giáo án bồi dưỡng học sinh giỏi toán 7 cực hay

31 639 1
  • Loading ...
    Loading ...
    Loading ...

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 10/01/2015, 09:13

Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an CHUYỀN ĐỀ BỒI DƯỠNG HSG TOÁN 7 PHẦN ĐẠI SỐ Chuyền đề 1: Các bài toán thực hiện phép tính: 1. Các kiến thức vận dụng : - Tính chất của phép cộng , phép nhân - Các phép toán về lũy thừa: a n = . n a a a 1 2 3 ; a m .a n = a m+n ; a m : a n = a m –n ( a ≠ 0, m ≥ n) (a m ) n = a m.n ; ( a.b) n = a n .b n ; ( ) ( 0) n n n a a b b b = ≠ 2 . Một số bài toán : Bài 1: a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1) b) Tính tổng : 1.2 + 2.3 + 3.4 + … + n.(n+1) 1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2) Với n là số tự nhiên khác không. HD : a) 1+2 + 3 + + n = n(n+1) 1+ 3+ 5+ …+ (2n-1) = n 2 b) 1.2+2.3+3.4+ …+ n(n+1) = [1.2.(3 - 0) + 2.3.(4 - 1) + 3.4(5 – 2) + … + n(n + 1)( (n+2) – (n – 1))] : 3 = [ 1.2.3 – 1.2.3 + 2.3.4 – 2.3.4 +……+ n( n+1)(n+2)] : 3 = n(n+ 1)(n+2) :3 1.2.3 + 2.3.4+ 3.4.5 + ….+ n(n+1)(n+2) = [ 1.2.3(4 – 0) + 2.3.4( 5 -1) + 3.4.5.(6 -2) + ……+ n(n+1)(n+2)( (n+3) – (n-1))]: 4 = n(n+1)(n+2)(n+3) : 4 Tổng quát: Bài 2: a) Tính tổng : S = 1+ a + a 2 +… + a n b) Tính tổng : A = 1 2 2 3 1 . . . n n c c c a a a a a a − + + + với a 2 – a 1 = a 3 – a 2 = … = a n – a n-1 = k HD: a) S = 1+ a + a 2 +… + a n ⇒ aS = a + a 2 +… + a n + a n+1 Ta có : aS – S = a n+1 – 1 ⇒ ( a – 1) S = a n+1 – 1 Nếu a = 1 ⇒ S = n Nếu a khác 1 , suy ra S = 1 1 1 n a a + − − b) Áp dụng 1 1 ( ) . c c a b k a b = − với b – a = k Ta có : A = 1 2 2 3 1 1 1 1 1 1 1 ( ) ( ) ( ) n n c c c k a a k a a k a a − − + − + + − = 1 2 2 3 1 1 1 1 1 1 1 ( ) n n c k a a a a a a − − + − + + − = 1 1 1 ( ) n c k a a − Bài 3 : a) Tính tổng : 1 2 + 2 2 + 3 2 + …. + n 2 b) Tính tổng : 1 3 + 2 3 + 3 3 + … + n 3 HD : a) 1 2 + 2 2 + 3 2 + ….+ n 2 = n(n+1)(2n+1): 6 b) 1 3 + 2 3 + 3 3 + … + n 3 = ( n(n+1):2) 2 Giáo án Bồi dưỡng HSG toán 7 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an Bài 3: Thùc hiÖn phÐp tÝnh: a) A = 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 − − − − − + + + + b) ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 125.7 5 .14 2 .3 8 .3 B − − = − + + HD : A = 9 28 − ; B = 7 2 Bài 4: 1, Tính: P = 1 1 1 2 2 2 2003 2004 2005 2002 2003 2004 5 5 5 3 3 3 2003 2004 2005 2002 2003 2004 + − + − − + − + − 2, Biết: 13 + 23 + . . . . . . .+ 103 = 3025. Tính: S = 23 + 43 + 63 + . . . .+ 203 Bài 5: a) TÝnh 115 2005 1890 : 12 5 11 5 5,0625,0 12 3 11 3 3,0375,0 25,1 3 5 5,2 75,015,1 +             −−+− ++− + −+ −+ =A b) Cho 20052004432 3 1 3 1 3 1 3 1 3 1 3 1 ++++++=B Chøng minh r»ng 2 1 <B . Bài 6: a) Tính :       −       + +       −− 7 2 14 3 1 12: 3 10 10 3 1 4 3 46 25 1 230. 6 5 10 27 5 2 4 1 13 b) TÝnh 1 1 1 1 2 3 4 2012 2011 2010 2009 1 1 2 3 2011 P + + + + = + + + + HD: Nhận thấy 2011 + 1 = 2010+2 = …. 2012 2010 1 1 1 1 2011 1 2 2011 MS⇒ = + + + + + + − 2012 2012 2012 2011 2 2011 = + + + − = 1 1 1 1 2012( ) 2 3 4 2012 + + + + c) 10099 4321 )6,3.212,1.63( 9 1 7 1 3 1 2 1 )10099 321( −++−+− −       −−−+++++ =A Bài 7: a) TÝnh gi¸ trÞ cña biÓu thøc: Giáo án Bồi dưỡng HSG toán 7 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an 50 31 . 93 14 1. 3 1 512 6 1 6 5 4 19 2 . 3 1 615 7 3 4. 31 11 1                   −       −+       −− =A b) Chøng tá r»ng: 2004 1 2004 1 3 1 3 1 2 1 1 2222 >−−−−−=B Bài 8: a) TÝnh gi¸ trÞ cña biÓu thøc: 25 13 :)75,2(53,388,0: 25 11 4 3 125505,4 3 4 4:624,81 2 2 2 2           −         +       +       − =A b) Chøng minh r»ng tæng: 2,0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 20042002424642 <−++−+−+−= − nn S Chuyên đề 2: Bài toán về tính chất của dãy tỉ số bằng nhau: 1. Kiến thức vận dụng : - . . a c a d bc b d = ⇔ = -Nếu a c e b d f = = thì a c e a b e b d f b d f ± ± = = = ± ± với gt các tỉ số dều có nghĩa - Có a c e b d f = = = k Thì a = bk, c = d k, e = fk 2. Bài tập vận dụng Dạng 1 Vận dụng tính chất dãy tỉ số bằng nhau để chứng minh đẳng thức Bài 1: Cho a c c b = . Chứng minh rằng: 2 2 2 2 a c a b c b + = + HD: Từ a c c b = suy ra 2 .c a b= khi đó 2 2 2 2 2 2 . . a c a a b b c b a b + + = + + = ( ) ( ) a a b a b a b b + = + Bài 2: Cho a,b,c ∈ R và a,b,c ≠ 0 thoả mãn b 2 = ac. Chứng minh rằng: c a = 2 2 ( 2012 ) ( 2012 ) a b b c + + HD: Ta có (a + 2012b) 2 = a 2 + 2.2012.ab + 2012 2 .b 2 = a 2 + 2.2012.ab + 2012 2 .ac = a( a + 2.2012.b + 2012 2 .c) (b + 2012c) 2 = b 2 + 2.2012.bc + 2012 2 .c 2 = ac+ 2.2012.bc + 2012 2 .c 2 = c( a + 2.2012.b + 2012 2 .c) Giáo án Bồi dưỡng HSG toán 7 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an Suy ra : c a = 2 2 ( 2012 ) ( 2012 ) a b b c + + Bài 3: Chøng minh r»ng nÕu d c b a = th× dc dc ba ba 35 35 35 35 − + = − + HD : Đặt a c k b d = = ⇒ a = kb, c = kd . Suy ra : 5 3 (5 3) 5 3 5 3 (5 3) 5 3 a b b k k a b b k k + + + = = − − − và 5 3 (5 3) 5 3 5 3 (5 3) 5 3 c d d k k c d d k k + + + = = − − − Vậy dc dc ba ba 35 35 35 35 − + = − + Bài 4: BiÕt 2 2 2 2 a b ab c d cd + = + với a,b,c, d ≠ 0 Chứng minh rằng : a c b d = hoặc a d b c = HD : Ta có 2 2 2 2 a b ab c d cd + = + = 2 2 2 2 2 2 2 2 ab a ab b cd c cd d + + = = + + 2 2 2 ( ) ( ) ( ) a b a b c d c d + + = + + (1) 2 2 2 2 a b ab c d cd + = + = 2 2 2 2 2 2 2 2 ab a ab b cd c cd d − + = = − + 2 2 2 ( ) ( ) ( ) a b a b c d c d − − = − − (2) Từ (1) và (2) suy ra : 2 2 ( ) ( ) a b a b a b a b c d c d a b b a c d c d c d d c + −  =  + − + − = ⇒  + − + −  =  + −  Xét 2 TH đi đến đpcm Bài 5 : Cho tØ lÖ thøc d c b a = . Chøng minh r»ng: 22 22 dc ba cd ab − − = vµ 22 22 2 dc ba dc ba + + =       + + HD : Xuất phát từ d c b a = biến đổi theo các hướng làm xuất hiện 2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) ab a b a c a b a b cd c d b d c d c d − + + = = = = = − + + Bài 6 : Cho d·y tØ sè b»ng nhau: d dcba c dcba b dcba a dcba 2222 +++ = +++ = +++ = +++ TÝnh cb ad ba dc ad cb dc ba M + + + + + + + + + + + = HD : Từ d dcba c dcba b dcba a dcba 2222 +++ = +++ = +++ = +++ Suy ra : 2 2 2 2 1 1 1 1 a b c d a b c d a b c d a b c d a b c d + + + + + + + + + + + + − = − = − = − ⇒ a b c d a b c d a b c d a b c d a b c d + + + + + + + + + + + + = = = Nếu a + b + c + d = 0 ⇒ a + b = -( c+d) ; ( b + c) = -( a + d) Giáo án Bồi dưỡng HSG toán 7 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an ⇒ cb ad ba dc ad cb dc ba M + + + + + + + + + + + = = -4 Nếu a + b + c + d ≠ 0 ⇒ a = b = c = d ⇒ cb ad ba dc ad cb dc ba M + + + + + + + + + + + = = 4 Bài 7 : a) Chøng minh r»ng: NÕu cba z cba y cba x +− = −+ = ++ 4422 Th× zyx c zyx b zyx a +− = −+ = ++ 4422 b) Cho: d c c b b a == . Chøng minh: d a dcb cba =       ++ ++ 3 HD : a) Từ cba z cba y cba x +− = −+ = ++ 4422 ⇒ 2 2 4 4a b c a b c a b c x y z + + + − − + = = ⇒ 2 2(2 ) 4 4 2 2 a b c a b c a b c a x y z x y z + + + − − + = = = + + (1) 2( 2 ) (2 ) 4 4 2 2 a b c a b c a b c b x y z x y z + + + − − + = = = + + (2) 4( 2 ) 4(2 ) 4 4 4 4 4 4 a b c a b c a b c c x y z x y z + + + − − + = = = − + (3) Từ (1) ;(2) và (3) suy ra : zyx c zyx b zyx a +− = −+ = ++ 4422 Bài 8: Cho zyx t yxt z xtz y tzy x ++ = ++ = ++ = ++ chøng minh r»ng biÓu thøc sau cã gi¸ trÞ nguyªn. zy xt yx tz xt zy tz yx P + + + + + + + + + + + = HD Từ zyx t yxt z xtz y tzy x ++ = ++ = ++ = ++ ⇒ y z t z t x t x y x y z x y z t + + + + + + + + = = = ⇒ 1 1 1 1 y z t z t x t x y x y z x y z t + + + + + + + + + = + = + = + ⇒ x y z t z t x y t x y z x y z t x y z t + + + + + + + + + + + + = = = Nếu x + y + z + t = 0 thì P = - 4 Nếu x + y + z + t ≠ 0 thì x = y = z = t ⇒ P = 4 Bài 9 : Cho 3 số x , y , z khác 0 thỏa mãn điều kiện : y z x z x y x y z x y z + − + − + − = = Hãy tính giá trị của biểu thức : B = 1 1 1 x y z y z x      + + +  ÷  ÷ ÷      Bài 10 : a) Cho các số a,b,c,d khác 0 . Tính Giáo án Bồi dưỡng HSG toán 7 inh vn Quõn Giỏo viờn trng THCS Ngha Hng Ngha n Ngh an T =x 2011 + y 2011 + z 2011 + t 2011 Bit x,y,z,t tha món: 2010 2010 2010 2010 2010 2010 2010 2010 2 2 2 2 2 2 2 2 x y z t x y z t a b c d a b c d + + + = + + + + + + b) Tỡm s t nhiờn M nh nht cú 4 ch s tha món iu kin: M = a + b = c +d = e + f Bit a,b,c,d,e,f thuc tp N * v 14 22 a b = ; 11 13 c d = ; 13 17 e f = c) Cho 3 s a, b, c tha món : 2009 2010 2011 a b c = = . Tớnh giỏ tr ca biu thc : M = 4( a - b)( b c) ( c a ) 2 Mt s bi tng t Bi 11: Cho dãy tỉ số bằng nhau: 2012 2012 2012 2012a b c d a b c d a b c d a b c d a b c d + + + + + + + + + + + + = = = Tính cb ad ba dc ad cb dc ba M + + + + + + + + + + + = Bi 12: Cho 3 s x , y , z, t khỏc 0 tha món iu kin : y z t nx z t x ny t x y nz x y z nt x y z t + + + + + + + + = = = ( n l s t nhiờn) v x + y + z + t = 2012 . Tớnh giỏ tr ca biu thc P = x + 2y 3z + t Dng 2 : Vn dng tớnh cht dóy t s bng nhau tỡm x,y,z, Bi 1: Tỡm cp s (x;y) bit : = = 1+3y 1+5y 1+7y 12 5x 4x HD : p dụng tính chất dãy tỉ số bằng nhau ta có: + + = = = = = = 1+3y 1+5y 1+7y 1 7y 1 5y 2y 1 5y 1 3y 2y 12 5x 4x 4x 5x x 5x 12 5x 12 => 2 2 5 12 y y x x = vi y = 0 thay vo khụng tha món Nu y khỏc 0 => -x = 5x -12 => x = 2. Thay x = 2 vào trên ta đợc: 1 3 2 12 2 y y y + = = =>1+ 3y = -12y => 1 = -15y => y = 1 15 Vậy x = 2, y = 1 15 thoả mãn đề bài Bi 3 : Cho a b c b c a = = v a + b + c 0; a = 2012. Tớnh b, c. HD : t 1 a b c a b c b c a a b c + + = = = = + + a = b = c = 2012 Giỏo ỏn Bi dng HSG toỏn 7 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an Bài 4 : Tìm các số x,y,z biết : 1 2 3 1y x x z x y x y z x y z + + + + + − = = = + + HD: Áp dụng t/c dãy tỉ số bằng nhau: 1 2 3 2( ) 1 2 ( ) y x x z x y x y z x y z x y z x y z + + + + + − + + = = = = = + + + + (vì x+y+z ≠ 0) Suy ra : x + y + z = 0,5 từ đó tìm được x, y, z Bài 5 : Tìm x, biết rằng: 1 2 1 4 1 6 18 24 6 y y y x + + + = = HD : Từ 1 2 1 4 1 6 2(1 2 ) (1 4 ) 1 2 1 4 (1 6 ) 18 24 6 2.18 24 18 24 6 y y y y y y y y x x + + + + − + + + + − + = = = = − + − Suy ra : 1 1 1 6 6 x x = ⇒ = Bài 6: T×m x, y, z biÕt: zyx yx z zx y yz x ++= −+ = ++ = ++ 211 (x, y, z 0 ≠ ) HD : Từ 1 1 1 2 2( ) 2 x y z x y z x y z z y x z x y x y z + + = = = + + = = + + + + + − + + Từ x + y + z = 1 2 ⇒ x + y = 1 2 - z , y +z = 1 2 - x , z + x = 1 2 - y thay vào đẳng thức ban đầu để tìm x. Bài 7 : T×m x, y, z biÕt 216 3 64 3 8 3 zyx == vµ 122 222 =−+ zyx Bài 8 : Tìm x , y biết : 2 1 4 5 2 4 4 5 9 7 x y x y x + − + − = = Chuyên đề 3: Vận dụng tính chất phép toán để tìm x, y 1. Kiến thức vận dụng : - Tính chất phép toán cộng, nhân số thực - Quy tắc mở dấu ngoặc, quy tắc chuyển vế - Tính chất về giá trị tuyệt đối : 0A ≥ với mọi A ; , 0 , 0 A A A A A ≥  =  − <  - Bất đẳng thức về giá trị tuyệt đối : A B A B+ ≥ + dấu ‘=’ xẩy ra khi AB ≥ 0; A B A B− ≥ − dấu ‘= ‘ xẩy ra A,B >0 ( 0) A m A m m A m ≥  ≥ ⇔ >  ≤ −  ; ( ) A m A m hay m A m A m ≤  ≤ ⇔ − ≤ ≤  ≥ −  với m > 0 - Tính chất lũy thừa của 1 số thực : A 2n ≥ 0 với mọi A ; - A 2n ≤ 0 với mọi A A m = A n ⇔ m = n; A n = B n ⇒ A = B (nếu n lẻ ) hoặc A = ± B ( nếu n chẵn) Giáo án Bồi dưỡng HSG toán 7 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an 0< A < B ⇔ A n < B n ; 2. Bài tập vận dụng Dạng 1: Các bài toán cơ bản Bài 1: Tìm x biết a) x + 2x + 3x + 4x + … + 2011x = 2012.2013 b) 1 2 3 4 2011 2010 2009 2008 x x x x− − − − + − = HD : a) x + 2x + 3x + 4x + … + 2011x = 2012.2013 ⇒ x( 1 + 2 + 3 + ….+ 2011) = 2012.2013 2011.2012 . 2012.2013 2 x⇒ = 2.2013 2011 x⇒ = b) Nhận xét : 2012 = 2011+1= 2010 +2 = 2009 +3 = 2008 +4 Từ 1 2 3 4 2011 2010 2009 2008 x x x x− − − − + − = ( 2012) 2011 ( 2012) 2010 ( 2012) 2009 ( 2012) 2008 2011 2010 2009 2008 x x x x− + − + − + − + ⇒ + + = 2012 2012 2012 2012 2 2011 2010 2009 2008 1 1 1 1 ( 2012)( ) 2 2011 2010 2009 2008 1 1 1 1 2 : ( ) 2012 2011 2010 2009 2008 x x x x x x − − − − ⇒ + + − = − ⇒ − + + − = − ⇒ = − + + − + Bài 2 Tìm x nguyên biết a) 1 1 1 1 49 1.3 3.5 5.7 (2 1)(2 1) 99x x + + + + = − + b) 1- 3 + 3 2 – 3 3 + ….+ (-3) x = 1006 9 1 4 − Dạng 2 : Tìm x có chứa giá trị tuyệt đối • Dạng : x a x b+ = + và x a x b x c+ ± + = + Khi giải cần tìm giá trị của x để các GTTĐ bằng không, rồi so sánh các giá trị đó để chia ra các khoảng giá trị của x ( so sánh –a và –b) Bài 1 : Tìm x biết : a) 2011 2012x x− = − b) 2010 2011 2012x x− + − = Giáo án Bồi dưỡng HSG toán 7 inh vn Quõn Giỏo viờn trng THCS Ngha Hng Ngha n Ngh an HD : a) 2011 2012x x = (1) do VT = 2011 0,x x nờn VP = x 2012 0 2012x (*) T (1) 2011 2012 2011 2012( ụ ) 2011 2012 (2011 2012): 2 x x v ly x x x = = = = + Kt hp (*) x = 4023:2 b) 2010 2011 2012x x + = (1) Nu x 2010 t (1) suy ra : 2010 x + 2011 x = 2012 x = 2009 :2 (ly) Nu 2010 < x < 2011 t (1) suy ra : x 2010 + 2011 x = 2012 hay 1 = 2012 (loi) Nu x 2011 t (1) suy ra : x 2010 + x 2011 = 2012 x = 6033:2(ly) Vy giỏ tr x l : 2009 :2 hoc 6033:2 Mt s bi tng t: Bi 2 : a) Tìm x biết 431 =++ xx b) Tìm x biết: 426 22 +=+ xxx c) Tìm x biết: 54232 =+ xx Bi 3 : a)Tìm các giá trị của x để: xxx 313 =+++ b) Tỡm x bit: 2 3 2x x x = Bi 4 : tỡm x bit : a) 1 4x b) 2011 2012x Dng : S dng BT giỏ tr tuyt i Bi 1 : a) Tỡm x ngyờn bit : 1 3 5 7 8x x x x + + + = b) Tỡm x bit : 2010 2012 2014 2x x x + + = HD : a) ta cú 1 3 5 7 1 7 3 5 8x x x x x x x x + + + + + + = (1) M 1 3 5 7 8x x x x + + + = suy ra ( 1) xy ra du = Hay 1 7 3 5 3 5 x x x do x nguyờn nờn x {3;4;5} b) ta cú 2010 2012 2014 2010 2014 2012 2x x x x x x + + + + (*) M 2010 2012 2014 2x x x + + = nờn (*) xy ra du = Suy ra: 2012 0 2012 2010 2014 x x x = = Cỏc bi tng t Bi 2 : Tỡm x nguyờn bit : 1 2 100 2500x x x + + + = Bi 3 : Tỡm x bit 1 2 100 605x x x x+ + + + + + = Bi 4 : Tìm x, y thoả mãn: x 1 x 2 y 3 x 4 + + + = 3 Bi 5 : Tỡm x, y bit : 2006 2012 0x y x + HD : ta cú 2006 0x y vi mi x,y v 2012 0x vi mi x Suy ra : 2006 2012 0x y x + vi mi x,y m 2006 2012 0x y x + Giỏo ỏn Bi dng HSG toỏn 7 Đinh văn Quân – Giáo viên trường THCS Nghĩa Hồng – Nghĩa Đàn – Nghệ an ⇒ 0 2006 2012 0 2012, 2 2012 0 x y x y x x y x − =  − + − = ⇒ ⇒ = =  − =  Bài 6 : T×m c¸c sè nguyªn x tho¶ m·n. 2004 4 10 101 990 1000x x x x x= − + − + + + + + + Dạng chứa lũy thừa của một số hữu tỉ Bài 1: Tìm số tự nhiên x, biết : a) 5 x + 5 x+2 = 650 b) 3 x-1 + 5.3 x-1 = 162 HD : a) 5 x + 5 x+2 = 650 ⇒ 5 x ( 1+ 5 2 ) = 650 ⇒ 5 x = 25 ⇒ x = 2 b) 3 x-1 + 5.3 x-1 = 162 ⇒ 3 x -1 (1 + 5) = 162 ⇒ 3 x – 1 = 27 ⇒ x = 4 Bài 2 : Tìm các số tự nhiên x, y , biết: a) 2 x + 1 . 3 y = 12 x b) 10 x : 5 y = 20 y HD : a) 2 x + 1 . 3 y = 12 x ⇒ 2 1 1 2 3 2 3 2 3 x y x y x x x − − + = ⇒ = Nhận thấy : ( 2, 3) = 1 ⇒ x – 1 = y-x = 0 ⇒ x = y = 1 b) 10 x : 5 y = 20 y ⇒ 10 x = 10 2y ⇒ x = 2y Bài 3 : Tìm m , n nguyên dương thỏa mãn : a) 2 m + 2 n = 2 m +n b) 2 m – 2 n = 256 HD: a) 2 m + 2 n = 2 m +n ⇒ 2 m + n – 2 m – 2 n = 0 ⇒ 2 m ( 2 n – 1) –( 2 n – 1) = 1 ⇒ (2 m -1)(2 n – 1) = 1 ⇒ 2 1 1 1 2 1 1 n m m n  − =  ⇒ = =  − =   b) 2 m – 2 n = 256 ⇒ 2 n ( 2 m – n - 1) = 2 8 Dễ thấy m ≠ n, ta xét 2 trường hợp : + Nếu m – n = 1 ⇒ n = 8 , m = 9 + Nếu m – n ≥ 2 thì 2 m – n – 1 là 1 số lẻ lớn hơn 1, khi đó VT chứa TSNT khác 2, mà VT chỉ chứa TSNT 2 suy ra TH này không xẩy ra : vậy n = 8 , m = 9 Bài 4 : Tìm x , biết : ( ) ( ) 1 11 7 7 0 x x x x + + − − − = HD : ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − =   ⇔ − − − =   ( ) ( ) ( ) 1 10 8 6 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 7 1 7 0 10 x x x x x x x x x x x +    ÷   =   =  + − = − − = − = ⇒ = − = ⇒   ⇔ − − − =     ⇔      ⇔   Bài 5 : Tìm x, y biết : 2012 2011 ( 1) 0x y y− + − = HD : ta có 2011 0x y− ≥ với mọi x,y và (y – 1) 2012 ≥ 0 với mọi y Giáo án Bồi dưỡng HSG toán 7 [...]... - 5b + 6c 17 nếu a - 11b + 3c 17 (a, b, c Z) Bi 6 : a) Chứng minh rằng: 3a + 2b 17 10a + b 17 (a, b Z ) b) Cho đa thức f ( x) = ax 2 + bx + c (a, b, c nguyên) CMR nếu f(x) chia hết cho 3 với mọi giá trị của x thì a, b, c đều chia hết cho 3 17 17 17 17 HD a) ta cú 17a 34 b M v 3a + 2b M 17a 34b + 3a + 2b M 2(10a 16b)M 10a 16bM vỡ (2, 7) = 1 10a + 17b 16bM 10a + bM 17 17 17 3 3 b) Ta cú... 1 chia hết cho 7 HD : Vi n < 3 thỡ 2n khụng chia ht cho 7 Vi n 3 khi ú n = 3k hoc n = 3k + 1 hoc n = 3k + 2 ( k N * ) 7 Xột n = 3k , khi ú 2n -1 = 23k 1 = 8k 1 = ( 7 + 1)k -1 = 7. A + 1 -1 = 7. A M n 3k+1 3k Xột n = 3k +1 khi ú 2 1 = 2 1 = 2.8 1 = 2.(7A+1) -1 = 7A + 1 khụng chia ht cho 7 Xột n = 3k+2 khi ú 2n 1 = 23k +2 -1 = 4.83k 1 = 4( 7A + 1) 1 = 7 A + 3 khụng chia ht cho 7 Vy n = 3k vi... thun hay t l nghch) - p dng tớnh cht v i lng t l v tớnh cht dóy t s bng nhau gii Bi 1 : Mt vt chuyn ng trờn cỏc cnh hỡnh vuụng Trờn hai cnh u vt chuyn ng vi vn tc 5m/s, trờn cnh th ba vi vn tc 4m/s, trờn cnh th t vi vn tc 3m/s Hi di cnh hỡnh vuụng bit rng tng thi gian vt chuyn ng trờn bn cnh l 59 giõy Bi 2 : Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng cây Mỗi học sinh lớp 7A trồng đợc 3 cây, Mỗi học. .. rằng: A = 3638 + 4133 chia hết cho 7 HD: a) Ta cú 101998 = ( 9 + 1)1998 = 9.k + 1 ( k l s t nhiờn khỏc khụng) 4 = 3.1 + 1 Suy ra : A = 101998 4 = ( 9.k + 1) ( 3.1+1) = 9k -3 chia ht cho 3 , khụng chia ht cho 9 b) Ta cú 3638 = (362)19 = 129619 = ( 7. 185 + 1) 19 = 7. k + 1 ( k N*) 4133 = ( 7. 6 1)33 = 7. q 1 ( q N*) 7 Suy ra : A = 3638 + 4133 = 7k + 1 + 7q 1 = 7( k + q) M Bi 5 : a) Chứng minh rằng:... 15 = 4 (1 + 12 x 15 ) 23 C ln nht khi 12 x 15 ln nht 12 x 15 nh nht v 12 x 15 > 0 x = 2 Vy Max C = 3 23 8 (1 + ) = khi x = 2 4 9 3 7n 8 có giá trị lớn nhất 2n 3 7n 8 7 2 (7 n 8) 7 14n 16 7 5 HD : Ta cú 2n 3 = 2 7( 2n 3) = 2 14n 21 = 2 (1 + 14n 21) 7n 8 5 ln nht thỡ ln nht 14n 21 > 0 v 14n 21 cú giỏ tr nh 14n 21 2n 3 21 3 nht n > = v n nh nht n = 2 14 2 * Dng vn dng A 0, A ,... x, y biết: 7( x 2004)2 = 23 y 2 c) Tìm x, y nguyên biết: xy + 3x - y = 6 d) Tìm mọi số nguyên tố thoả mãn : x2-2y2=1 HD: a) T 51x + 26y = 2000 17. 3.x = 2.( 1000 13 y) do 3, 17 l s NT nờn x M 2 51 m x NT x = 2 Li cú 1000 13y M , 1000 13y > 0 v y NT y = b) T 7( x 2004)2 = 23 y 2 (1) do 7( x2004)2 0 23 y 2 0 y 2 23 y {0, 2,3, 4} 7 Mt khỏc 7 l s NT 13 y 2 M vy y = 3 hoc y = 4 thay vo (1)... học sinh lớp 7A trồng đợc 3 cây, Mỗi học sinh lớp 7B trồng đợc 4 cây, Mỗi học sinh lớp 7C trồng đợc 5 cây, Hỏi mỗi lớp có bao nhiêu học sinh Biết rằng số cây mỗi lớp trồng đợc đều nh nhau Bi 3 : Một ô tô phải đi từ A đến B trong thời gian dự định Sau khi đi đợc nửa quãng đờng ô tô tăng vận tốc lên 20 % do đó đến B sớm hơn dự định 10 phút Giỏo ỏn Bi dng HSG toỏn 7 inh vn Quõn Giỏo viờn trng THCS Ngha... y x = 3 x 1 = y y = 2 do VP = 2y2 chia ht cho 2 suy ra x > 2 , mt khỏc y nguyờn t Bi 2 a) Tỡm cỏc s nguyờn tha món : x y + 2xy = 7 b) Tỡm x, y Ơ bit: 25 y 2 = 8( x 2012)2 HD : a) T x y + 2xy = 7 2x 2y + 2xy = 7 (2x - 1)( 2y + 1) = 13 Giỏo ỏn Bi dng HSG toỏn 7 inh vn Quõn Giỏo viờn trng THCS Ngha Hng Ngha n Ngh an b) T 25 y 2 = 8( x 2012)2 y2 25 v 25 y2 chia ht cho 8 , suy ra y = 1... ht cho 3 102006 + 53 Bi 7 : a) Chứng minh rằng là một số tự nhiờn 9 b) Cho 2n + 1 là số nguyên tố (n > 2) Chứng minh 2n 1 là hợp số HD : b) ta cú (2n +1)( 2n 1) = 22n -1 = 4n -1 (1) Do 4n- 1 chia hờt cho 3 v 2n + 1 là số nguyên tố (n > 2) suy ra 2n -1 chia ht cho 3 hay 2n -1 l hp s Giỏo ỏn Bi dng HSG toỏn 7 inh vn Quõn Giỏo viờn trng THCS Ngha Hng Ngha n Ngh an Chuyờn 7 : Bt ng thc 1.Kin thc... Ngh an = 3n ì 2n ì5 = 3n ì 2n1 ì 10 10 10 n n = 10( 3 -2 ) n+2 n+ 2 n n Vy 3 2 + 3 2 M10 vi mi n l s nguyờn dng Bi 2 : Chng t rng: 2004 A = 75 (4 + 42003 + + 42 + 4 + 1) + 25 l s chia ht cho 100 HD: A = 75 (42004 + 42003 + + 42 + 4 + 1) + 25 = 75 .( 42005 1) : 3 + 25 = 25( 42005 1 + 1) = 25 42005 chia ht cho 100 Bi 3 : Cho m, n N* v p l s nguyờn t tho món: m+n p = p (1) m 1 Chng minh . lớp 7A,7B,7C có 94 học sinh tham gia trồng cây. Mỗi học sinh lớp 7A trồng đợc 3 cây, Mỗi học sinh lớp 7B trồng đợc 4 cây, Mỗi học sinh lớp 7C trồng đợc 5 cây,. Hỏi mỗi lớp có bao nhiêu học sinh. . ) 1 11 7 7 0 x x x x + + − − − = HD : ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − =   ⇔ − − − =   ( ) ( ) ( ) 1 10 8 6 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 7 1 7 0 10 x x x x x x x. đều chia hết cho 3 HD a) ta cú 17a 34 b 17M v 3a + 2b 17 17 34 3 2 17 2(10 16 ) 17a b a b a b + + M M M 10 16 17a b M vỡ (2, 7) = 1 10 17 16 17 10 17a b b a b + +M M b) Ta cú f(0)
- Xem thêm -

Xem thêm: giáo án bồi dưỡng học sinh giỏi toán 7 cực hay, giáo án bồi dưỡng học sinh giỏi toán 7 cực hay, giáo án bồi dưỡng học sinh giỏi toán 7 cực hay