệ hạt nano Fe 50 Co 50 bằng phương pháp hợp kim cơ. - Tìm hiểu ảnh hưởng của thời gian nghiền và nhiệt độ ủ tới các đặc trưng cấu trúc, tính chất từ của hợp kim. - Biện luận thỏa đáng ảnh hưởng của ôxy hóa tới cấu trúc, tính chất từ và sự ổn định từ độ khi bảo quản ngoài không khí. Phương pháp nghiên cứu Khóa luận được tiến hành bằng phương pháp thực nghiệm. Các kết quả thực nghiệm được làm khớp với một số mô hình lý thuyết về cấu trúc và tính chất từ để phân tích kết quả và biện luận. 3 Bố cục của khóa luận: luận văn gồm 56 trang với phần mở đầu, 3 chương nội dung và kết luận. Cụ thể như sau: Mở đầu Chương 1: Tổng quan Chương 2: Các kỹ thuật thực nghiệm Chương 3: Kết quả và thảo luận Kết luận Tài liệu tham khảo Danh mục công trình công bố 4 CHƯƠNG 1: TỔNG QUAN Trong chương này chúng tôi trình bày những nét cơ bản về giản đồ pha, cấu trúc tinh thể, các tính chất từ cũng như một vài phương pháp tổng hợp vật liệu Fe-Co có kích thước nano mét. 1.1. Giản đồ pha của Fe-Co Giản đồ pha (còn gọi là giản đồ trạng thái hay giản đồ cân bằng) của một hệ là công cụ để biểu thị mối quan hệ giữa nhiệt độ, thành phần và tỷ lệ các pha của hệ đó ở trạng thái cân bằng. Giản đồ pha cũng là cách biểu diễn quá trình kết tinh của hợp kim, ở đó các loại pha được kết tinh từ dung dịch [7]. Khái niệm pha được hiểu là những phần đồng nhất của hợp kim (còn được gọi là hệ) ở điều kiện cân bằng trong cùng một trạng thái (có thể là lỏng, rắn hay khí) và ngăn cách với các phần còn lại (tức với các pha khác) bằng bề mặt phân chia. Một pha trong trạng thái rắn phải có cùng kiểu mạng và thông số mạng. Một số hợp kim sẽ tồn tại dưới dạng dung dịch rắn mất trật tự, trong đó vị trí các ion kim loại được định xứ ngẫu nhiên trong mạng tinh thể. Một tinh thể hoàn thiện là tinh thể mà trong đó các nguyên tử được phân bố vào đúng vị trí mạng cơ sở của nó một cách có trật tự. Khi nhiệt độ tăng lên thì các nguyên tử ở các mạng lưới dao động mạnh dần và có thể rời khỏi vị trí của nó để đi vào các hốc trống giữa các nút mạng, còn vị trí nút mạng trở thành lỗ trống và lúc này mạng lưới tinh thể sẽ trở thành mất trật tự [7]. Phân tích ví dụ hình 1.1 b và c về giản đồ cấu trúc của hợp kim Fe-Pt cho thấy cấu trúc trật tự L1 2 và cấu trúc bất trật tự lập phương tâm mặt A1, nhận thấy rằng ở hình 1.1 b pha trật tự các nguyên tử của một loại nguyên tố chỉ chiếm vị trí tại các đỉnh hoặc các mặt của khối lập phương. Trong khi đó với cấu trúc mất trật tự như ở hình 1.1 c các ion của hai nguyên tố Fe và Pt có thể chiếm chỗ tại các đỉnh hoặc tâm mặt của hình lập phương. 5 Hình 1.1. Giản đồ minh họa a) cấu trúc L1 0 ; b) cấu trúc trật tự L1 2 và c) pha bất trật tự A1 của hợp kim Fe-Pt [29] Hình 1.2. Giản đồ pha của Fe-Co [14] Nguyên tử Co (%) Khối lượng Co (%) T ( 0 C ) 6 Giản đồ pha của Fe-Co được biểu diễn trên hình 1.2. Từ giản đồ này có thể thấy Fe và Co tạo nên hệ dung dịch rắn mất trật tự fcc (γ) ở nhiệt độ cao. Ở nhiệt độ trên 730 0 C với Co chiếm ~ 75% khối lượng thì hợp chất này tồn tại ở trạng thái dung dịch rắn bcc (α). Dưới nhiệt độ 730 0 C, tồn tại dạng bcc (α) với thành phần nguyên tố cân bằng nhau (trật tự nguyên tử theo dạng cấu trúc của CsCl (α 1 )). Sự chuyển đổi từ pha trật tự - bất trật tự đóng một vai trò quan trọng trong việc xác định tính chất từ và phẩm chất cơ học của vật liệu [14]. Hợp kim Fe-Co được xem là vật liệu có giá trị từ độ bão hòa cao nhất trong số các vật liệu sắt từ đã biết. Mặc dù Co có mômen từ nguyên tử thấp hơn của Fe, nhưng khi được thay bởi Co sẽ làm tăng từ độ của hợp kim. Hình 1.3 chỉ ra sự thay đổi của mô men từ bão hòa ở nhiệt độ phòng của Fe theo hàm lượng Co được đưa vào, cho thấy giá trị lớn nhất đạt được là 240 emu/g khi Co chiếm là 35% khối lượng trong hợp kim. Tuy nhiên, độ từ thẩm cao nhất đạt được khi tỉ phần của hợp kim Fe/Co = 50/50 [14]. Hình 1.3. Sự thay đổi của từ độ bão hòa của hợp kim Fe-Co theo tỉ lệ Co [14]. 1.2. Cấu trúc tinh thể của Fe-Co Fe kim loại thường tồn tại dưới 2 dạng cấu trúc lập phương tâm khối (bcc) và lập phương tâm mặt (fcc), trong khi đó Co tồn tại dưới hai dạng cấu trúc lục giác xếp chặt (hcp) và fcc. Cấu trúc tinh thể có một tác động đáng kể đến tính chất từ. Khi hợp kim giàu Fe, chúng được hình thành ở pha bcc do quá trình kết tinh của hợp kim. Thay thế Khối lượng Co (%) M s ( e m u / g ) 7 Co cho Fe trong các hợp kim có thể tạo ra một pha α-FeCo với cấu trúc B2 (pha trật tự) và với hợp kim giàu Co được tìm thấy có cả cấu trúc fcc và hcp trong quá trình kết tinh của hợp kim. Năng lượng cao của quá trình nghiền tạo ra trạng thái tinh thể giả bền (không cân bằng) với sự tồn tại đồng thời của các pha bcc, hcp, fcc [30]. Hình 1.4. Các dạng cấu trúc tinh thể của Fe (bcc, fcc) và Co (hcp, fcc). Hằng số mạng cho hai dạng cấu trúc fcc và bcc của sắt lần lượt là 3,515 Å và 2,87 Å. Với Co cấu trúc hcp (α-Co) thì a = 2,51 Å và c = 4,07 Å trong khi đó cấu trúc fcc (β-Co) có hằng số mạng là 3,55 Å. 1.3. Các tính chất từ [3, 5, 6] Hợp kim Fe-Co là vật liệu từ mềm điển hình với các đặc trưng [3]: - Từ độ bão hòa Ms cao, - Lực kháng từ Hc nhỏ, - Độ từ thẩm cao, - Nhiệt độ Curie cao, - Dị hướng thấp (vật liệu dễ từ hóa hơn). bcc fcc hcp 8 Hình 1.5. Đường cong từ trễ của vật liệu từ mềm. 1.3.1. Từ độ bão hòa [3] Từ độ bão hòa là giá trị từ độ khi được từ hóa đến từ trường đủ lớn (vượt qua giá trị trường dị hướng) sao cho vật liệu ở trạng thái bão hòa từ, có nghĩa là các mômen từ hoàn toàn song song với nhau. Từ độ bão hòa là tham số đặc trưng của vật liệu sắt từ. Nếu ở không độ tuyệt đối (0 K) thì nó là giá trị từ độ tự phát của chất sắt từ. Vật liệu là từ mềm có từ độ bão hòa cao và hợp kim Fe-Co được biết đến là vật liệu từ mềm có từ độ bão hòa cao nhất hiện nay (240 emu/g). 1.3.2. Lực kháng từ [3] 9 Lực kháng từ là từ trường ngoài cần thiết để một hệ, sau khi đạt trạng thái bão hòa từ, bị khử từ. Lực kháng từ chỉ tồn tại ở các vật liệu có trật tự từ (sắt từ, feri từ, ) và thường được xác định từ đường cong từ trễ. Người ta có thể phân loại các loại vật liêu từ qua giá trị lực kháng từ, trong cách phân loại này vật liệu từ cứng có lực kháng từ lớn và vật liệu sắt từ mềm có lực kháng từ nhỏ. Sự liên quan giữa từ trường (H), cảm ứng từ (B), và từ độ (M) được biểu diễn bằng công thức: B = μ 0 .(M+H) (1.1) Do đó, sẽ xuất hiện hai loại giá trị lực kháng từ: M c H M c H 10 i. Lực kháng từ liên quan đến từ độ (): là giá trị của lực kháng từ, cho phép triệt tiêu từ độ của mẫu. Giá trị này mang tính chất chung, không phụ thuộc vào hình dạng vật từ, và trong kỹ thuật thường được kí hiệu là . Thông thường, nói đến lực kháng từ là nói đến khái niệm này. ii. Lực kháng từ liên quan đến cảm ứng từ (): là giá trị của lực kháng từ cho phép triệt tiêu cảm ứng từ của mẫu. Giá trị này mang tính chất kỹ thuật, phụ thuộc vào hình dạng mẫu (do được bổ sung yếu tố dị hướng hình dạng của mẫu khi đo). B c H [...]... kích thước nano mét bằng phương pháp hợp kim cơ [5] 1.4.1 Sơ lược về phương pháp hợp kim cơ Hợp kim cơ (Mechanical Alloying-MA) được John Benjanin và các cộng sự phát triển từ những năm 60 của thế kỷ 20, như một kỹ thuật cho phép phân tán các ôxít vào trong các kim loại nền Ni, Fe MA là một kỹ thuật nghiền bi năng lượng cao, thường là nghiền khô Khả năng lớn nhất của nó là tổng hợp các hợp kim chứa các... tạo kim loại tinh khiết bằng phương pháp này bởi sự thay đổi năng lượng tự do âm lớn và có thể thực hiện với đặc trưng nhiệt động ở nhiệt độ phòng MA có thể cung cấp 27 những phương pháp để tăng động học phản ứng, do có sự sinh ra các bề mặt sạch và mới làm tăng mật độ khuyết tật và giảm kích thước hạt 1.5 Các phương pháp khác [6, 10] Ngoài phương pháp MA còn có một số phương pháp khác để tổng hợp. .. được đo bằng thiết bị từ kế mẫu rung VSM (Vibrating Sample Magnetometer) tại nhiệt độ phòng, trong từ trường cao nhất là 11 kOe và hệ đo các tính chất vật lý PPMS (Physical Property Measurement System) trong khoảng nhiệt độ 10-340 K với từ trường cao nhất lên tới 50 kOe 2.1 Tổng hợp vật liệu nano Fe-Co bằng phương pháp hợp kim cơ 1 Hóa chất - Bột Fe kích thước ban đầu khoảng 60 µm - Bột Co kích thước. .. thuận từ [6] Hiện tượng siêu thuận từ là một trong những tính chất chỉ có ở hạt nano từ, nó liên hệ trực tiếp đến dị hướng từ của vật liệu và sự thăng giáng nhiệt của từ độ tự phát Năm 1949, Néel đã chỉ ra rằng, khi năng lượng dao động nhiệt lớn hơn năng lượng dị hướng thì momen từ tự phát của hạt có thể thay đổi từ hướng của trục dễ sang hướng khác ngay cả khi không có từ trường ngoài Mỗi hạt có một... phương pháp phân tích cấu trúc tinh thể bằng nhiễu xạ bột gọi là phương pháp Rietveld (Rietveld refinement) Phương pháp Rietveld được ứng dụng trong các phương pháp nhiễu xạ bột như nhiễu xạ nơ-tron, nhiễu xạ tia X thông thường Hiện nay có rất nhiều chương trình tính toán cấu trúc tinh thể trên cơ sở phương pháp Rietveld Kích thước tinh thể trung bình của các mẫu trong luận văn được xác định bằng phương. .. hợp hạt nano Fe-Co như polyol, đồng kết tủa, điện hóa, oxalate… Dưới đây chúng tôi trình bày hai phương pháp thông dụng là phương pháp hóa khử và phương pháp thủy nhiệt 1 Phương pháp hóa khử [10] Phương pháp khử hóa học là phương pháp dùng các tác nhân hóa học để khử ion kim loại thành kim loại Thông thường các tác nhân hóa học ở dạng dung dịch lỏng nên còn gọi là phương pháp hóa ướt Chang Woo Kim và... nhiệt điện Hợp kim đa tinh thể đồng nhất của vật liệu này rất khó sản xuất bằng phương pháp IM, phương pháp MA có thể dễ dàng thay thế cho IM 2 Các ứng dụng khác Tổng hợp các kim loại tinh khiết từ các ôxit theo phương trình phản ứng: MO + R → M + RO (1.10) Trong đó, ôxit kim loại MO tham gia phản ứng trao đổi chuyển thành kim loại tinh khiết nhờ chất khử R Các muối clorit và sunfit cũng có thể dùng... cường do sự phân tán các oxit (ODS) Những hợp kim này là những hợp chất có thành phần phức tạp và khó xử lý bằng phương pháp luyện kim truyền thống (IM) • Sản xuất những sản phẩm hóa học đồng nhất hơn phương pháp IM Dùng trong các lò nhiệt luyện (trong lò chứa các bột hợp kim nghiền cơ của Mg và Fe tán mịn, bột này tiếp xúc với nước tạo ra hơi nóng • Bột hợp kim có độ đồng đều cao được dùng cho sơn và... công hạt nano Fe-Co bằng phương pháp hóa khử từ hai muối ban đầu coban clorua và sắt clorua với borohidrua như một chất khử trong dung dịch nước Kết quả thu được sản phẩm có cấu trúc bcc, kích thước hạt trung bình cỡ 8 nm, từ độ bão hòa cao nhất đạt được là 230 emu/g 2 Phương pháp thủy nhiệt [6] Phương pháp thủy nhiệt được định nghĩa là phản ứng xảy ra do sự kết hợp của dung dịch hoặc các khoáng chất ở... momen từ của một hạt, H là từ trường ngoài đặt vào và kB là hằng số Boltzman ( kB =1,3807.10-23 J.K-1 ) Nhiệt độ mà ở đó hạt nano chuyển từ sắt từ sang siêu thuận từ gọi là nhiệt độ khóa TB Đối với các hạt nano siêu thuận từ nhiệt độ TB và thể tích hạt được xác định qua công thức: 21 TB = (1.8) Trong đó, Keff là hằng số dị hướng từ hiệu dụng, V là thể tích hạt nano 1.4 Tổng hợp vật liệu có kích thước nano . mạng. Một số hợp kim sẽ tồn tại dưới dạng dung dịch rắn mất trật tự, trong đó vị trí các ion kim loại được định xứ ngẫu nhiên trong mạng tinh thể. Một tinh thể hoàn thiện là tinh thể mà trong. hợp kim. Tuy nhiên, độ từ thẩm cao nhất đạt được khi tỉ phần của hợp kim Fe/Co = 50/50 [14]. Hình 1.3. Sự thay đổi của từ độ bão hòa của hợp kim Fe-Co theo tỉ lệ Co [14]. 1.2. Cấu trúc tinh thể. Tinh thể Fe có bốn trục từ hóa khó là các đường chéo của tinh thể. 15 Hình 1.8. Dị hướng từ tinh thể của Co. Tinh thể Co có cấu trúc lục giác xếp chặt thì trục từ hóa dễ song song với trục tinh

Ngày đăng: 06/06/2015, 10:55

Từ khóa liên quan

Mục lục

  • 2.5.1. Từ kế mẫu rung

  • Tính chất từ của hệ mẫu được đo bằng thiết bị từ kế mẫu rung VSM (Vibrating Sample Magnetometer) với từ trường cực đại là 12 kOe tại VKHVL (hình 2.6).

  • Thiết bị VSM dùng để xác định mô men từ của mẫu với nguyên lý hoạt động dựa trên cơ sở hiện tượng cảm ứng điện từ. Bằng cách thay đổi vị trí tương đối của mẫu có mô men từ M với cuộn dây thu, từ thông qua tiết diện ngang của cuộn dây sẽ thay đổi theo thời gian làm xuất hiện trong nó một suất điện động cảm ứng. Tín hiệu được thu nhận được khuếch đại lọc lựa rồi được xử lý trên máy tính và so sánh với mẫu chuẩn và cho ta biết giá trị từ độ của mẫu. Hình 2.7 trình bày sơ đồ nguyên lý của VSM.

  • 2.5.2. Hệ đo các tính chất vật lý (PPMS)

  • Các đường cong từ trễ của mẫu cũng được đo bằng thiết bị đo các tính chất vật lý PPMS. Thiết bị PPMS 6000 thực hiện nhiều phép đo trong đó có đo tính chất từ dựa trên nguyên lý của hệ từ kế mẫu rung (VSM) như đã trình bày ở trên.

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan