333 Bài toán tích phân

13 2,241 13
  • Loading ...

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 20/09/2012, 17:16

333 Bài toán tích phân Tröông Vaên Höng 12A1 K30 HÑB General 41333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC1/ Cho hàm số : f(x)= x.sinx+x2 . Tìm nguyên hàm của hàm số g(x)= x.cosxbiết rằng nguyên hàm này triệt tiêu khi x=k2/Định m để hàm số: F(x) = mx3+(3m+2)x2-4x+3 là một nguyên hàm của hàm số:f(x) = 3x2 +10x-4.3/Tìm họ nguyên hàm của hàm số: f(x)= cos3x.sin8x.TÍNH :4/I =3243tg x dx5/I =426(2cotg x 5)dx 6/I =201 cosxdx1 cos x7/ I =20sin2x.cos2xdx8/I =30(2cos2x-3sin2x)dx9 / I =22s i n (x )4d xs i n (x )4 10 / I =36(tgx-cotgx)2 dx11/ I =440cos x dx12 / I =230sin x dx 13*/ I =3323sin x sin xcot gx dxsin x14/I =240sin x dx 15/I =34222cos2sin1xx dx16/I =46cotg2x dx17/I =22sin x4e sin 2x dx 18/ I =4022cosxetgx.Tröông Vaên Höng 12A1 K30 HÑB General 4219/ I =244sin1x dx20/ I =406cos1x dx21/I =dxxxnsix )cos(2cos442022/ I =230cos xdx23/ I =3204sin xdx1 cosx24/ I =13 20x 1 x dx25/I =15 20x 1 x dx26/I =10xdx2x 127/I =1x01dxe 428/I =2x11dx1 e29/I =2x2x0edxe 130/I =x1x0edxe 131/I =e21ln xdxx(ln x 1)32/I =7330x 1dx3x 134/I =12 231dxx 4 x35/I =4221dxx 16 x36*/I =622 31dxx x 937/I =22 21x 4 x dx38/I =22 30x (x 4)dx39/I =244 33x 4dxx40*/I =2222x 1dxx x 141/I =ln 2x0e 1dx42/I =101dx3 2x43/I =250sin xdx44*/I =301dxcosx45/I =2x1x0edxe 146/I =ln3x01dxe 147/I =4261dxsin x cot gx48/I =32e1ln x 2 ln xdxxTröông Vaên Höng 12A1 K30 HÑB General 4333/I =2320(x 3)x 6x 8 dx  .49/I =e1sin(ln x)dxx50/I =13 4 50x (x 1)dx51/I =12 30(1 2x)(1 3x 3x )dx  52/I =2311dxx 1 x53/I =32 26tg x cot g x 2dx 54/I =12 30(1 x )dx55*/I =12x01dxe 356/I =xln3x 30edx(e 1)57/I =02x31x(e x 1)dx 58/I =263 501 cos x sin x.cos xdx59*/I =2 3251dxx x 460/I =40xdx1 cos2x61/I =2xln5xln 2edxe 1.64/I =20sin x.sin 2x.sin 3xdx65/I =24 40cos2x(sin x cos x)dx66*/I =23 30(cosx sin x)dx67/I =738 42xdx1 x 2x 68*/I =204cos x 3sin x 1dx4sin x 3cosx 5  69/I =931x. 1 xdx70/I =230x 1dx3x 271*/I =60xsin dx272*/I =20xdx2 x 2 x  73/I =33 20x . 1 x dx74**/I =120ln(1 x)dxx 175/I =20sin xdxsin x cos x76/I =e1cos(ln x)dx77*/I =2204 x dxTröông Vaên Höng 12A1 K30 HÑB General 4462/I =2e1x 1.ln xdxx63/I =210xdx(x 1)x 1 79/I =e11 3ln x ln xdxx80/I =322ln(x x)dx81/I =e21(ln x)dx82/I =2eeln xdxx83/I =2e1ln xdxln x84/I =221x ln(x 1)dx85/I =3231dxx 386/I =1201dx4 x87/I =240sin xdx88/I =326ln(sin x)dxcos x89/I =21cos(ln x)dx90*/I =220ln(1 x x)dx 91*/I =3221dxx 178/I =21xdx1 x 1 .94/I =620cosxdx6 5sin x sin x 95*/I =2e2e1 1()dxln xln x96/I =324x 4 dx97/I =23 21x 2x x 2 dx  98/I =344cos2x 1dx99/I =0cos x sin xdx100/I =201 sin xdx101/I =344sin 2x dx102/I =01 sin xdx103/I =1321ln(x x 1)dx    104*/I =20xsin xdx1 cos x105*/I =12 x11dx(x 1)(4 1) 106*/I =41x1xdx1 2Tröông Vaên Höng 12A1 K30 HÑB General 4592/I =381x 1dxx93/I =3321xdxx 16.109/I =620x.sin xcos xdx110*/I =2 x120x edx(x 2)111/I =2x 20e sin xdx112/I =2211x ln(1 )dxx113/I =e21eln xdx(x 1)114/I =1201 xx.ln dx1 x115/I =2t1ln xdx I 2x    116/I =30sin x.ln(cos x)dx117/I =2e21cos (ln x)dx118/I =401dxcosx119*/I =4301dxcos x107/I =240xsin xdx108/I =240x cos xdx123/I =1203dxx 4x 5 124/I =2215dxx 6x 9 125/I =1251dx2x 8x 26 126/I =102x 9dxx 3127/I =4211dxx (x 1)128*/I =022sin 2xdx(2 sin x)129/I =120x 3dx(x 1)(x 3x 2)  130/I =1304xdx(x 1)131/I =14 201dx(x 4x 3) 132/I =3320sin xdx(sin x 3)133/I =3364sin xdx1 cos xTröông Vaên Höng 12A1 K30 HÑB General 46120/I =213 x0x e dx121/I =22sin x 30e .sin x cos xdx122/I =240sin 2xdx1 cos x137/I =342 2 50sin xdx(tg x 1).cos x138/I =32 231dxsin x 9cos x139/I =22cos x 1dxcos x 2140/I =201 sin xdx1 3cosx141/I =20cosxdxsin x cos x 1 142/I =4211dxx (x 1)143/I =1331dxx 4 (x 4)  144/I =330sin xdxcosx145/I =10x 1 xdx146/I =64x 4 1. dxx 2 x 2 147/I =0211dxx 2x 9 134/I =3261dxcosx.sin x135/I =30sin x.tgxdx136/I =341dxsin 2x.152/I =14x 2x22x03e edx1 e153/I =4271dxx 9 x154/I =2x 20e sin xdx155/I =424 40cos xdxcos x sin x156/I =103dxx 9 x 157/I =0xsin xdx158/I =2 20x cos xdx159/I =10cos x dx160/I =10sin x dx161/I =240xsin x dxTröông Vaên Höng 12A1 K30 HÑB General 47148/I =3211dx4x x149/I =2214x x 5 dx 150/I =2222x 5dxx 4x 13 151/I =1x01dx3 e167/I =2x 20e sin x dx168/I =2 x120x edx(x 2)169/I =e1(1 x)ln x dx170/I =e21x ln x dx171/I =1e21ln x dx172/I =e1x(2 ln x)dx173/I =2e2e1 1()dxln xln x174/I =221(x x)ln x dx175/I =2211x ln(1 )dxx176/I =251ln xdxx177/I =e21eln xdx(x 1)178/I =1201 xx ln dx1 x162/I =240x cos x dx163/I =20x cos x sin x dx164/I =620x cos xsin x dx165/I =4x1e dx166/I =43x0e sin 4x dx182/I =240sin 2xdx1 cos x183/I =2215dxx 6x 9 184/I =210x 3x 2dxx 3 185/I =4211dxx (x 1)186/I =120ln(1 x)dxx 1187/I41601 xdx1 x188/I =115 80x 1 x dx189/I =x1x x0edxe e190/I=e1eln x dx191/I =2sin x0(e cos x)cos x dxTröông Vaên Höng 12A1 K30 HÑB General 48179/I =23cosx.ln(1 cosx)dx180/22sin x 30e sin x cos x dx181/I=240sin 2xdx1 sin x.197/I =221x 1()dxx 2198/I =420x.tg x dx199/I =53(x 2 x 2 )dx  200/I =412dxx 5 4 201/I =21xdxx 2 2 x  202/I =221ln(1 x)dxx203/I =20sin 2xdx1 cos x204/I =200822008 20080sin xdxsin x cos x205/I =20sin x.ln(1 cos x)dx206/I =2321x 1dxx192/I =20sin 2x.cos xdx1 cos x193/I =20sin 2x sin xdx1 3cosx194/I =2401 2sin xdx1 sin 2x195/I =5 3320x 2xdxx 1196/I =324tgxdxcos x 1 cos x212/I =2120xdx4 x213/I =120xdx4 x214/I =14220xdxx 1215/I =20sin3xdxcosx 1216/I =22220xdx1 x217/I =22411 xdx1 x218/I =37320xdx1 x219/I =xln 2x01 edx1 e220/I =10x 1 x dxTröông Vaên Höng 12A1 K30 HÑB General 49207/I =3420sin xdxcos x208/I =220cos x.cos4x dx209/I =12x x01dxe e210/I =e21eln xdx(x 1)211/I =101dxx 1 x 227/I =261 sin 2x cos 2xdxcosx sin x 228/I =x 212x0(1 e )dx1 e229/I =32 30x (1 x)dx230/I =3220sin x.cos xdxcos x 1231/I =12204x 1dxx 3x 2 232*/I =20xsin x.cos xdx233/I =20cosxdxcos2x 7234/I =4211dxx (x 1)235/I =22 30sin 2x(1 sin x)dx221/I =120x 1dx222/I =23 30(cos x sin x)dx223/I =230x 1dxx 1224/I =12 2x0(1 x).e dx225/I =220cosxdxcos x 1226/I =7330x 1dx3x 1.242/I =20sin 2x sin xdxcos3x 1243/I =42 20sin 2xdxsin x 2cos x244/I =23220xdx1 x245/I =23220xdx1 x246/I =212221 xdxx247/I =2120xdx4 x248/I =22231dxx x 1Tröông Vaên Höng 12A1 K30 HÑB General 410236/I =230x 1dx3x 2237/I =4271dxx x 9238/I =3 40xsin xcos xdx239/I =232cos x cos x cos xdx240*/I =121ln(x a x)dx 241/I =2x01 sin xdx(1 cos x)e255/I =232cos x cos x cos xdx256/I =344tg xdx257*/I =2x01 sin xe dx1 cos x258/I =12 30(1 x )dx259/I =420x.tg xdx260/I=22 201dx(4 x )261/I =21303xdxx 2262*/I =52511 xdxx(1 x )249/I =15 3 60x (1 x )dx250/I =20sin xdx1 sin x251/I =20cosxdx7 cos2x252/I =4211dx(1 x)x253/I =230x 1dx3x 2254*/I =34cos x sin xdx3 sin 2x.267/I =220sin xdxcos x 3268/I =20sin xdxx269/I =220sin x cos x(1 cosx)dx270/I =4 440sin x cos xdxsin x cos x 1 271/I =4 440sin x cos xdxsin x cos x 1 272/I =20sin x cos x cos xdxsin x 2 . Vaên Höng 12A1 K30 HÑB General 41 333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC1/ Cho hàm số : f(x)= x.sinx+x2 . Tìm nguyên. xdxxTröông Vaên Höng 12A1 K30 HÑB General 4333/ I =2320(x 3)x 6x 8 dx  .49/I =e1sin(ln x)dxx50/I =13 4 50x (x 1)dx51/I
- Xem thêm -

Xem thêm: 333 Bài toán tích phân, 333 Bài toán tích phân, 333 Bài toán tích phân