Báo cáo hóa học: " Strong convergence theorem for a generalized equilibrium problem and system of variational inequalities problem and infinite family of strict pseudo-contractions" potx

16 367 0
Báo cáo hóa học: " Strong convergence theorem for a generalized equilibrium problem and system of variational inequalities problem and infinite family of strict pseudo-contractions" potx

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

RESEARC H Open Access Strong convergence theorem for a generalized equilibrium problem and system of variational inequalities problem and infinite family of strict pseudo-contractions Atid Kangtunyakarn Correspondence: beawrock@hotmail.com Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand Abstract In this article, we introduce a new mapping generated by an infinite family of  i - strict pseudo-contractions and a sequence of positive real numbers. By using this mapping, we consider an iterative method for finding a common element of the set of a generalized equilibrium problem of the set of solution to a system of variational inequalities, and of the set of fixed points of an infinite family of strict pseudo- contractions. Strong convergence theorem of the purposed iteration is established in the framework of Hilbert spaces. Keywords: nonexpansive mappings, strongly positive operator, generalized equili- brium problem, strict pseudo-contraction, fixed point 1 Introduction Let C be a closed convex subset of a real Hilbert space H, and let G : C × C ® ℝ be a bifunction. We know that the equilibrium problem for a bifunction G is to find x Î C such that G ( x, y ) ≥ 0 ∀y ∈ C . (1:1) The set of solutions of (1.1) is denoted by EP(G). Given a mapping T : C ® H,letG (x, y)=〈Tx, y - x〉 fo r all x, y Î. Then, z Î EP(G) if and only if 〈Tz, y - z〉 ≥ 0 for all y Î C,i.e.,z is a solution of the variational inequality. Let A : C ® H beanonlinear mapping. The variational inequality problem is to find a u Î C such that  v − u, A u  ≥ 0 (1:2) for all v Î C. The set of solutions of the variational inequality is denoted by VI(C, A). Now, we consider the following generalized equilibrium problem: Find z ∈ C such that G ( z, y ) + Az, y − z≥0, ∀y ∈ C . (1:3) The set of such z Î C is denoted by EP(G, A), i.e., EP ( G, A ) = {z ∈ C : G ( z, y ) + Az, y − z≥0, ∀y ∈ C . Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 © 2011 Kangtunyakarn; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use , distribution, and reproduction in any medium, provided the original work is properly cited. In the case of A ≡ 0, EP(G, A) is denoted by EP(G). In th e case of G ≡ 0, EP(G, A)is also denoted by VI(C, A). Numerous problems in physics, optimization, variational inequalities, minimax problems, the Nash equilibrium problem in noncooperative games, and economics reduce to find a solution of (1.3) (see, for instance, [1]-[3]). A mapping A of C into H is called inverse-strongly monot one (see [4]), if there exists a positive real number a such that x − y , Ax − A y ≥α||Ax − A y || 2 for all x, y Î C. A mapping T with domain D(T) and range R(T) is called nonexpansive if || Tx − T y|| ≤ || x − y|| (1:4) for all x, y Î D(T) and T is said to be - strict pseudo-contration if there exist  Î [0, 1) such that ||Tx − Ty|| 2 ≤||x − y|| 2 + κ|| ( I − T ) x − ( I − T ) y|| 2 , ∀x, y ∈ D ( T ). (1:5) We know that the class of -strict pseudo-contractions includes class of nonexpan- sive mappings. If  = 1, then T is said to be pseudo-contractive. T is strong pseudo-con- traction if there exists a positive constant l Î (0, 1) such that T + lI is pseudo- contractive. In a real Hilbert space H (1.5) is equivalent to Tx − Ty, x − y≤ ||x − y|| 2 − 1 − κ 2 ||(I − T)x − (I − T)y|| 2 ∀x, y ∈ D(T) . (1:6) T is pseudo-contractive if and only if Tx − Ty , x − y≤ ||x − y|| 2 ∀x, y ∈ D ( T ). Then, T is strongly pseudo-contractive, if there exists a positive constant l Î (0, 1) such that Tx − Ty , x − y≤ ( 1 − λ ) x − y 2 , ∀x, y ∈ D ( T ). The class of -strict pseudo-contractions fall into the one between classes of nonex- pansive mappings and pseudo-contractions, and the class of strong pseudo-contrac- tions is independent of the class of -strict pseudo-contractions. We denote by F(T) the set of fixed points of T.IfC ⊂ H is bounded, closed and con- vex and T is a nonexpansive mapping of C into itself, then F(T) is nonem pty; for instance, see [5]. Recently, Tada and Takahashi [6] and Takahashi and Takahashi [7] considered iterative methods for finding an element of EP(G) ∩ F(T). Browder and Pet- ryshyn [8] showed that if a -strict pseudo-contraction T has a fixed point in C, then starting with an initial x 0 Î C, the sequence {x n } generated by the recursive formula: x n+1 = αx n + ( 1 − α ) Tx n , (1:7) where a isaconstantsuchthat0< a <1, converges weakly to a fixed point of T. Marino and Xu [9] extended Browder and Petryshyn’s above mentioned result by prov- ing that the sequence {x n } generated by the following Manns algorithm [10]: x n+1 = α n x n + ( 1 − α n ) Tx n (1:8) Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 Page 2 of 16 converges weakly to a fixed point of T provided the control sequence {α n } ∞ n = 0 satisfies the conditions that  < a n <1 for all n and  ∞ n = 0 (α n − κ)(1 − α n )= ∞ . Recently, in 2009, Qin et al. [11] introd uced a general iterative method for finding a common element of EP(F, T), F(S), and F(D). They defined {x n } as follows: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ x 1 , u ∈ C, Fu n , y + Tx n , y − u n  + 1 r y − u n , u n − x n , ∀y ∈ C, y n = P C (x n − ηBx n ), v n = P C (y n − λAy n ), x n+1 = α n u + β n x n + γ n (μ 1 S k x n + μ 2 u n + μ 3 v n ), ∀n ∈ N , (1:9) where the mapping D : C ® C is defined by D(x)=P C (P C (x - hBx)-lAP C (x - hBx)), S k is the mapping defined by S k x = kx +(1-k)Sx, ∀x Î C, S : C ® C is a -strict pseudo-contraction, and A, B : C Î H are a-inverse-strongly monotone mapping and b-inverse-strongly monotone mappings, respectively. Under suitable conditions, they proved strong convergence of {x n } defined by (1.9) to z = P EP(F, T)∩F(S) ∩F(D) u. Let C be a nonempty convex subset of a real Hilbe rt sp ace. Let T i , i = 1, 2, be map- pings of C into itself. For each j = 1, 2, , let α j =(α j 1 , α j 2 , α j 3 ) ∈ I × I × I where I = [0, 1] and α j 1 + α j 2 + α j 3 = 1 .Foreveryn Î N, we define the mapping S n : C ® C as follows: U n,n+1 = I U n,n = α n 1 T n U n,n+1 + α n 2 U n,n+1 + α n 3 I U n,n−1 = α n−1 1 T n−1 U n,n + α n−1 2 U n,n + α n−1 3 I . . . U n,k+1 = α k+1 1 T k+1 U n,k+2 + α k+1 2 U n,k+2 + α k+1 3 I U n,k = α k 1 T k U n,k+1 + α k 2 U n,k+1 + α k 3 I . . . U n,2 = α 2 1 T 2 U n,1 + α 2 2 U n,1 + α 2 3 I S n = U n,1 = α 1 1 T 1 U n,2 + α 1 2 U n,2 + α 1 3 I. This mapping is called S-mapping generated by T n , , T 1 and a n , a n-1 , , a 1 . Question. H ow can we define an iterative method for finding an element in F =  ∞ i =1 F( T i )  N i =1 EF(F i , A i )  N i =1 F( G i ) ? In this article, motivated by Qin et al. [11], by using S-mapping, we int roduce a new iteration method for finding a common element of the set of a generalized equilibrium problem of the set of solution to a system of variational inequalities, and of the set of fixed points of an infinite family of strict pseudo-contractions. Our iteration scheme is define as follows. For u, x 1 Î C, let {x n } be generated by ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ F i v i n , v + A i x n , v − v i n  + 1 r i v − v i n , v i n − x n , ∀v ∈ C, i =1,2, , N . y n =  N i=1 δ i v i n x n+1 = α n u + β n x n + γ n (a n S n x n + b n Bx n + c n y n ), ∀n ∈ N. For i = 1, 2, , N,letF i : C × C ® ℝ be bifunction, A i : C ® H be a i -inverse strongly monotone and let G i : C ® C be defined by G i (y)=P C (I - l i A i )y, ∀y Î C with Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 Page 3 of 16 (0, 1] ⊂ (0, 2 a i ) such that F =  ∞ i =1 F( T i )  N i =1 EF(F i , A i )  N i =1 F( G i ) = ∅ , where B is the K-mapping generated by G 1 , G 2 , , G N and b 1 , b 2 , , b N . We prove a strong convergence theorem of purposed iterative sequence {x n }toa point z ∈ F and z is a solution of (1.10) ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ x − z, A 1 z≥0 x − z, A 2 z≥0 . . . x − z, A N z≥0, ∀x ∈ C and λ i ∈ ( 0, 1] i =1,2, , N . (1:10) 2 Preliminaries In this section, we coll ect and provide someusefullemmasthatwillbeusedforour main result in the next section. Let C be a closed convex subset of a real Hilbert space H,andletP C be the metric projection of H onto C i.e., so that for x Î H, P C x satisfies the property: | x − P C x|| =m i n y ∈C ||x − y|| . The following characterizes the projection P C . Lemma 2.1 [5]. Given x Î HandyÎ C. Then, P C x = y if and only if there holds the inequality x − y , y − z≥0 ∀z ∈ C . Lemma 2.2 [12]. Let {s n } be a sequence of nonnegative real number satisfying s n+1 = ( 1 − α n ) s n + α n β n , ∀n ≥ 0 where {a n }, {b n } satisfy the conditions (1) {α n }⊂[0, 1], ∞  n=1 α n = ∞; (2) lim sup n→∞ β n ≤ 0 or ∞  n =1 |α n β n | < ∞ . Then lim n®∞ s n =0. Lemma 2.3 [13]. Let C be a closed convex subset of a strictly convex Banach space E. Let {T n : n Î N} be a sequence of nonexpansive mappings on C. Suppose  ∞ n =1 F( T n ) is nonempty. Let {l n } be a sequence of positive numbers with  ∞ n =1 λ n = 1 . Then, a mapping S on C defined by S(x)= ∞ n =1 λ n T n x n for x Î C is well defined, nonexpansive and F( S)=  ∞ n =1 F( T n ) hold. Lemma 2.4 [14] . Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of E and S : C ® C be a nonexpansive mapping. Then, I - Sisdemi- closed at zero. Lemma 2.5 [15]. Let {x n } and {z n } be bounded sequences in a Banach space X and let {b n } be a sequence in 0[1]with 0 <lim inf n®∞ b n ≤ lim sup n®∞ b n <1. Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 Page 4 of 16 Suppose x n+1 = β n x n + ( 1 − β n ) z n for all integer n ≥ 0 and lim sup n →∞ (||z n+1 − z n || − ||x n+1 − x n ||) ≤ 0 . Then lim n®∞ ||x n - z n || = 0. For solving the equilibrium problem for a bifunction F : C × C ® ℝ, let us assume that F satisfies the following conditions: (A1) F(x, x)=0∀x Î C; (A2) F is monotone, i.e. F(x, y)+F(y, x) ≤ 0, ∀x, y Î C; (A3) ∀x , y, z Î C, lim t → 0 + F( tz +(1− t)x, y) ≤ F(x, y) ; (A4) ∀x Î C, y ↦ F(x, y) is convex and lower semicontinuous. The following lemma appears implicitly in [1]. Lemma 2.6 [1]. LetCbeanonemptyclosedconvexsubsetofH,andletFbea bifunction of C × C into ℝ satisfying (A1) - (A4). Let r >0 and x Î H. Then, there exists z Î C such that F( z , y)+ 1 r y − z, z − x  (2:1) for all x Î C. Lemma 2.7 [16]. Assume that F : C × C ® ℝ satisfies (A1) - (A4). For r >0 and x Î H, define a mapping T r : H ® C as follows. T r (x)={z ∈ C : F(z, y)+ 1 r y − z, z − x≥0, ∀y ∈ C} . for all z Î H. Then, the following hold. (1) T r is single-valued, (2) T r is firmly nonexpansive i.e T r ( x ) − T r ( y )  2 ≤T r ( x ) − T r ( y ) , x − y∀x, y ∈ H ; (3) F(T r )=EP (F ); (4) EP (F) is closed and convex. Definition 2.1 [17]. Let C be a nonempty convex subset of real Banach space. Let {T i } N i = 1 be a finite family of nonexpanxive mappings of C into itself, and let l 1 , ,l N be real num- bers such that 0 ≤ l i ≤ 1 for every i = 1, , N . We define a mapping K : C ® Casfollows. U 1 = λ 1 T 1 +(1− λ 1 )I, U 2 = λ 2 T 2 U 1 +(1− λ 2 )U 1 , U 3 = λ 3 T 3 U 2 +(1− λ 3 )U 2 , . . . U N−1 = λ N−1 T N−1 U N−2 +(1− λ N−1 )U N−2 , K = U N = λ N T N U N−1 + ( 1 − λ N ) U N−1 . (2:3) Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 Page 5 of 16 Such a mapping K is called the K-mapping generated by T 1 , , T N and l 1 , , l N . Lemma 2.8 [17]. LetCbeanonemptyclosedconvexsubsetofastrictlyconvex Banach space. Let {T i } N i = 1 be a finite family of nonexpanxive mappings of C in to itself with  N i =1 F( T i ) = ∅ and let l 1 , ,l N be real numbers such that 0 < l i <1 for every i = 1, , N -1and 0 < l N ≤ 1. Let K be the K-mapping generated by T 1 , , T N and l 1 , , l N . Then F( K)=  N i =1 F( T i ) . Lemma 2.9 [9]. LetCbeanonemptyclosedconvexsubsetofarealHilbertspaceH and S : C ® C be a self-mapping of C. If S is a -strict pseudo-contraction mapping, then S satisfies the Lipschitz condition. | |Sx − Sy|| ≤ 1+κ 1 − κ ||x − y||, ∀x, y ∈ C . Lemma 2.10. Let C be a nonempty closed convex subset of a real Hilbert space. Let {T i } N i = 1 be  i -strict pseudo-contr action mappings of C into itself with  ∞ i =1 F( T i ) = ∅ and  =sup i  i and let α j =(α j 1 , α j 2 , α j 3 ) ∈ I × I × I , where I = [0, 1], α j 1 + α j 2 ≤ b < 1 , α j 1 + α j 2 ≤ b < 1 , and α j 1 , α j 2 , α j 3 ∈ (κ,1 ) for all j = 1, 2, For every n Î N, let S n be S-mapping generated by T n , ,T 1 and a n , a n-1 , , a 1 . Then, for every x Î C and k Î N, lim n®∞ U n , k x exists. Proof. Let x Î C and y ∈  ∞ i =1 F( T i ) . Fix k Î N, then for every n Î N with n ≥ k, we have U n+1,k x − U n,k x 2 = α k 1 T k U n+1,k+1 x + α k 2 U n+1,k+1 x + α k 3 x − α k 1 T k U n,k+1 x −α k 2 U n,k+1 x − α k 3 x 2 = α k 1 (T k U n+1,k+1 x − T k U n,k+1 x)+α k 2 (U n+1,k+1 x − U n,k+1 x) 2 ≤ α k 1 T k U n+1,k+1 x − T k U n,k+1 x 2 + α k 2 U n+1,k+1 x − U n,k+1 x 2 −α k 1 α k 2 T k U n+1,k+1 x − T k U n,k+1 x − U n+1,k+1 x + U n,k+1 x 2 ≤ α k 1 (U n+1,k+1 x − U n,k+1 x 2 + κ(I − T k )U n+1,k+1 x −(I − T k )U n,k+1 x 2 )+α k 2 U n+1,k+1 x − U n,k+1 x 2 −α k 1 α k 2 (I − T k )U n,k+1 x − (I − T k )U n+1,k+1 x 2 ≤ (1 − α k 3 )U n+1,k+1 x − U n,k+1 x 2 . . . ≤  n j=k (1 − α j 3 )U n+1,n+1 x − U n,n+1 x 2 =  n j=k (1 − α j 3 )α n+1 1 T n+1 U n+1,n+2 x + α n+1 2 U n+1,n+2 x + α n+1 3 x − x 2 =  n j=k (1 − α j 3 )α n+1 1 T n+1 x +(1− α n+1 1 )x − x 2 =  n j=k (1 − α j 3 )α n+1 1 (T n+1 x − x) 2 ≤  n j=k (1 − α j 3 )(T n+1 x − y + y − x) 2 ≤  n j=k (1 − α j 3 )  1+κ 1 − κ x − y + y − x  2 ≤  n j=k (1 − α j 3 )  2 1 − κ x − y  2 ≤ b n−(k−1)  2 1 − κ x − y   2 . It follows that ||U n+1,k x − U n,k x|| ≤ b n − (k − 1) 2  2 1 − κ ||x − y||  Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 Page 6 of 16 = b n 2 b k−1 2  2 1 − κ ||x − y||  = a n a k−1 M, (2:4) where a = b 1 2 ∈ ( 0, 1 ) and M = 2 1 − κ ||x − y| | For any k, n, p Î N, p>0, n ≥ k, we have  U n+p,k x − U n,k x  ≤  U n+p,k x − U n+p−1,k x  +  U n+p−1,k x − U n+p−2,k x  + . +U n+1,k x − U n,k x =  n+p−1 j=n U j+1,k x − U j,k x ≤  n+p−1 j=n a j a k−1 M ≤ a n ( 1 − a ) a k−1 M. (2:5) Since a Î (0, 1), we have lim n®∞ a n =0.From(2.5),wehavethat{U n , k x}isaCau- chy sequence. Hence lim n®∞ U n,k x exists. □ For every k Î N and x Î C, we define mapping U ∞,k and S : C Î C as follows: lim n → ∞ U n,k x = U ∞,k x (2:6) and lim n → ∞ S n x = lim n → ∞ U n,1 x = S x (2:7) Such a mapping S is called S-mapping generated by T n , T n-1 , and a n , a n-1 , Remark 2.11. For each n Î N, S n is nonexpansive and lim n®∞ sup xÎD ||S n x - Sx|| = 0 for every bounded subset D of C. To show this, let x, y Î C and D be a bounded subset of C. Then, we have S n x − S n y 2 = α 1 1 (T 1 U n,2 x − T 1 U n,2 y)+α 1 2 (U n,2 x − U n,2 y)+α 1 3 (x − y) 2 ≤ α 1 1 T 1 U n,2 x − T 1 U n,2 y 2 + α 1 2 U n,2 x − U n,2 y 2 + α 1 3 x − y 2 −α 1 1 α 1 2 T 1 U n,2 x − T 1 U n,2 y − U n,2 x + U n,2 y 2 ≤ α 1 1 (U n,2 x − U n,2 y 2 + κ(I − T 1 )U n,2 x − (I − T 1 )U n,2 y 2 ) +α 1 2 U n,2 x − U n,2 y 2 + α 1 3 x − y 2 − α 1 1 α 1 2 (I − T 1 )U n,2 y − (I − T 1 )U n,2 x 2 ≤ (1 − α 1 3 )U n,2 x − U n,2 y 2 + α 1 3 x − y 2 ≤ (1 − α 1 3 )((1 − α 2 3 )U n,3 x − U n,3 y 2 + α 2 3 x − y 2 )+α 1 3 x − y) 2 =(1− α 1 3 )(1 − α 2 3 )U n,3 x − U n,3 y 2 + α 2 3 (1 − α 1 3 )x − y 2 + α 1 3 x − y) 2 =  2 j=1 (1 − α j 3 )||U n,3 x − U n,3 y|| 2 +(1−  2 j=1 (1 − α j 3 ))||x − y|| 2 . . . ≤  n j=1 (1 − α j 3 )||U n,n+1 x − U n,n+1 y|| 2 +(1−  n j=1 (1 − α j 3 ))||x − y|| 2 = ||x − y || 2 . Then, we have that S : C ® C is also nonexpansive indeed, observe that for each x, y Î C | Sx − Sy|| = lim n → ∞ ||S n x − S n y|| ≤ ||x − y|| . By (2.8), we have || S n+1 x − S n x|| = ||U n+1,1 x − U n,1 x| | ≤ a n M. Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 Page 7 of 16 This implies that for m>nand x Î D, | |S m x − S n x|| ≤  m−1 j=n ||S j+1 x − S j x| | ≤  m−1 j=n a j M ≤ a n 1 − a M. By letting m ® ∞, for any x Î D, we have | |Sx − S n x|| ≤ a n 1 − a M . (2:8) It follows that lim n → ∞ sup x∈D ||S n x − Sx|| =0 . (2:9) Lemma 2.12. Let C be a nonempty closed convex subset of a real Hilbert space. Let {T i } ∞ i = 1 be  i -strict pseudo-contraction mappings of C into itself with  ∞ i =1 F( T i ) = ∅ and  =sup iÎ  i and let α j =(α j 1 , α j 2 , α j 3 ) ∈ I × I × I , where I = [0, 1], α j 1 + α j 2 + α j 3 = 1 , α j 1 , α j 2 , α j 3 ∈ (κ,1 ) and α j 1 , α j 2 , α j 3 ∈ (κ,1 ) for all j = 1, For every n Î N, let S n and S be S-mappings generated by T n , , T 1 and a n , a n-1 , , a 1 and T n , T n-1 , , and a n , a n- 1 , , respectively. Then F( S)=  ∞ i =1 F( T i ) . Proof. It is evident that  ∞ i =1 F( T i ) ⊆ F(S ) . For every n, k Î N, with n ≥ k,letx 0 Î F (S) and x ∗ ∈  ∞ i =1 F( T i ) , we have S n x 0 − x ∗  2 = α 1 1 (T 1 U n,2 x 0 − x ∗ )+α 1 2 (U n,2 x 0 − x ∗ )+α 1 3 (x 0 − x ∗ ) 2 ≤ α 1 1 T 1 U n,2 x 0 − x ∗  2 + α 1 2 U n,2 x 0 − x ∗  2 + α 1 3 x 0 − x ∗  2 −α 1 1 α 1 2 T 1 U n,2 x 0 − U n,2 x 0  2 − α 1 2 α 1 3 U n,2 x 0 − x 0  2 ≤ α 1 1 (U n,2 x 0 − x ∗  2 + κ(I − T 1 )U n,2 x 0  2 )+α 1 2 U n,2 x 0 − x ∗  2 +α 1 3 x 0 − x ∗  2 − α 1 1 α 1 2 T 1 U n,2 x 0 − U n,2 x 0  2 − α 1 2 α 1 3 U n,2 x 0 − x 0  2 =(1− α 1 3 )U n,2 x 0 − x ∗  2 + α 1 3 x 0 − x ∗  2 −α 1 1 (α 1 2 − κ)T 1 U n,2 x 0 − U n,2 x 0  2 − α 1 2 α 1 3 U n,2 x 0 − x 0  2 ≤ (1 − α 1 3 )((1 − α 2 3 )U n,3 x 0 − x ∗  2 + α 2 3 x 0 − x ∗  2 −α 2 1 (α 2 2 − κ)T 2 U n,3 x 0 − U n,3 x 0  2 − α 2 2 α 2 3 U n,3 x 0 − x 0  2 )+α 1 3 x 0 − x ∗  2 −α 1 1 (α 1 2 − κ)T 1 U n,2 x 0 − U n,2 x 0  2 − α 1 2 α 1 3 U n,2 x 0 − x 0  2 =(1− α 1 3 )(1 − α 2 3 )U n,3 x 0 − x ∗  2 + α 2 3 (1 − α 1 3 )x 0 − x ∗  2 + α 1 3 x 0 − x ∗  2 −α 2 1 (α 2 2 − κ)(1 − α 1 3 )T 2 U n,3 x 0 − U n,3 x 0  2 − α 2 2 α 2 3 (1 − α 1 3 )U n,3 x 0 − x 0  2 −α 1 1 (α 1 2 − κ)T 1 U n,2 x 0 − U n,2 x 0  2 − α 1 2 α 1 3 U n,2 x 0 − x 0  2 =  2 j=1 (1 − α j 3 )U n,3 x 0 − x ∗  2 +(1−  2 j=1 (1 − α j 3 )x 0 − x ∗  2 −α 2 1 (α 2 2 − κ)(1 − α 1 3 )T 2 U n,3 x 0 − U n,3 x 0  2 − α 2 2 α 2 3 (1 − α 1 3 )U n,3 x 0 − x 0  2 −α 1 1 (α 1 2 − κ)T 1 U n,2 x 0 − U n,2 x 0  2 − α 1 2 α 1 3 U n,2 x 0 − x 0  2 ≤  2 j=1 (1 − α j 3 )((1 − α 3 3 )U n,4 x 0 − x ∗  2 + α 3 3 x 0 − x ∗  2 −α 3 1 (α 3 2 − κ)T 3 U n,4 x 0 − U n,4 x 0  2 − α 3 2 α 3 3 U n,4 x 0 − x 0  2 ) +(1 −  2 j=1 (1 − α j 3 )x 0 − x ∗  2 − α 2 1 (α 2 2 − κ)(1 − α 1 3 )T 2 U n,3 x 0 − U n,3 x 0  2 −α 2 2 α 2 3 (1 − α 1 3 )U n,3 x 0 − x 0  2 − α 1 1 (α 1 2 − κ)T 1 U n,2 x 0 − U n,2 x 0  2 −α 1 2 α 1 3 U n,2 x 0 − x 0  2 =  2 j=1 (1 − α j 3 )(1 − α 3 3 )U n,4 x 0 − x ∗  2 + α 3 3  2 j=1 (1 − α j 3 )x 0 − x ∗  2 −α 3 1 (α 3 2 − κ) 2 j=1 (1 − α j 3 )T 3 U n,4 x 0 − U n,4 x 0  2 −α 3 2 α 3 3  2 j=1 (1 − α j 3 )U n,4 x 0 − x 0  2 +(1−  2 j=1 (1 − α j 3 )x 0 − x ∗  2 −α 2 1 (α 2 2 − κ)(1 − α 1 3 )T 2 U n,3 x 0 − U n,3 x 0  2 − α 2 2 α 2 3 (1 − α 1 3 )U n,3 x 0 − x 0  2 −α 1 1 (α 1 2 − κ)T 1 U n,2 x 0 − U n,2 x 0  2 − α 1 2 α 1 3 U n,2 x 0 − x 0  2 =  3 j=1 (1 − α j 3 )U n,4 x 0 − x ∗  2 +(1−  3 j=1 (1 − α j 3 )x 0 − x ∗  2 −α 3 1 (α 3 2 − κ) 2 j=1 (1 − α j 3 )T 3 U n,4 x 0 − U n,4 x 0  2 −α 3 2 α 3 3  2 j=1 (1 − α j 3 )U n,4 x 0 − x 0  2 − α 2 1 (α 2 2 − κ)(1 − α 1 3 )T 2 U n,3 x 0 − U n,3 x 0  2 −α 2 2 α 2 3 (1 − α 1 3 )U n,3 x 0 − x 0  2 − α 1 1 (α 1 2 − κ)T 1 U n,2 x 0 − U n,2 x 0  2 −α 1 2 α 1 3 U n,2 x 0 − x 0  2 . . . (2:10) Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 Page 8 of 16 . . . ≤  k+1 j=1 (1 − α j 3 )||U n,k+2 x 0 − x ∗ || 2 +(1−  k+1 j=1 (1 − α j 3 )||x 0 − x ∗ || 2 − α k+1 1 (α k+1 2 − κ) k j=1 (1 − α j 3 )||T k+1 U n,k+2 x 0 − U n,k+2 x 0 || 2 − α k+1 2 α k+1 3  k j=1 (1 − α j 3 )||U n,k+2 x 0 − x 0 || 2 − α k 1 (α k 2 − κ) k−1 j=1 (1 − α j 3 )||T k U n,k+1 x 0 − U n,k+1 x 0 || 2 − α k 2 α k 3  k−1 j =1 (1 − α j 3 )||U n,k+1 x 0 − x 0 || 2 (2:11) . . . −α 3 1 (α 3 2 − κ) 2 j=1 (1 − α j 3 )T 3 U n,4 x 0 − U n,4 x 0  2 − α 3 2 α 3 3  2 j=1 (1 − α j 3 )U n,4 x 0 − x 0  2 −α 2 1 (α 2 2 − κ)(1 − α 1 3 )T 2 U n,3 x 0 − U n,3 x 0  2 − α 2 2 α 2 3 (1 − α 1 3 )U n,3 x 0 − x 0  2 −α 1 1 (α 1 2 − κ)T 1 U n,2 x 0 − U n,2 x 0  2 − α 1 2 α 1 3 U n,2 x 0 − x 0  2 . . . ≤  n j=1 (1 − α j 3 )U n,n+1 x 0 − x ∗  2 +(1−  n j=1 (1 − α j 3 )x 0 − x ∗  2 −α n 1 (α n 2 − κ) n−1 j=1 (1 − α j 3 )T n U n,n+1 x 0 − U n,n+1 x 0  2 −α n 2 α n 3  n−1 j=1 (1 − α j 3 )U n,n+1 x 0 − x 0  2 . . . −α k+1 1 (α k+1 2 − κ) k j=1 (1 − α j 3 )T k+1 U n,k+2 x 0 − U n,k+2 x 0  2 −α k+1 2 α k+1 3  k j=1 (1 − α j 3 )U n,k+2 x 0 − x 0  2 −α k 1 (α k 2 − κ) k−1 j=1 (1 − α j 3 )T k U n,k+1 x 0 − U n,k+1 x 0  2 −α k 2 α k 3  k−1 j=1 (1 − α j 3 )U n,k+1 x 0 − x 0  2 −α k−1 1 (α k−1 2 − κ) k−2 j=1 (1 − α j 3 )T k−1 U n,k x 0 − U n,k x 0  2 −α k−1 2 α k−1 3  k−2 j=1 (1 − α j 3 )U n,k x 0 − x 0  2 . . . −α 3 1 (α 3 2 − κ) 2 j =1 (1 − α j 3 )T 3 U n,4 x 0 − U n,4 x 0  2 − α 3 2 α 3 3  2 j =1 (1 − α j 3 )U n,4 x 0 − x 0  2 (2:12) −α 2 1 (α 2 2 − κ)(1 − α 1 3 )T 2 U n,3 x 0 − U n,3 x 0  2 − α 2 2 α 2 3 (1 − α 1 3 )U n,3 x 0 − x 0  2 −α 1 1 (α 1 2 − κ)T 1 U n,2 x 0 − U n,2 x 0  2 − α 1 2 α 1 3 U n,2 x 0 − x 0  2 = x 0 − x ∗  2 −α n 1 (α n 2 − κ) n−1 j=1 (1 − α j 3 )T n U n,n+1 x 0 − U n,n+1 x 0  2 . . . −α k+1 1 (α k+1 2 − κ) k j=1 (1 − α j 3 )T k+1 U n,k+2 x 0 − U n,k+2 x 0  2 −α k+1 2 α k+1 3  k j=1 (1 − α j 3 )U n,k+2 x 0 − x 0  2 −α k 1 (α k 2 − κ) k−1 j=1 (1 − α j 3 )T k U n,k+1 x 0 − U n,k+1 x 0  2 −α k 2 α k 3  k−1 j=1 (1 − α j 3 )U n,k+1 x 0 − x 0  2 −α k−1 1 (α k−1 2 − κ) k−2 j=1 (1 − α j 3 )T k−1 U n,k x 0 − U n,k x 0  2 −α k−1 2 α k−1 3  k−2 j=1 (1 − α j 3 )U n,k x 0 − x 0  2 . . . −α 3 1 (α 3 2 − κ) 2 j=1 (1 − α j 3 )T 3 U n,4 x 0 − U n,4 x 0  2 − α 3 2 α 3 3  2 j=1 (1 − α j 3 )U n,4 x 0 − x 0  2 −α 2 1 (α 2 2 − κ)(1 − α 1 3 )T 2 U n,3 x 0 − U n,3 x 0  2 − α 2 2 α 2 3 (1 − α 1 3 )U n,3 x 0 − x 0  2 −α 1 1 (α 1 2 − κ)T 1 U n,2 x 0 − U n,2 x 0  2 − α 1 2 α 1 3 U n,2 x 0 − x 0  2 . (2:13) Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 Page 9 of 16 For k Î N and (2.12), we have α k−1 2 α k−1 3  k−2 j=1 (1 − α j 3 )||U n,k x 0 − x 0 || 2 ≤||x 0 − x ∗ || 2 −||S n x 0 − x ∗ || 2 , (2:14) as n ® ∞. This implies that U ∞ , k x 0 = x 0 , ∀k Î N. Again by (2.12), we have α k 1 (α k 2 − κ) k−1 j =1 (1 − α j 3 )||T k U n,k+1 x 0 − U n,k+1 x 0 || 2 ≤||x 0 − x ∗ || 2 −||S n x 0 − x ∗ || 2 , (2:15) as n ® ∞. Hence α k 1 (α k 2 − κ) k−1 j =1 (1 − α j 3 )||T k U ∞,k+1 x 0 − U ∞,k+1 x 0 || 2 ≤ 0 . (2:16) From U ∞,k x 0 = x 0 , ∀k Î N, and (2.15), we obtain that T k x 0 = x 0 , ∀k Î N. This implies that x 0 ∈  ∞ i =1 F( T i ) . □ Lemma 2.13. Let C be a closed convex subs et of Hilbert space H. Let A i : C ® Hbe mappings and let G i : C ® CbedefinedbyG i (y)=P C (I - l i A i )ywithl i >0, ∀ i =1,2, N. Then x ∗ ∈  N i =1 VI(C, A i ) if and only if x ∗ ∈  N i =1 F( G i ) . Proof. For given x ∗ ∈  N i =1 VI(C, A i ) ,wehavex* Î VI(C, A i ), ∀ i =1,2, ,N.Since 〈A i x*, x - x*〉 ≥ 0, we have 〈l i A i x*, x - x*〉 ≥ 0, ∀l i >0, i = 1, 2, , N. It follows that x ∗ − ( I − λ i A i ) x ∗ , x − x ∗  = λ i A i x ∗ , x − x ∗ ≥0, ∀x ∈ C, i =1,2, , N . (2:17) Hence, x*=P C (I - l i A i )x*=G i (x*), ∀x Î C, i =1,2, ,N. Therefore, we have x ∗ ∈  N i =1 F( G i ) . For the converse, let x ∗ ∈  N i =1 F( G i ) ; then, we have for every i = 1, , N, x*=G i (x*) = P C (I - l i A i )x*, ∀l i >0, i = 1, 2, , N. It implies that x ∗ − ( I − λ i A i ) x ∗ , x − x ∗  = λ i A i x ∗ , x − x ∗ ≥0, ∀i =1,2, , N, ∀x ∈ C . (2:18) Hence, 〈A i x*, x-x*〉 ≥ 0, ∀x Î C,sox* Î VI (C, A i ), ∀i =1,2, ,N. Hence, x ∗ ∈  N i =1 VI(C, A i ) . □ 3 Main results Theorem 3.1. Let C be a close d convex subset of Hilbert space H. For every i = 1, 2, , N, let F i : C × C ® ℝ be a bifunction satisfying (A 1 )-(A 4 ), let A i : C ® Hbea i -inverse strongly monotone and let G i : C ® C be defined by G i (y)=P C (I - l i A i )y, ∀y Î C with l i Î (0, 1] ⊂ (0, 2a i ). Let B : C ® C be the K-mapping generated by G 1 , G 2 , , G N and b 1 , b 2 , , b N where b i Î (0, 1), ∀i = 1, 2, 3, , N-1, b N Î (0, 1] and let { T i } ∞ i = 1 be  i - strict pseudo-contraction mappings of C into itself with  = sup i  i and let ρ j =(α j 1 , α j 2 , α j 3 ) ∈ I × I × I ,whereI=[0,1], α j 1 + α j 2 + α j 3 = 1 , α j 1 + α j 2 ≤ b < 1 , and α j 1 , α j 2 , α j 3 ∈ (κ,1 ) for all j = 1, 2, . For every n Î N, let S n and S are S-mapping gener- ated by T n , ,T 1 and r n , r n-1 , , r 1 and T n , T n-1 , , and r n , r n-1 , ,respectively. Assume that F =  ∞ i =1 F( T i )  N i =1 EF(F i , A i )  N i =1 F( G i ) = ∅ . For every n Î N, i =1, 2, , N, let {x n } and {v i n } be generated by x 1 , u Î C and ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ F i v i n , v + A i x n , v − v i n  + 1 r i v − v i n , v i n − x n ≥0, ∀v ∈ C , i =1,2, , N. y n =  N i=1 δ i v i n x n+1 = α n u + β n x n + γ n (a n S n x n + b n Bx n + c n y n ), ∀n ∈ N, (3:1) Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 Page 10 of 16 [...]... problems of finite family of nonexpansive mappings Nonlinear Anal 71, 4448–4460 (2009) doi:10.1016/j.na.2009.03.003 doi:10.1186/1687-1812-2011-23 Cite this article as: Kangtunyakarn: Strong convergence theorem for a generalized equilibrium problem and system of variational inequalities problem and infinite family of strict pseudo-contractions Fixed Point Theory and Applications 2011 2011:23 Page 16 of 16... Ces’aro means for nonexpansive mappings and inverse-strongly monotone mappings J Nonlinear Convex Anal 7, 105–113 (2006) 5 Takahashi, W: Nonlinear Functional Analysis Yokohama Publishers, Yoko-hama (2000) 6 Tada, A, Takahashi, W: Strong convergence theorem for an equilibrium problem and a nonexpansive mapping J Optim Theory Appl 133, 359–370 (2007) doi:10.1007/s10957-007-9187-z 7 Takahashi, S, Takahashi,... Dynamical Approaches to Equilibrium Problems In Lecture Notes in Economics and Mathematical Systems, vol 477, pp 187–201 Springer (1999) 3 Takahashi, S, Takahashi, W: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space Nonlinear Anal 69, 1025–1033 (2008) doi:10.1016/j.na.2008.02.042 4 Iiduka, H, Takahashi, W: Weak convergence theorem by Ces’aro... Krasnoselskii and Manns type sequences for one-parameter nonexpansive semigroups without Bochner integrals J Math Anal Appl 305, 227–239 (2005) doi:10.1016/j.jmaa.2004.11.017 16 Combettes, PL, Hirstoaga, A: Equilibrium programming in Hilbert spaces J Nonlinear Convex Anal 6, 117–136 (2005) 17 Kangtunyakarn, A, Suantai, S: A new mapping for finding common solutions of equilibrium problems and fixed point problems... Suantai for his valuable suggestion in the preparation and improvement of this article Competing interests The author declares that they have no competing interests Received: 21 February 2011 Accepted: 29 July 2011 Published: 29 July 2011 References 1 Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems Math Stud 63, 123–145 (1994) 2 Moudafi, A, Thera, M: Proximal and. .. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces J Math Anal Appl 331, 506–515 (2007) doi:10.1016/j.jmaa.2006.08.036 8 Browder, FE, Petryshyn, WV: Construction of fixed points of nonlinear mappings in Hilbert spaces J Math Anal Appl 20, 197–228 (1967) doi:10.1016/0022-247X(67)90085-6 9 Marino, G, Xu, HK: Weak and strong convergence theorems for strict. .. pseudo-contractions in Hilbert spaces J Math Anal Appl 329, 336–346 (2007) doi:10.1016/j.jmaa.2006.06.055 10 Mann, WR: Mean value methods in iteration Proc Am Math Soc 4, 506–510 (1953) doi:10.1090/S0002-9939-19530054846-3 11 Qin, X, Chang, SS, Cho, YJ: Iterative methods for generalized equilibrium problems and fixed point problems with applications Nonlinear Analysis: Real World Applications 11, 2963–2972... Iterative algorithms for nonlinear operators J Lond Math Soc 66, 240–256 (2002) doi:10.1112/ S0024610702003332 13 Bruck, RE: Properties of fixed point sets of nonexpansive mappings in Banach spaces Trans Am Math Soc 179, 251–262 (1973) 14 Browder, FE: Nonlinear operators and nonlinear equations of evolution in Banach spaces Proc Sympos Pure Math 18, 78–81 (1976) 15 Suzuki, T: Strong convergence of Krasnoselskii... converge strongly to z = P u Proof From Theorem 3.1, choose N = 1 and let A1 = A, l1 = l Then, we have B(y) = G1(y) = PC(I - lA)y, ∀y Î C Choose v1 = vn, a = an, b = bn, c = cn for all n Î N, and n 1 let T ≡ S1 : C ® C be S-mapping generated by T1 and r1 with T1 = T and α1 = κ, and then we obtain the desired result from Theorem 3.1 □ Acknowledgements The authors would like to thank Professor Dr Suthep Suantai... ) 2 Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:23 http://www.fixedpointtheoryandapplications.com/content/2011/1/23 Page 15 of 16 It follows that xn+1 − z 2 ≤ 2αn u − z, xn+1 − z + (1 − αn ) xn − z 2 (3:26) From Step 4, (3.26), and Lemma 2.2, we have limn®∞ xn = z, where z = P u The proof is complete □ 4 Applications From Theorem 3.1, we obtain the following strong convergence theorems . RESEARC H Open Access Strong convergence theorem for a generalized equilibrium problem and system of variational inequalities problem and infinite family of strict pseudo-contractions Atid Kangtunyakarn Correspondence: beawrock@hotmail.com Department. Kangtunyakarn: Strong convergence theorem for a generalized equilibrium problem and system of variational inequalities problem and infinite family of strict pseudo-contractions. Fixed Point Theory and Applications. element of the set of a generalized equilibrium problem of the set of solution to a system of variational inequalities, and of the set of fixed points of an infinite family of strict pseudo- contractions.

Ngày đăng: 21/06/2014, 01:20

Từ khóa liên quan

Mục lục

  • Abstract

  • 1 Introduction

  • 2 Preliminaries

  • 3 Main results

  • 4 Applications

  • Acknowledgements

  • Competing interests

  • References

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan