đồ án thiết kế mạch adc xấp xỉ đều

27 1.2K 9
đồ án thiết kế mạch adc xấp xỉ đều

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

TRƯỜNG ĐẠI HỌC QUY NHƠN KHOA KỸ THUẬT & CÔNG NGHỆ *********** THIẾT KẾ MẠCH Đề bài : ADC XẤP XỈ ĐỀU G.V hướng dẫn : Thầy Nguyễn Viết Nguyên. Nhóm sinh viên : Lời nói đầu & Kỹ thuật điện tử đã và đang bùng nổ một cách mạnh mẽ , xâm nhập vào mọi lĩnh vực của cuộc sống con người .Chúng ta có thể bắt gặp ở khắp mọi nơi các thiết bị điện tử ,từ các thiết bị dân dụng phục vụ cho sinh hoạt tới các thiết bị công nghiệp phục vụ cho sản xuất.Tất cả chúng đều đang phục vụ đắc lực cho cuộc sống của con người . Đặc biệt , từ khi kỹ thuật số ra đời đã mở ra một cuộc cách mạng mới cho ngành điện tử. Các thiết bị trở nên nhỏ gọn hơn , nhiều tình năng hơn, tiêu thụ công suất ít hơn và độ tin cập cao hơn nhiều . Sự bùng nổ của ngành công nghiệp vi điện tử , chế tạo IC , các bộ vi xử lý , vi điều khiển đã thay thế được phần lớn các khối chức năng trong mạch điện , làm giảm đi rất nhiều công sức cho người thiết kế cũng như bảo trì , bảo dưỡng. Bên cạnh đó những chiếc máy vi tính, máy CD, máy VCD, truyền hình số cho đến các băng đĩa CD đã dần dần thay thế các máy và băng từ tín hiệu tương tự (analog) bởi bộ phận dải rộng, độ chính xác cao và dễ dàng trong quá trình xử lý tín hiệu. Tuy nhiên trong cuộc sống hằng ngày chúng ta lại thường tiếp xúc với những tín hiệu tương tự nhiều hơn. Ví dụ: Điện thoại, sóng đài truyền hình, dòng điện sinh hoạt, âm thanh Vì thế phải cần có một sự chuyển đổi tín hiệu tương tự (analog) – số (digital) để xử lý dữ liệu, sau đó chuyển đổi ngược lại từ số (digital) – tương tự (analog) để đưa vào điều khiển, khống chế thiết bị. Đó là những lý do để chúng em thực hiện đề tài này. Mục đích, yêu cầu của đề tài: 1. Nguyên lý ADC đếm, xây dựng cấu trúc khối thực hiện đếm từ trạng thái ban đầu Z x = 0. 2. Thiết lập mạch điện nguyên lý với số kết quả Z x thể hiện ở mã nhị phân 8 bit, U x là điện áp một chiều ±16V Có mạch báo dấu U x , nguồn điện áp tham chiếu U ref = 16V, R nguồn = 0.02 Ohm ; Các số liệu khác tự chọn. Tuy nhiên do khả năng có hạn cũng như những hạn chế về mặt kỹ thuật , đồ án chắc chắn còn nhiều thiếu sót . Rất mong thầy và các bạn góp ý để được hoàn thiện hơn . Chúng em cũng xin chân thành cảm ơn thầy Nguyễn Viết Nguyên đã có những chỉ dẫn giúp chúng em hoàn thành đồ án này. Nhóm sinh viên. PHẦN I: GiỚI THIỆU ADC VÀ CÁC PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG TỰ - SỐ A – BIẾN ĐỔI TƯƠNG TỰ - SỐ (ADC): 1. Tổng quát. Biến đổi tương tự – số (analog – digital) là thành phần cần thiết trong việc xử lý thông tin và các cách điều khiển sử dụng phương pháp số. Tín hiệu thực ở Analog. Một hệ thống tiếp nhận dữ liệu phải có các bộ phận giao tiếp Analog – Digital (A/D). Các bộ chuyển đổi tương tự số, viết tắt là ADC thực hiện hai chức năng cơ bản là lượng tử hóa và mã hóa. Lượng tử hóa là gán cho những mã nhị phân cho từng giá trị rời rạc sinh ra trong quá trình lượng tử hóa. 1.1. Quan hệ In – Out : Biến đổi AD có tính chất tỉ lệ. Tín hiệu vào Analog được biến đổi thành một phân số X bằng cách so sánh với tín hiệu tham chiếu V ref . Đầu ra của bộ ADC là mã của phân số này. Bất kỳ một sai số tín hiệu V ref nào cũng sẽ dẫn đến sai số mức ra, vì vậy người ta cố gắn giữ cho V ref càng ổn định càng tốt. Quan hệ vào ra các khối ADC. Nếu bộ ADC xuất mã ra gồm n bit thì số mức ra rời rạc là 2n. Đối với quan hệ tuyến tính, tần số vào được lượng tử hóa theo đúng mức này. Mỗi mức như vậy là một tín hiệu analog được phân biệt với hai mã kế tiếp nhau, nó chính là kích thước của LSB (Least Significant Bit). Q= LSB = FS/2 N Trong đó : Q : Lượng tử LSB : bit có trọng số thấp nhất FS : giá trị toàn thang Tất cả các giá trị analog của lượng tử Q được biểu diễn bởi mã số, mà mã này tương ứng với giá trị trung bình của lượng tử (có thể hiểu là giữa khoảng LSB) gọi là mức ngưỡng. Các giá trị Analog nằm trong khoảng từ mức ngưỡng sai biệt đi ± ½ LSB vẫn được thể hiện bằng cùng một mẫu, đó là sai số lượng tử hóa. Sai số này có thể sẽ giảm đi bằng cách tăng số bit trong mã ra bộ ADC. Quan hệ vào ra. 1.2. Độ phân giải: Nếu mạch điện có 4 bộ so sánh, ngõ ra digital sẽ có 5 mức giá trị. Tương tự nếu mạch điện có 7 bộ so sánh thì sẽ có 8 mức giá trị có thể ở ngõ ra digital, khoảng cách giữa các mức tín hiệu trong trường hợp 8 mức sẽ nhỏ hơn trường hợp 4 mức. Nói cách khác, mạch chuyển đổi với 7 bộ so sánh có giá trị digital ngõ ra “mịn” hơn khi chỉ có 4 bộ, độ “mịn” càng cao tức độ phân giải (resolution) càng lớn. Khái niệm độ phân giải được dùng để chỉ số bit cần thiết để chứa hết các mức giá trị digital ngõ ra. Trong trường hợp có 8 mức giá trị ngõ ra, chúng ta cần 3 bit nhị phân để mã hóa hết các giá trị này, vì thế mạch chuyển đổi ADC với 7 bộ so sánh sẽ có độ phân giải là 3 bit. Một cách tổng quát, nếu một mạch chuyển đổi ADCđộ phân giải n bit thì sẽ có 2 n mức giá trị có thể có ở ngõ ra digital. Để tạo ra một mạch chuyển đổi flash ADCđộ phân giải n bit, chúng ta cần đến 2 n -1 bộ so sánh, giá trị này rất lớn khi thiết kế bộ chuyển đổi ADCđộ phân giải cao, vì thế các bộ chuyển đổi flash ADC thường có độ phân giải ít hơn 8 bit. Độ phân giải liên quan mật thiết đến chất lượng chuyển đổi ADC, việc lựa chọn độ phân giải phải phù hợp với độ chính xác yêu cầu và khả năng xử lý của bô điều khiển. Trong 2 mô tả một ví dụ “số hóa” một hàm sin analog thành dạng digital. 1.3. Độ chính xác: Cùng một bộ chuyển đổi ADC nhưng có người muốn dùng cho các mức điện áp khác nhau, ví dụ người A muốn chuyển đổi điện áp trong khoảng 0-1V trong khi người B muốn dùng cho điện áp từ 0V đến 5V. Rõ ràng nếu hai người này dùng 2 bộ chuyển đổi ADC đều có khả năng chuyển đổi đến điện áp 5V thì người A đang “phí phạm” tính chính xác của thiết bị. Vấn đề sẽ được giải quyết bằng một đại lượng gọi là điện áp tham chiếu - Vref (reference voltage). Điện áp tham chiếu thường là giá trị điện áp lớn nhất mà bộ ADC có thể chuyển đổi. Trong các bộ ADC, Vref thường là thông số được đặt bởi người dùng, nó là điện áp lớn nhất mà thiết bị có thể chuyển đổi. Ví dụ, một bộ ADC 10 bit (độ phân giải) có Vref=3V, nếu điện áp ở ngõ vào là 1V thì giá trị số thu được sau khi chuyển đổi sẽ là: 1023x(1/3)=314. Trong đó 1023 là giá trị lớn nhất mà một bộ ADC 10 bit có thể tạo ra (1023=2 10 -1). Vì điện áp tham chiếu ảnh hưởng đến độ chính xác của quá trình chuyển đổi, chúng ta cần tính toán để chọn 1 điện áp tham chiếu phù hợp, không được nhỏ hơn giá trị lớn nhất của input nhưng cũng đừng quá lớn. 1.4. ADC. Tùy theo công nghệ chế tạo mà bộ ADC có đầu vào đơn cực hay lưỡng cực, đa số nằm trong khoảng 0…5V hoặc 0…10V đối với đơn cực và -5…+5V hoặc –10V…+10V đối với ADC lưỡng cực. Tín hiệu vào cần phù hợp với tầm vào xác định cho từng bộ ADC. Nếu đầu vào không hết thang sẽ tạo mã vô dụng ở đầu ra. Vấn đề này được giải quyết bằng cách chọn tầm đầu vào bộ ADC sau đó chỉnh độ lợi thích hợp cho đầu vào của nguồn Analog. Khi sử dụng bộ ADC đơn cực mà có tín hiệu vào là lưỡng cực trong khoảng ±Vpp thì ta cần phải cộng điện áp vào Vi với một điện áp nền bằng +Vpp, khi đó ta sẽ có Vi nằm trong khoảng 0 +2Vpp; tín hiệu này sẽ được đưa tới đầu vào bộ ADC. Nếu sử dụng ADC lưỡng cực thì không cần cộng tín hiệu và đầu ra ta sẽ nhận được mã lưỡng cực. 1.5. Đầu ra bộ ADC: Đa số các ADC có đầu ra 8 Bits, 16 Bits … dù vậy cũng có loại 3½ Digit, mã BCD, 10 Bits, 14 Bits. Đầu các bộ ADC thường là mã nhị phân tự nhiên hoặc có dấu. ADC dùng cho máy đo chỉ thị số đa dụng thường là mã BCD. 1.6. Tín hiệu tham chiếu Vr: Hình vẽ cho thấy đầu vào và đầu ra của bộ ADC. Mọi ADC đều yêu cầu có tín hiệu V r . Bất kỳ một sai số nào trên V r đều gây ra lỗi độ lợi ở đặc tính của AD. Vì vậy V r là tín hiệu đảm bảo độ chính xác và ổn định của bộ AD. Dùng IC ổn áp có thể thỏa mãn điều này. 1.7. Tín hiệu điều khiển: Mọi bộ ADC đều có tính xung Clock và tín hiệu điều khiển để hoạt động. Thiết bị ngoài giao tiếp với ADC sẽ khởi động quá trình AD bằng cách phát một xung Start vào đầu vào Start của ADC, ADC sẽ nhận biết cạnh lên của xung Start và ngay sau đó nó sẽ kéo đường EOC (End of Conversion) xuống thấp (không tích cực). Lúc này ADC đang thực hiện quá trình biến đổi, tương ứng với mỗi xung Clock đưa vào ADC sẽ thực hiện được một bước biến đổi, sau một bước nhất định tùy theo bộ ADC, thì quá trình biến đổi hoàn thành. Khi biến đổi xong, ADC sẽ nâng đường EOC lên mức cao, tín hiệu này có thể dùng để kích một ngắt cứng của máy tính (nếu dùng giao tiếp với máy tính). Để đọc được dữ liệu đầu ra của bộ ADC thì phải nâng đường OE (Output Enable) của ADC lên mức cao, sau khi đọc xong thì lại trả đường này về mức thấp. 2.Các kỹ thuật ADC: 2.1. ADC kiểu đếm: Sơ đồ khối AD có V r dạng nấc thang. Counter: Bộ đếm tạo đầu ra cho bộ ADC bằng hoặc lớn hơn giá trị vào Ux. Nó được reset tại mọi thời điểm bắt đầu thực hiện AD và đếm dần lên sau mỗi xung Clock. Cứ mỗi lần đếm bộ DAC lại nâng lên mỗi nấc thang (1 LSB). Bộ so sánh sẽ dùng bộ đếm lại khi điện áp DAC (áp hồi tiếp) đạt tới giá trị vào Ux. Nhược điểm của phương pháp này là Tc (thời gian chuyển đổi) theo mức tín hiệu vào và đôi khi rất lâu. Tc=2x Tclock đối với bộ DAC n bit khi biến đổi một tín hiệu vào ở mức FS (Full Scale). Một cải tiến của phương này là “tracking” hay “servo” sử dụng bộ đếm thuận nghịch cho phép DAC đưa tín hiệu vào liên tục. Bằng sự khống chế bộ đếm từ bên ngoài tại một điểm nhất định ta dùng bộ DAC kiểu tracking như một bộ S & H (Sample and Hold). 2.2. ADC thăng bằng liên tục: Sơ đồ khối giống như phương pháp trước, nhưng bộ đếm là bộ đếm thuận nghịch. Về cơ bản cũng giống như phương pháp trên nhưng bộ đếm hoạt động được ở chế độ thuận nghịch. Khi tín hiệu V ht < Vi thì bộ đếm sẽ đếm lên, ngược lại thì bộ đếm sẽ đếm xuống. Quá trình xác lập ghi nhận Clock Khối so sánh Bộ đếm thuận DAC Chốt Bộ giải mã Xung xóa CL Bộ chỉ thị Ux Uss Udac AND Z Zx được khi giá trị V ht dao động xung quanh giá trị Vi. Tc cũng phụ thuộc vào Vi và nhược điểm sai số cũng giống phương pháp trên: sai số động phụ thuộc vào thời gian biến đổi và sai số tĩnh chủ yếu ở bộ biến đổi DA và bộ so sánh. Đồ thị thời gian AD thăng bằng liên tục. 2.3.Phương pháp biến đổi ADC hàm dốc tuyến tính: (phương pháp tích phân một độ dốc) Về bản chất thực hiện biến đổi trung gian từ điện áp ra khoảng thời gian sau đó đo khoảng thời gian theo phương pháp số. Quá trình biến đổi sẽ xảy ra như sau: Sơ đồ khối phương pháp ADC hàm dốc tuyến tính. Sau thời gian kích khởi, bộ đếm sẽ bắt đầu đếm lên và mạch quét sẽ bắt đầu tạo ra tín hiệu tuyến tính thời gian. Tín hiệu quét và tín hiệu vào Vi được so sánh với nhau, khi hai tín hiệu này bằng nhau thì mạch so sánh sẽ đóng cổng không cho xung tới bộ đếm nữa. Như vậy nội dung của bộ đếm sẽ tỉ lệ với thời gian to, mà to lại tỉ lệ thuận với giá trị Vi nên nội dung bộ đếm tỉ lệ với Vi. Dạng sóng ADC hàm dốc tuyến tính. Độ chính xác của phương pháp này phụ thuộc vào độ tuyến tính của tín hiệu quét (sai số độ dốc càng nhỏ, độ chính xác càng cao), tín hiệu phụ thuộc vào tần số của từng xung. Phương pháp này có tốc độ hoạt động cao hơn các phương pháp ban đầu, và độ chính xác cũng cao hơn do không cần sử dụng bộ biến đổi DA. 2.4. ADC xấp xỉ liên tiếp: Sơ đồ khối mạch ADC xấp xỉ liên tiếp. Phương pháp này được dùng trong kỹ thuật biến đổi AD tốc độ cao – trung bình. Nó cũng dùng một bộ DAC bên trong để tạo ra một điện áp bằng mức vào và của tín hiệu sau đúng bằng n chu kỳ xung Clock cho trường hợp ADC n bit. Phương pháp này cho phép rút ngắn Tc rất nhiều và không phụ thuộc vào tín hiệu vào Vi. Kỹ thuật này phụ thuộc vào sự xấp xỉ tín hiệu vào với mã nhị phân, sau đó thay đổi các bit trong mã này một cách liên tiếp cho đến khi đạt được mã gần đúng nhất. Tại mỗi bước của quá trình này, giá trị xấp xỉ của mã nhị phân thu được sẽ được lưu vào SAR (Successive Approximate Register). Việc biến đổi luôn được bắt đầu tại MSB (Most Significant Bit) của SAR khi đó được bật lên. Bộ so sánh sẽ so sánh đầu ra của ADC với Vi và ra lệnh cho bộ điều khiển ngắt MSB nếu như giá trị ban đầu này vượt quá đầu vào AD. Trong chu kỳ xung Clock kế tiếp, MSB lại được phát trở lại. Một lần nữa bộ so sánh sẽ quyết định lấy hay bỏ MSB này. Sự biến đổi này sẽ tiến dần đến sự đúng nhất so với tín hiệu vào xuất dữ liệu này ra. 2.5. ADC tích phân hai độ dốc: Kỹ thuật này thấy rõ trên sơ đồ khối. Ta thấy điện áp vào được tích phân trong khoảng thời gian t1, đúng bằng lúc bộ đếm đếm hết. Tại cuối t1, bộ đếm sẽ reset và bộ tích phân chuyển qua mức tham chiếu âm, đầu ra của bộ tích phân sẽ giảm tuyến tính về zero tại đó bộ đếm ngưng đếm và được reset. Điện tích nạp tụ trong khoảng thời gian t gần bằng điện tích xả trong khoảng thời gian t2: t1 x V1 = t2 x V2  t2 / t1 = V1 / V2 = X Tỉ số X cũng chính là tỉ số mà mã nhị phân của bộ đếm lớn nhất ( giá trị đếm được vào cuối t2 cũng là giá trị xuất ra. Kỹ thuật này có một [...]... Ura< 12V 3.Kết luận: Sau khi nghiên cứu và hồn thành đồ án mơn học này, nhóm đã thiết kế được mạch ADC đếm xấp xỉ đều theo đúng u cầu Về mặt lý thuyết, đồ án đã nêu lên được khái qt các vấn đề cơ bản về ADC và các phương pháp biến đổi tương tự - số Về mặt thực hành đồ án cũng đã giải thích hoạt động của các khối đồng thời trình bày được các bước tính tốn trong việc thiết kế mạch ADC xấp xỉ đều Qua việc... DAC 3 Đầu ra bộ DAC 4 Tín hiệu điều khiển Phần 2: Tính tốn thiết kế ADC xấp xỉ đều 1 Cấu trúc khối và sơ đồ mạch ngun lý ADC đếm 1.1 Cấu trúc khối 1.2 Sơ đồ mạch ngun lý 2 Nhiệm vụ, chức năng các khối trong sơ đồ mạch ngun lý 2.1 Khối so sánh 2.2 Khối tạo xung Clock 2.3 Khối đếm thuận 2.4 Khối đệm 2.5 Bộ chuyển đổi DAC 2.6 Mạch báo dấu Ux 3 Kết luận ... lý thuyết trong các mạch thực tế Tuy chưa thiết kế được mạch trên thực tế nhưng quan trọng hơn cả là việc làm đồ án đã giúp chúng em tiến hành được cơng tác tự nghiên cứu mơn học Trong khi thực hiện đồ án khơng thể tránh khỏi nhiều sai sót, mong thầy giáo thơng cảm và đóng góp thêm ý kiến để đồ án được hồn thiện hơn Nhóm thực hiện Mục lục Lời nói đầu Trang 1 Phần 1: Giới thiệu ADC và các phương pháp... u F Hình 1.3: Mạch ngun lý ADC đếm 8 bit từ trạng thái Z=0 Mạch điện gồm các linh kiện chính: IC 74LS 93 , IC 4093, IC 7007, IC khuếch đại thuật tốn, IC 7400,ngồi ra còn các linh kiện thụ động điện trở,tụ điện,LED,… b Ngun lý hoạt động: Tín hiệu vào Ux được đi qua đồng thời mạch báo dấu và bộ so sánh Mạch báo dấu dùng để so sánh Ux và GND Ux>0v cho LED sáng Mạch so sánh có nhiệm vụ so sánh mức điện... đổi tương tự số A Biến đổi tương tự - số (ADC) 1 Tổng qt 1.1 Quan hệ In – Out 1.2 Độ phân giải 1.3 Độ chính xác 1.4 ADC 1.5 Đầu ra bộ ADC 1.6 Tín hiệu tham chiếu Vr 1.7 Tín hiệu điều khiển 2 Các kỹ thuật ADC 2.1 ADC có Vr dạng nấc thang 2.2 ADC thăng bằng lien tục 2.3 Phương pháp biến đổi AD hàm dốc 2.4 ADC xấp xỉ liên tục 2.5 ADC tích phân hai độ dốc 2.6 ADC dung biến đổi V – F (điện áp – tần số )... khối chức năng riêng biệt,bao gồm : + Bộ so sánh + Bộ tạo xung Clock + Bộ chuyển đổi DAC + Bộ chốt và giải mã Ngồi ra, giữa bộ đếm và bộ chuyển đổi DAC cần có 1 bộ đệm để nâng áp,so sánh với bộ DAC Theo u cầu của đề bài trong mạch ngun lý còn có mạch báo dấu điện áp vào Ux, mạch báo dấu là mạch so sánh dùng IC khuếch đại thuật tốn Hoạt động của mạch: lúc đầu mạch đếm được Reset, bộ đếm xố về 0, do đó... từ bộ DAC mạng điện trở R-2R đưa tín hiệu đã được so sánh tới 7400 rồi đưa tới IC7493 giải mã thành các ma nhị phân tương ướng với mức điện áp được so sánh 2 Nhiệm vụ,chức năng các khối trong sơ đồ mạch ngun lý: 2.1.Khối so sánh: Mạch so sánh sử dụng IC khuếch đại thuật tốn Điện áp ngõ vào được đưa vào so sánh với điện áp ra từ bộ DAC Q trình so sánh diễn ra đến khi điện áp ngõ ra DAC bằng điện áp Ux... dương Sơ đồ chân: Sơ đồ logic cho mỗi bộ đệm(điều khiển): Sơ đồ mạch cho mỗi bộ đệm(điều khiển): Trong sơ đồ ngun lý điện áp từ ngõ ra output Y được nối tới bộ DAC với Uref = +16V Trước khi nối tới bộ DAC, điên áp được kéo lên thơng qua trở 1KOhm 2.5 Bộ chuyển đổi DAC: Trong bất kỳ 1 bộ biến đổi ADC nào đều có 1 bộ DAC có nhiệm vụ biến đổi ngược tín hiệu số thành tín hiệu tương tự để so sánh với tín... Bộ giải mã nhanh lập tức đổi các tín hiệu so sánh được tới đầu ra ADC dùng phương pháp này có tần số lấy nẫu phụ thuộc vào tốc độ (thời gian trễ) của các bộ so sánh Thơng thuờng vi mạch so sánh có thời gian trễ trong khoảng 10-12ns, vì vậy trên lý thuyết, tần số lấy mẫu của ADCđộ phân giải 8 Bits cần tới 2^8 – 1=255 bộ so sánh, do vậy kích thước vi mạch sẽ rất lớn B – BIẾN ĐỔI SỐ - TƯƠNG TỰ (DAC):... vào bộ DAC một mạch chốt dữ liệu để tránh hiện tượng bộ DAC xuất ra tín hiệu khơng xác định trong khoảng thời gian tự do giữa hai lần cập nhật dữ liệu ở ngõ vào 3 – Đầu ra bộ DAC: Tuỳ theo cơng nghệ chế tạo mà đầu ra của bộ DAC có thể là dòng hoặc áp 4 – Tín hiệu điều khiển: Hầu hết các bộ DAC đều khơng cần tín hiệu điều khiển PHẦN II: TÍNH TOÁN THIẾT KẾ ADC u cầu của đề tài: 1.Ngun lý ADC đếm- xây . được đi qua đồng thời mạch báo dấu và bộ so sánh. Mạch báo dấu dùng để so sánh Ux và GND .Ux>0v cho LED sáng. Mạch so sánh có nhiệm vụ so sánh mức điện. trong mạch nguyên lý còn có mạch báo dấu điện áp vào Ux, mạch báo dấu là mạch so sánh dùng IC khuếch đại thuật toán. Hoạt động của mạch: lúc đầu mạch

Ngày đăng: 18/02/2014, 15:25

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan