LUẬN VĂN:ĐỊNH LÝ WEIERSTRASS VÀ ỨNG DỤNG pot

14 966 1
LUẬN VĂN:ĐỊNH LÝ WEIERSTRASS VÀ ỨNG DỤNG pot

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

********* HÀ DUY NGHĨA ĐỊNH CHUẨN BỊ WEIERSTRASS VÀ ỨNG DỤNG TIỂU LUẬN THUYẾT KỲ DỊ i ********* HÀ DUY NGHĨA ĐỊNH CHUẨN BỊ WEIERSTRASS VÀ ỨNG DỤNG CAO HỌC TOÁN KHÓA 11 Chuyên ngành: Đại số thuyết số TIỂU LUẬN THUYẾT KỲ DỊ Người hướng dẫn khoa học TS. NGUYỄN CÔNG TRÌNH ii MỤC LỤC Trang phụ bìa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Mục lục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Lời mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chương 1 Định chuẩn bị Weierstrass 2 1.1 Đa thức Weierstrass . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Định chuẩn bị Weierstrass . . . . . . . . . . . . . . . . . . . 4 Chương 2 Ứng Dụng 9 2.1 Khai triển Puiseux . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Phép tham số hóa đường cong . . . . . . . . . . . . . . . . . . 9 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1 LỜI MỞ ĐẦU Cấu trúc tôpô của đường cong phẳng là một chuyên đề toán học được nhiều nhà toán học quan tâm nghiên cứu có nhiều kết quả hay, cụ thể là nó thể hiện trong nhiều tài liệu như cuốn Plane Algebraic Curves của tác giả Brieskorn, cuốn Introduction to algebraic curves của tác giả Griffiths Đối với bản thân tôi là học viên cao học, tôi chọn đề tài tiểu luận" Định lý chuẩn bị Weierstrass ứng dụng " nhằm tìm hiểu sâu hơn về vấn đề tham số hóa của đường cong cũng như sự phân tích của đường cong tổng quát thành các đường cong bất khả quy, nhằm để kết thúc bộ môn thuyết kỳ dị. Tiểu luần gồm 2 chương cùng với phần mở đầu kết luận. Chương 1: Nói về định chuẩn bị Weierstrass, các định chia đa thức và mối liên hệ giữa chúng. Chương 2: Là phần ứng dụng của định chuẩn bị cho việc chứng minh một đường cong tổng quát nào đó đều có thể tham số hóa được. Mặc dù bản thân đã rất cố gắng trong học tập, nghiên cứu được sự hướng dẫn nhiệt tình của thầy giáo hướng dẫn, nhưng do năng lực của bản thân thời gian còn hạn chế nên tiểu luận khó tránh khỏi những thiếu sót. Tôi rất mong nhận được sự góp ý của quý thầy cô các bạn để tiểu luận được hoàn thiện hơn. Cuối cùng tôi xin chân thành cảm ơn TS Lê Công Trình người đã tận tình giúp đỡ, cùng tập thể lớp cao học toán khoá 11 tạo điều kiện cho tôi hoàn thành tiểu luận này. Quy Nhơn, tháng 5 năm 2010 Hà Duy nghĩa 2 Chương 1 ĐỊNH CHUẨN BỊ WEIERSTRASS Trong chương này phần 1.1 Đa thức Weierstrass được trình bày theo tài liệu [2],phần 1.2 Định chuẩn bị Weierstrass trình bày theo tài liệu[1]. 1.1 Đa thức Weierstrass Gọi C{x}, (C{x, y}) tương ứng là vành các hàm chỉnh hình trên lân cận của 0 ∈ C(0; 0) ∈ C 2 nghĩa là C{x} = {Các chuỗi lũy thừa hội tụ có dạng f =  ∞ m=0 a m x m } C{x, y} = {Các chuỗi lũy thừa hội tụ có dạngf =  ∞ m,n=0 a mn x m y n } trong đó mỗi chuỗi lũy thừa có thể có bán kính hội tụ khác nhau. Định nghĩa 1.1.1. Đa thức w ∈ C{x, y} gọi là đa thức Weierstrass theo biến y (y−tổng quát) nếu w = y d + a 1 (x).y d−1 + + a d (x). (1.1) trong đó a j (x) ∈ C{x}, a j (0) = 0, (j = 1, , d). Nhận xét: Giả sử f ∈ C{x, y} khác đơn vị f(0, y) không đồng nhất 0, ta có thể viết: f(0, y) = by d + b 1 y d−1 + trong đó b = 0, d ≥ 1. Từ thực tế, phần tử không củaf(0, y) là phần tử cô lập, nên ta giả sử rằng trong miền |y| < ε. f(0, y) không chứa phần tử không ngay cả y = 0. Do đó ta giả sử trong đường tròn |y| = ε có |f(0, y)| ≥ c > 0. Do đó, với mỗi ρ đủ nhỏ, ρ > 0, |x| < ρ |y| = ε ta suy ra f (x, y) ≥ c / 2 > 0. 3 Bổ đề 1.1.2. Với những điều kiện như trên với |x| < ρ thì f(x, y) một hàm theo y có số các không điểm như nhau trên miền |y| < ε. Chứng minh. Bổ đề này suy trực tiếp từ nguyên argument trong giải tích phức. Do vậy với mỗi x cố định (|x| < ε) giả sử y ν (x)(ν = 1, d) là d không điểm củaf(x, y) = 0, ta xây dựng đa thức: w(x, y) =  d ν=1 (y − y 0 (x)) = y d + + a 1 (x)y d−1 + + a d (x) trong đó: a 1 (x) = −  d µ=1 y µ (x) a 2 (x) = −  d 1<µ<0≤d y µ (x)y ν (x) là những hàm đố xứng sơ cấp theo y ν (x)(ν = 1, d). Bổ đề 1.1.3. Đa thức w(x, y)được xây dựng như trên là đa thức Weierstrass. Chứng minh. Ta biết rằng mỗi hàm đối xứng sơ cấp có thể biểu diễn bởi một đa thức Newtơn đối xứng a 1 (x) = −δ(x) a 2 (x) = 1 2 [(δ 1 (x)) 2 − δ 2(x) ] trong đó: δ 1 (x) =  µ y µ (x) δ 2 (x) =  µ (y µ (x)) 2 δ d (x) =  µ (y µ (x)) d là những đa thức Newtơn đối xứng theo y µ (x), (µ = 1, , d) Do vậy, chúng ta cần chứng minh rằng mỗi δ k (k = 1, d) là hàm chỉnh hình theo x. Thật vậy, điều này suy trực tiếp từ định thặng dư cho biểu 4 diễn của δ k (x) = 1 2πi  |y|=ε y k f y (x, y) f.(x, y) dy. 1.2 Định chuẩn bị Weierstrass Bổ đề 1.2.1 (Special division theorem ,[1] p.340). Gọi p k (t, y) ∈ C{y 1 , , y k }[t] là đa thức k−tổng quát, tức là p k (t, y) = t k + k  i=1 y i t k−i Khi đó mỗi f(t, z, y) ∈ C{t, y, z} tồn tại q ∈ C{t, z, y} đa thức r(t, y, z) = k  i=1 A i (z, y).t k−i bậc  k − 1 trên C{z, y} sao cho f = q.p k + r. Chứng minh. Phép chứng minh chia làm 3 bước: Bước 1 :Chứng minh trường hợp p k = t − x i tức là ta phải chứng minh với mỗi ∈ C{t, z, x 1 , , x k } luôn tồn tại Q ∈ C{t, z, x} R ∈ C{z, x} sao cho F = Q(t − x i ) + R. Thật vậy, nếu đặt R(z, x) := F (x i , z, x) thì t − x i chia hết chuỗi F − R = F (t, z, x) − F (x i , z, x), hay F = Q(t − x i ) + R. Bước 2: Chứng minh cho trường hợp P k = (t − x 1 )(t − x 2 ) (t − x k ), tức là ta phải chứng minh với mỗi F ∈ C(t, z, x 1 x k ) tồn tại Q ∈ C{t, z, x} một đa thức R ∈ C{z, x}[t] bậc < k sao cho F = Q(t − x 1 )(t − x 2 ) (t − x k ) + R trong đó Q, R duy nhất. Thật vậy, theo bước 1 ta có: F = Q 1 (t − x 1 ) + R 1 . (Q 1 ∈ C{t, z, x}, R 1 ∈ C{x, z}) Q 1 = Q 2 (t − x 2 ) + R 2 . (Q 2 ∈ C{t, z, x}, R 2 ∈ C{x, z}) . . . Q k−1 = Q k (t − x k ) + R k . (Q k ∈ C{t, z, x}, R k ∈ C{x, z}) 5 thay thế lần lượtQ k−i (i = 1, , k − 2) vào Q 1 ta được: F = Q k (t−x 1 )(t−x 2 ) (t−x k )+R 1 +(t−x 1 )R 2 + +(t−x 1 )(t−x 2 )+ +(t−x k−1 )R k do đó với Q := Q k , R = R 1 +(t−x 1 )R 2 + +(t−x 1 )(t−x 2 )+ +(t−x k−1 )R k ta có: F = Q.(t − x 1 ) (t − x k ) + R. Sự duy nhất của Q R sẽ được trình bày trong phần chứng minh sau. Bước 3. Gọi δ i (x) là hàm đối xứng thứ n của các phần tử x 1 , , x k , ta thế y i = δ i (x) vào biểu thức P k (t, y) = t k + y 1 t k−1 + + y k = (t − x 1 )(t − x 2 ) (t − x k ). Tiếp theo đặt: F(t, z, x) = f(t, z, δ 1 (x), , δ k (x)) khi đó ta có thể chia f(t, z, y) bởi một đa thức tổng quát như ở bước 2 tức là : f(t, z, x) = Q(t, z, x)(t − x 1 ) (t − x k ) + R(t, z, x) với Q R luôn đối xứng trước sự hoán vị của x 1 , , x k . Ngoài ra, theo định cơ bản của hàm đối xứng, có một hàm chỉnh hình q(t, z, y) ∈ C{t, z, y} đa thức r(t, z, y) theo t có bậc nhỏ hơn k hệ số thuộc vào C{x, y} sao cho: q(t, z, δ 1 (x), , δ k (x)) = Q(t, z, x) và r(t, z, δ 1 (x), , δ k (x)) = R(t, z, x) từ đó suy ra: F(t, z, x) = f(t, z, δ 1 (x), , δ k (x)) = q(t, z, δ 1 (x), , δ k (x))(t k + δ 1 (x)t k−1 + + δ k (x)) + r(t, z, δ 1 (x), , δ k (x)). Mặt khác ta biết phép thế δ : C −→ C là toàn ánh nên ta suy ra f = q.p k + r. 6 Định 1.2.2 (Division theorem,[1], p.339). Gọi f, g ∈ C{t, z} gọi g là t−tổng quát bậc k khi đó ∃q ∈ C{t, z} đa thức r ∈ C{z}[t] bậc ≤ k − 1 sao cho r(t, z) = k  i=1 q i (z)k k−i , q i (z) ∈ C{z} với f = q.g + r q, r là xác định duy nhất .(Định này thường được gọi là công thức Weierstrass) Chứng minh. Định này được chứng minh từ Bổ đề trên. Gọi g là t− tổng quát cấp k, gọi f ∈ C{t, z}, theo Bổ đề 1.2.1 ta có thể viết g f dưới dạng g =  g(t, y, z).p k +  r(t, z, y) f =   q(t, z, y).p k +   r(t, z, y) Trong đó  r,   r là những đa thức bậc k − 1 với hệ số trong C{z, y}. Do đó ta có thể thay thế y = y(z) sao cho  r(t, z, y(z)) ≡ 0 từ đó suy ra : g(t, z) =  q(t, z, y(t)).p k với (  q(0, 0, 0) = 0) f(t, z) =   q(t, z, y(z)).p k +   r(t, z, y(z)) =   q.  q −1 .g +   r. Như vậy nếu gán q(t, z) =   q(t, z, y(z)).  q −1 g(t, z, y(z)) r(t, z) :=   r(t, z, y(z)) thì ta có biểu diễn f = q.g + r . Bây giờ ta chứng minh q, r là duy nhất, thật vậy giả sử f = q 1 .g + r 1 = q 2 .g + r 2 suy ra r 1 − r 2 = (q 2 − q 1 ).g Mặt khác các k không điểm của g(t, z) chứa trong lân cận của 0 ∈ C với z đủ nhỏ, đa thức r 1 (t, z) − r 2 (t, z) có bậc ≤ k − 1 có ít nhất k không điểm nên r 1 (t, z) − r 2 (t, z) = 0 suy ra r 1 = r 2 và q 1 = q 2 . Định 1.2.3 (Weierstrass preparation theorem,[1],p.338). Gọi g(t, z) = g(t, z 1 , , z n ) là chuỗi lũy thừa hội tụ từ C{t, z 1 , , z n } và gọi g là t−tổng quát cấp k. Khi đó tồn tại u(t, z) ∈ C{t, z} c i (z) ∈ C{z} sao cho g(t, z) = (t k + c 1 (z)t k−1 + + c k (z)).u(t, z) 7 với c i (0) = 0 u(0, 0) = 0 c i , u là duy nhất. Chứng minh. Gọi g ∈ C(t, z) là tổng quát cấp k, nghĩa là g(t, 0) là chuỗi lũy thừa có dạng g(t, 0) = c.f k + + (số hạng cao hơn theo t) với c = 0,theo Bổ đề 1.2.1 ta phân tích: g(t, z) = q(t, z, y)(t k + y 1 t k−1 + + y k ) + r(t, z, y) (1.2) với đa thức r(t, z, y) = A 1 (z, y)t k−1 + + A k (z, y) và q ∈ C{t, z, y} Mục đích của chúng ta là thay thế hệ số tổng quát y i của p k bởi hàm chỉnh hình y i (z) sao cho số hạng dư r trong(1.2) là triệt tiêu, để làm được điều này trước hết ta phải chứng tỏ được: ∂A i ∂y i (0; 0) =        0 nếu i > j −c nếu i = j (1.3) Thật vậy, nếu ta cho y = z = 0 trong (1.2) so sánh hệ số của t 0 , , t k ta được: A i (0; 0) = 0 q(0; 0; 0) = c. Do vậy (1.3) thỏa mãn. Nếu 2 vế của (1.2) khác nhau phụ thuộc vào y j thì với y = z = 0 ta có: 0 = ∂q ∂y j (t, 0, 0)t k q(t, 0, 0)t k−j + ∂A 1 ∂y 5 (0, 0)t k−1 + + ∂A k ∂y j (0, 0) so sánh hệ số của t 0 , t 1 , , t ( k − 1) ta suy ra ∂A k ∂y j (0, 0) = 0, ∂A k−1 ∂y j (0, 0) = 0, ∂A k+1 ∂y j (0, 0) = 0 và ∂A j ∂y j (0, 0) = −q(0, 0, 0) = −c. Vậy (1.3) được chứng minh. Ngoài ra ma trận ∂A j ∂y j là ma trận tam giác trên với định thức (−c) k = 0, nên từ phương trình A i (z, y, (t) , y k (z)) = 0, i = 1, k kết hợp với giả thiết của định ta kết luận rằng tồn tại y j ∈ C{z} với y j = 0 sao cho A i (z, y 1 (z), , y k (z) = 0), i = 1, , k Nếu chúng ta thế y = y(t) vào phương trình (1.2) u(t, z) = q(t, z, y(z)) ta được g(t, z) = (t k + y 1 (z)t k−1 + + y k (z))u(t, z)trong đó u(0, 0) = 0, điều này chứng tỏ rằng g là tích của đa thức Weierstrass đa thức u. [...]... không đi m trùng nhau Do đó v i z đ nh thì ci (z) = ci (z) đi u này kéo theo ci = ci do đó u = u, hay pk , u là duy nh t 9 Chương 2 NG D NG N i dung c a chương này là gi i thi u v phép khai tri n Puiseux áp d ng Đ nh chu n b Weierstrass (Đ nh 1.2.3 ) đ ch ng minh s t n t i c a phép tham s hóa m t đa th c Weierstrass kh quy 2.1 Khai tri n Puiseux Đ nh nghĩa 2.1.1 Khai tri n d ng: m0 m1 m2...8 Ti p theo ta ch ng minh u đa th c Weierstrass pk là duy nh t G i g(t, z) = u(tk + c1 tk−1 + + ck ) = u(tk + c1 tk−1 + + ck ) g i U = V × W là lân c n c a 0 ∈ C × Cn v i u u không tri t tiêu trên lân c n này T nghi m c a đa th c không ph thu c vào các h s nên t t c các k không đi m c a hai đa th c pk = tk + c1 (t)tk−1 + + ck (z)... 2.2 Phép tham s hóa đư ng cong Đ nh 2.2.1 Gi s f là đa th c b t kh quy y− t ng quát c p m khi đó t n t i lân c n c a (0, 0) sao cho trong lân c n này f có m t phép tham s hóa dư i d ng   x  = tm   y = y(t) ∈ C(t) 10 Ch ng minh Theo Đ nh 1.2.3, t n t i duy nh t u ∈ C∗ {x, y}, g ∈ C{x}[y] sao cho f = u.g, v i g = y m + am−1 (x)y m−1 + + a1 (x)y + a0 (x) b t kh quy trong C{x}[y] Theo... 1, , N là các nghi m c a phương trình g(x, y) = 0 suy ra N h(x, y) = 1 y − y(ζ i x N ) ∈ C{x}[y] j=1 là ư c c a g(x, y) ⇒ ∃u ∈ C∗ {x}[y] : g = u h ⇒ f = u.g = u.u h M t khác t tính duy nh t c a Đ nh 1.2.3 ta suy ra g = h do đó: ⇒g= N j=0 1 y − y(ζ i x N ) ∈ C{x}[y] ⇒ m = N H qu 2.2.2 Xét f ∈ C{x, y} là đa th c b t kh quy, m = mult0 (V (f ))(Quy ư c f là y− t ng quát c p m), khi đó x = 0 không . DUY NGHĨA ĐỊNH LÝ CHUẨN BỊ WEIERSTRASS VÀ ỨNG DỤNG TIỂU LUẬN LÝ THUYẾT KỲ DỊ i ********* HÀ DUY NGHĨA ĐỊNH LÝ CHUẨN BỊ WEIERSTRASS VÀ ỨNG DỤNG CAO HỌC TOÁN. môn Lý thuyết kỳ dị. Tiểu luần gồm 2 chương cùng với phần mở đầu và kết luận. Chương 1: Nói về định lý chuẩn bị Weierstrass, các định lý chia đa thức và

Ngày đăng: 05/03/2014, 23:20

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan