Phương trình, bất phương trình chứa dấu giá trị tuyệt đối

5 828 7
Phương trình, bất phương trình chứa dấu giá trị tuyệt đối

Đang tải... (xem toàn văn)

Thông tin tài liệu

PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH CÓ CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI Vấn đề 1: Phương pháp chia khoảng.  Dùng định nghĩa: ( ) ( ) ( ) ( ) ( ) ; 0 ; 0 f x f x f x f x f x ≥  =  − <    Xét dấu các biểu thức trong dấu giá trị tuyệt đối trên cùng một bảng. Chia ra một số khoảng trên trục số mà mỗi khoảng này ta đã biết dấu của các biểu thức trong trị tuyệt đối. Giải phương trình, bất phương trình trong khoảng đang xét. Thí dụ: Giải phương trình: ( ) 2 2 1 1 1x x x− + − = Giải: Bảng xét dấu: x −∞ 0 1\ 2 1 +∞ 2 x x− + 0 - - 0 + 2 1x − - - 0 + + i/ 0x ≤ : ( ) 2 2 1 1 2 1 3 0x x x x x⇔ − + − = ⇔ − = ( ) 0 0 3 x x x L =  ⇔ ⇔ =  =  . ii/ 1 0 2 x< ≤ : ( ) 2 2 1 1 2 1 0x x x x x⇔ − + − = ⇔ − − = ( ) 0 1 x L x =  ⇔  = −  . iii/ 1 1 2 x< ≤ : ( ) 2 2 1 1 2 1 3 2 0x x x x x⇔ − − + = ⇔ − + = . iv/ 1x > : ( ) 2 2 1 1 2 1 2 0x x x x x⇔ − − + = ⇔ + − = ( ) 1 2 x L x =  ⇔  = −  Vậy: { } 0;1S = Bài tập tương tự: 1. Giải các phương trình: a. 7 2 5 3 2x x x− = − + + b. ( ) 2 1 1 1 2 x x x x − + + = − c. 2 1 1x x− + = 2. Giải các bất phương trình. a. 2 2 4 3 1 5 x x x x − + ≥ + − . b. 2 3 1 1 x x − ≤ + c. 2 1 1x− − ≤ d. 9 3 5 3 x x ≥ − − − 3. Giải phương trình. 2 2 5 4 9 5 4 10 0x x x x x x− + − − + + = 4. Giải và biện luận. ( ) ( ) 2 2 2 2 1 1m x m m x m x m m x+ + + = + − + 5. Giải hệ 1 2 2 2 2 3 x y x y  + − + = −   − + =   6. Tìm tất cả các nghiệm nguyên của hệ. 2 1 0 2 1 1 0 y x x y x  − − − ≥   − + + − ≤   Vấn đề 2: Phương pháp biến đổi tương đương.  ( ) ( ) ( ) ( ) ( ) ( ) 2 2 f x g x f x g x f x g x= ⇔ = ⇔ = ± .  ( ) ( ) ( ) ( ) ( ) 0g x f x g x f x g x ≥  = ⇔  = ±    ( ) ( ) ( ) ( ) 2 2 f x g x f x g x< ⇔ < ( ) ( ) ( ) ( ) 0f x g x f x g x⇔ − + <         ( ) ( ) ( ) ( ) ( ) f x g x g x f x g x< ⇔ − < <  ( ) ( ) ( ) ( ) ( ) ( ) f x g x f x g x f x g x < − > ⇔  >   Thí dụ: Giải và biện luận phương trình: 2 2 2x x m x x+ + = − + + . Giải: Để phương trình có nghiệm ta phải có điều kiện: 2 2 0 1 2x x x− + + ≥ ⇔ − ≤ ≤ Khi đó phương trình đã cho tương đương với: ( ) ( ) 2 2 2 2 2x x m x x+ + = − + + ( ) ( ) 2 2 2 2 2 0x m x m⇔ + − + + = ( ) ( ) 2 2 2 1 2 2 0 2 2 2 2 0 2 2 m x x m m x m x −  =   + − = ⇔ ⇔   + + + =   = −   ( ) 1 có nghiệm ( ) 2 0 *m− ≥ khi đó nghiệm của nó là: 1 2 2 2 ; 2 2 m m x x − − = = − Kiểm tra điều kiện:  1 2 1 2 2 6 2 m x m − − ≤ ≤ ⇔ ≤ ⇔ ≥ − . Kết hợp với ( ) * ta có 6 2m− ≤ ≤  2 2 1 2 1 0 2 2 m x m − − ≤ ≤ ⇔ − ≤ − ⇔ ≤ ≤  2 1 2 6 0 2 m x m + − ≤ = − ≤ ⇔ − ≤ ≤ . Gọi 3 3 2 m x + = − . Kết luận:  6 2 :m m S< − ∨ > = ∅  { } 6: 2m S= − =  2 3 6 0 : ; 2 2 m m m S   − +   − < < = −        { } 0 : 1;1m S= = −  2 2 0 2 : ; 2 2 m m m S   − −   < < = −        { } 2 : 0m S= = Bài tập tương tự: 1. Giải các phương trình và bất phương trình. a. 2 2 2 2 1x x x− = − b. 2 5 4 1x x x− + > − c. 2 2 3 2 1x x x x− − ≤ − 2. Giải và biện luận các phương trình: a. 2 2 2 1 1 2x mx m x mx m− + − = + + + b. 2 1 1mx x x+ = − + c. 2 2 1 1x mx x+ + = + 3. Giải và biện luận các bất phương trình. a. 2 5 4x x a− + < b. 2 2 2 3x x a x x a− + ≤ + + 4. Định a để phương trình sau có 4 nghiệm phân biệt: ( ) 2 1 2x x a− = − Vấn đề 3: Phương pháp đặt ẩn phụ Thí dụ: Định m để phương trình có nghiệm: 2 2 2 1 0x x m x m− − − + = Giải: Đặt 1 ; 0t x t= − ≥ Phương trình đã cho được viết: ( ) 2 2 1 0 1t mt m− + − = . Phương trình đã cho có nghiệm ⇔ ( ) 1 có ít nhất 1 nghiệm 0t ≥ . i/ ( ) 1 có nghiệm 0t = 2 1 0 1m m⇔ − = ⇔ = ± . ii/ ( ) 1 có hai nghiệm trái dấu 2 1 0 1 1m m⇔ − < ⇔ − < < . iii/ ( ) 1 có các nghiệm đều dương 2 2 3 4 0 0 0 1 0 0 0 m P m S m  − + ≥ ∆ ≥    ⇔ > ⇔ − >     > >   2 3 2 3 3 3 1 1 0 m m m m  − ≤ ≤    ⇔ < − ∨ >   >    2 3 1 3 m⇔ < ≤ . Kết hợp các kết quả đã được, ta đi đến: 2 3 1 3 m− ≤ ≤ . Vậy: 2 3 1 3 m− ≤ ≤ . Bài tập tương tự: 1. Giải và biện luận bất phương trình: 2 2 2 2x m mx x− < − − 2. Định m để bất phương trình sau có nghiệm: 2 2 2 1 0x x m m m+ − + + − ≤ 3. Định m để phương trình sau có nghiệm duy nhất: ( ) 2 2 1 2 2mx m x mx− − + = − 4. Định m để 2 2 2 2 0x mx x m− + − + > với mọi x . Vấn đề 4: Phương pháp đồ thị. Thí dụ: Tìm m để phương trình 2 2 2 4x x x x m− − + + = có nghiệm. Giải: 8 6 4 2 -2 -4 -6 -10 -5 5 10 y=f(x) y=m O -1 -3 Ta có ( ) 2 2 2 2 3 2; 1 2 2 4 5 2; 1 2 x x x x f x x x x x x x  + − ≤ − ∨ ≥ = − − + + =  + − < <  Số nghiệm của phương trình là số giao điểm của đồ thị hàm số ( ) y f x= và đường thẳng y m= Dựa vào đồ thị ta suy ra: phương trình có nghiệm 3m⇔ ≥ − . Vậy: 3m ≥ − . Bài tập tương tự: 1. Định a để phương trình 2 0x x a− + = có nghiệm. 2. Định m để phương trình 2 2 2 3 2 5 8 2x x m x x− − = − − có nghiệm. . PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH CÓ CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI Vấn đề 1: Phương pháp chia khoảng.  Dùng định nghĩa: ( ) ( ) ( ) (. Xét dấu các biểu thức trong dấu giá trị tuyệt đối trên cùng một bảng. Chia ra một số khoảng trên trục số mà mỗi khoảng này ta đã biết dấu của các biểu thức trong trị tuyệt đối. Giải phương trình, . với mọi x . Vấn đề 4: Phương pháp đồ thị. Thí dụ: Tìm m để phương trình 2 2 2 4x x x x m− − + + = có nghiệm. Giải: 8 6 4 2 -2 -4 -6 -1 0 -5 5 10 y=f(x) y=m O -1 -3 Ta có ( ) 2 2 2 2 3 2; 1

Ngày đăng: 30/01/2015, 15:14

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan