the differential geometry of parametric primitives

14 348 0
the differential geometry of parametric primitives

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

THE DIFFERENTIAL GEOMETRY OF PARAMETRIC PRIMITIVES Ken Turkowski Media Technologies: Graphics Software Advanced Technology Group Apple Computer, Inc. (Draft Friday, May 18, 1990) Abstract: We derive the expressions for first and second derivatives, normal, metric matrix and curvature matrix for spheres, cones, cylinders, and tori. 26 January 1990 Apple Technical Report No. KT-23 The Differential Geometry of Parametric Primitives Ken Turkowski 26 January 1990 Differential Properties of Parametric Surfaces A parametric surface is a function: where is a point in affine 3-space, and is a point in affine 2-space. The Jacobian matrix is a matrix of partial derivatives that relate changes in u and v to changes in x, y, and z: The Hessian is a tensor of second partial derivatives: The first fundamental form is defined as: Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Apple Computer, Inc. Media Technology: Computer Graphics Page 1 G = JJ t = ∂ x ∂ u • ∂ x ∂u ∂x ∂u • ∂ x ∂v ∂ x ∂v • ∂ x ∂u ∂x ∂ v • ∂ x ∂v           H = ∂ 2 x, y,z ( ) ∂ u, v ( ) ∂ u,v ( ) = ∂ 2 x ∂u 2 ∂ 2 y ∂u 2 ∂ 2 z ∂u 2       ∂ 2 x ∂u∂v ∂ 2 y ∂u∂v ∂ 2 z ∂u∂v       ∂ 2 x ∂v∂u ∂ 2 y ∂ v∂u ∂ 2 z ∂ v∂u       ∂ 2 x ∂ v 2 ∂ 2 y ∂ v 2 ∂ 2 z ∂v 2                   = ∂ 2 x ∂u 2 ∂ 2 x ∂u∂v ∂ 2 x ∂v∂u ∂ 2 x ∂v 2             J = ∂ x,y,z ( ) ∂ u,v ( ) = ∂ x ∂ u ∂ y ∂ u ∂ z ∂ u ∂ x ∂ v ∂ y ∂ v ∂ z ∂ v           = ∂x ∂u ∂x ∂v           u = u v [ ] x = x y z [ ] x = F u ( ) and establishes a metric of differential length: so that the arc length of a curve segment, is given by: The differential surface area enclosed by the differential parallelogram is approximately: so that the area of a region of the surface corresponding to a region R in the u-v plane is: The second fundamental matrix measures normal curvature, and is given by: The normal curvature is defined to be positive a curve u on the surface turns toward the positive direction of the surface normal by: The deviation (in the normal direction) from the tangent plane of the surface, given a differential displacement of is: Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Apple Computer, Inc. Media Technology: Computer Graphics Page 2 ˙˙ x • n = ˙ uD ˙ u t ˙ u κ n = ˙ uD ˙ u t ˙ uG ˙ u t D = n• H = n• ∂ 2 x ∂u 2 n • ∂ 2 x ∂u∂v n • ∂ 2 x ∂ v∂u n • ∂ 2 x ∂v 2             S = G ( ) R ∫∫ 1 2 dudv δ S≈ G ( ) 1 2 δ uδv δu,δv ( ) s = ds dt t 0 t 1 ∫ dt = ˙ x t 0 t 1 ∫ dt = ˙ x t 0 t 1 ∫ dt = ˙ uG ˙ u t ( ) t 0 t 1 ∫ 1 2 dt u = u t ( ) , t 0 < t < t 1 dx ( ) 2 = du ( ) G du ( ) t Reparametrization If the parametrization of the surface is transformed by the equations: then the chain rule yields: or where is the new Jacobian matrix of the surface with respect to the new parameters and , and is the Jacobian matrix of the reparametrization. The new Hessian is given by where . The new fundamental matrix is given by: and the new curvature matrix is given by: Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Apple Computer, Inc. Media Technology: Computer Graphics Page 3 ′D = PDP T ′G = PGP T Q = ∂ u,v ( ) ∂ ′u 2 ∂ u,v ( ) ∂ ′u ∂ ′v ∂ u,v ( ) ∂ ′v ∂ ′u ∂ u,v ( ) ∂ ′v 2           ′H = PHP T +QJ P = ∂ u,v ( ) ∂ ′u , ′v ( ) = ∂ u ∂ ′u ∂v ∂ ′u ∂u ∂ ′v ∂v ∂ ′v           ′v ′u ′J = ∂ x, y,z ( ) ∂ ′u , ′v ( ) ′J = PJ ∂ x,y,z ( ) ∂ ′u , ′v ( ) = ∂ u,v ( ) ∂ ′u , ′v ( ) ∂ x,y,z ( ) ∂ u,v ( ) ′u = ′u u,v ( ) and ′ v = ′v u,v ( ) Change of Coordinates For simplicity, we have defined several primitives with unit size, located at the origin. Related to the reparametrization is the change of coordinates , with associated Jacobian: When the change of coordinates is represented by the affine transformation: the Jacobian is simply the submatrix: Regardless, the Jacobian and Hessian transform as follows: The normal is transformed as: The denominator arises from the desire to have a unit normal. The first and second fundamental matrices are then calculated as: Not very pretty. But certain types of transformations can be applied easily. For a uniform scale with arbitrary translations, Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Apple Computer, Inc. Media Technology: Computer Graphics Page 4 C = r 0 0 0 r 0 0 0 r           = r I ′D = ′H • ′n = HC ( ) • nC −1t ( ) nC −1t C −1 n t ( ) 1 2 = HCC −1 n t nC −1t C −1 n t ( ) 1 2 = H •n nC −1t C −1 n t ( ) 1 2 = D nC −1t C −1 n t ( ) 1 2 ′G = ′J ′J t = JCC t J t ′n = nC −1t nC −1t C −1 n t ( ) 1 2 ′J = JC, ′H = HC C = x x y x z x x y y y z y x z y z z z           A = x x y x z x x y y y z y x z y z z z x o y o z o             C = ∂ ′x ∂ x = ∂ ′x ∂ x ∂ ′y ∂ x ∂ ′z ∂ x ∂ ′x ∂ y ∂ ′y ∂ y ∂ ′z ∂ y ∂ ′x ∂ z ∂ ′y ∂ z ∂ ′z ∂ z                 ′x = ′x x ( ) so that For rotations (and arbitrary translations), the Jacobian matrix C=R is orthogonal, so the inverse is equal to the transpose, yielding: Combining the two, we have the results for a transformation that includes translations, rotations and uniform scale: or in terms of the composite matrix : Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Apple Computer, Inc. Media Technology: Computer Graphics Page 5 ′J = JC, ′H = HC, ′n = nC C ( ) 1 3 , ′G = C ( ) 2 3 G, ′D = C ( ) 1 3 D C = r R ′J = rJR, ′H = rHR, ′n = nR, ′G = r 2 G, ′D = rD ′J = JR, ′H = HR, ′n = nR, ′G = G, ′D =D ′J = rJ, ′H = rH, ′n = n, ′G = r 2 G, ′D = r D Sphere Given the spherical coordinates: we have the Jacobian matrix: the Hessian tensor: the first fundamental form: the normal: and the second fundamental form: Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Apple Computer, Inc. Media Technology: Computer Graphics Page 6 D = − x 2 + y 2 r 0 0 −r         n = x r y r z r       G = x 2 + y 2 0 0 r 2       ∂ 2 x, y,z ( ) ∂ θ,φ ( ) ∂ θ ,φ ( ) = − x −y 0 [ ] − yz x 2 + y 2 xz x 2 + y 2 0       − yz x 2 + y 2 xz x 2 + y 2 0       − x −y −z [ ]               ∂ x,y,z ( ) ∂ θ ,φ ( ) = − y x 0 xz x 2 + y 2 yz x 2 + y 2 − x 2 + y 2         x y z [ ] = r sinφ cosθ r sin φ sinθ r cosφ [ ] Unit Sphere Angle Parametrization Given the unit spherical coordinates with , we parametrize the sphere: This yields the Jacobian matrix: the Hessian tensor: the first fundamental form: the normal: and the second fundamental form: Angle Parametrization With the reparametrization , we have the Jacobian: Applying the chain rule, we have: Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Apple Computer, Inc. Media Technology: Computer Graphics Page 7 J uv = −2π y 2π x 0 πxz x 2 + y 2 πyz x 2 + y 2 −π x 2 + y 2         P = 2π 0 0 π       θ = 2π u, ϕ = πv D θφ = − x 2 + y 2 ( ) 0 0 −1       n = x y z [ ] G θφ = x 2 + y 2 0 0 1       H θφ = − x −y 0 [ ] − yz x 2 + y 2 xz x 2 + y 2 0       − yz x 2 + y 2 xz x 2 + y 2 0       − x −y −z [ ]               J θφ = − y x 0 xz x 2 + y 2 yz x 2 + y 2 − x 2 + y 2         x y z [ ] = sin φ cosθ sin φ sinθ cosφ [ ] 0 ≤ θ < 2π, 0 ≤ ϕ < π Changing coordinates to yield a sphere of arbitrary radius, we find that the expressions for the Jacobian, the Hessian, and the metric matrix remain the same, because x, y, and z scale linearly with r. The curvature matrix changes to: Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Apple Computer, Inc. Media Technology: Computer Graphics Page 8 D uv = − 4π 2 x 2 + y 2 ( ) r 0 0 −π 2 r         D uv = −4π 2 x 2 + y 2 ( ) 0 0 −π 2       G uv = 4π 2 x 2 + y 2 ( ) 0 0 π 2       H uv = 4π 2 −x −y 0 [ ] 2π − yz x 2 + y 2 xz x 2 + y 2 0       2π − yz x 2 + y 2 xz x 2 + y 2 0       π 2 − x −y −z [ ]               Cone Angle Parametrization Given the unit conical parametrization: we have the Jacobian matrix: the Hessian tensor: the first fundamental form: the normal: and the second fundamental form: Unit Parametrization For the parametrization: we have: Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Apple Computer, Inc. Media Technology: Computer Graphics Page 9 H uv = 4π 2 −x −y 0 [ ] 2π h rz −y x 0 [ ] 2π h rz −y x 0 [ ] 0 0 0 [ ]           J uv = −2π y 2π x 0 hx rz hy rz h         x y z [ ] = rvcos2 π u rv sin2 πu vh [ ] D θ z = − z 2 0 0 0         n θz = x z 2 y z 2 − 1 2       G θ z = x 2 + y 2 0 0 x 2 + y 2 + z 2 z 2         = z 2 0 0 2       H θ z = −x −y 0 [ ] − y z x z 0       − y z x z 0       0 0 0 [ ]           J θ z = − y x 0 x z y z 1         x y z [ ] = zcosθ zsinθ z [ ] [...]...Turkowski The Differential Geometry of Parametric Primitives 4π 2( x2 + y2)  Guv =  0   nuv =  h2x  1+ h2  rz 1  4π 2 rz − Duv =  1 + h2   0 Apple Computer, Inc 26 January 1990  2 2 2 2  h(x + y + z)   z2 0 h2y rz  −1   0  0 Media Technology: Computer Graphics Page 10 Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Cylinder Angle Parametrization Given the. .. matrix: −2π y 2π x 0 Juv =  0 h  0  the Hessian tensor: [ −4π 2 x −4π 2y 0] [0 0 0]  Huv =   [0 0 0] [0 0 0]   the first fundamental form: 4π 2 r 2 0  Guv =   h2   0 the normal: Apple Computer, Inc Media Technology: Computer Graphics Page 11 Turkowski x n= r The Differential Geometry of Parametric Primitives y r 26 January 1990  0  and the second fundamental form:  −4π 2r Duv... 0 Media Technology: Computer Graphics Page 12 Turkowski The Differential Geometry of Parametric Primitives 26 January 1990 Torus Angle Parametrization Given the torus parametrization: [ x y z] = [ (R + r cosφ ) cosθ (R + r cosφ ) sin θ r sin φ ] we have the Jacobian matrix: −y   Jθφ = − xz  2 2  x +y   x2 + y2 − R  x yz − 0 x2 + y2 the Hessian tensor:   [ − x −y 0]  Hθφ =   xz   yz... = [ cosθ z] sinθ we have the Jacobian matrix: − y x 0  Jθφ =    0 0 1 the Hessian tensor: [ − x −y 0] [ 0 0 0]  Hθφ =   [ 0 0 0]   [0 0 0] the first fundamental form: 1 0 Gθφ =   0 1 the normal: n = [x y 0] and the second fundamental form: −1 0 Dθφ =    0 0 Unit Parametrization With the parametrization: [ x y z] = [ r cos2 π u r sin2 πu hv] we have the Jacobian matrix: −2π... − y1 − 2  −z  2 2  x +y  x +y        the first fundamental form: x2 + y2 0  Gθφ =   r 2  0 the normal: R   1− 2 2 x +y x n= r    1− y R x +y 2 2 r   z  r   and the second fundamental form: Dθφ  x2 + y2   R  − 1 − 2  0 2 = r  x +y     0 −r     R2 − x 2 − y2 + z2 − r 2 = 2r  0   0  −r  using the torus’s implicit equation: ( ) 2 x + y − R +z = r . on the surface turns toward the positive direction of the surface normal by: The deviation (in the normal direction) from the tangent plane of the surface, given a differential displacement of. D Sphere Given the spherical coordinates: we have the Jacobian matrix: the Hessian tensor: the first fundamental form: the normal: and the second fundamental form: Turkowski The Differential Geometry of Parametric. du ( ) t Reparametrization If the parametrization of the surface is transformed by the equations: then the chain rule yields: or where is the new Jacobian matrix of the surface with respect to the new parameters

Ngày đăng: 27/03/2014, 11:53

Tài liệu cùng người dùng

Tài liệu liên quan