Tài liệu Ôn thi đại học môn Toán phần lượng giác_Chương 1 doc

21 513 4
  • Loading ...
    Loading ...
    Loading ...

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 20/01/2014, 15:20

CHƯƠNG 1: CÔNG THỨC LƯNG GIÁC I. Đònh nghóa Trên mặt phẳng Oxy cho đường tròn lượng giác tâm O bán kính R=1 và điểm M trên đường tròn lượng giác mà sđAM=β với 02≤β≤ π Đặt k2 ,k Zα=β+ π ∈Ta đònh nghóa: sin OKα= cos OHα= sintgcosαα=α với co s 0α≠coscot gsinαα=α với sin 0α≠II. Bảng giá trò lượng giác của một số cung (hay góc) đặc biệt Góc α Giá trò ()o00 ()o306π ()o454π ()o603π ()o902π sinα 0 12 22 32 1 cosα 1 32 22 12 0 tgα 0 33 1 3 || cot gα || 3 1 33 0 III. Hệ thức cơ bản 22sin cos 1α+ α= 2211tgcos+α=α với ()kkZ2πα≠ + π ∈ 221tcotgsin+=α với ()kkZα≠ π ∈ IV. Cung liên kết (Cách nhớ: cos đối, sin bù, tang sai π; phụ chéo) a. Đối nhau: và −α α()sin sin−α = − α ()cos cos−α = α ()()tg tg−α = − α ()()cot g cot g−α = − α b. Buø nhau: vaø α π−α()()()()sin sincos costg tgcotgcotgπ−α = απ−α =− απ−α =− απ−α =− α c. Sai nhau : vaø π+ πα α()()()()sin sincos costg t gcotgcotgπ+α =− απ+α =− απ+α = απ+α = α d. Phuï nhau: vaø α2π−α sin cos2cos sin2tgcotg2cotgtg2π⎛⎞−α = α⎜⎟⎝⎠π⎛⎞−α = α⎜⎟⎝⎠π⎛⎞−α = α⎜⎟⎝⎠π⎛⎞−α = α⎜⎟⎝⎠ e.Sai nhau 2π: α vaø 2π+α sin cos2cos sin2tgcotg2cotgtg2π⎛⎞+α = α⎜⎟⎝⎠π⎛⎞+α =− α⎜⎟⎝⎠π⎛⎞+α =− α⎜⎟⎝⎠π⎛⎞+α =− α⎜⎟⎝⎠ f. ()()()()()()+π=− ∈+π=− ∈+π= ∈+π=kksin x k 1 sin x,k Zcos x k 1 cosx,k Ztg x k tgx,k Zcotg x k cot gx V. Công thức cộng ()()()sin a b sinacosb sin bcosacos a b cosacosb sin asin btga tgbtg a b1tgatgb±= ±±=±±=mm VI. Công thức nhân đôi ==−=− ==−−=22 2 222sin2a 2sinacosacos2a cos a sin a 1 2sin a 2cos a 12tgatg2a1tgacotg a 1cotg2a2cotga− VII. Công thức nhân ba: 33sin3a 3sina 4sin acos3a 4 cos a 3cosa=−=− VIII. Công thức hạ bậc: ()()2221sin a 1 cos2a21cos a 1 cos2a21cos2atg a1cos2a=−=+−=+ IX. Công thức chia đôi Đặt attg2= (với ak) 2≠π+ π22222tsina1t1tcosa1t2ttga1t=+−=+=− X. Công thức biến đổi tổng thành tích ()()ab abcosa cosb 2cos cos22ab abcosa cosb 2sin sin22ab absina sinb 2cos sin22ab absina sinb 2cos sin22sin a btga tgbcosacosbsin b acotga cotgbsina.sin b+−+=+−−=−+−+=+−−=±±=±±= XI. Công thức biển đổi tích thành tổng () ()() ()()()1cosa.cosb cos a b cos a b21sina.sin b cos a b cos a b21sina.cosb sin a b sin a b2=⎡ + + −⎤⎣⎦−=⎡ +− −⎣⎦=⎡ + + −⎤⎣⎦⎤ Bài 1: Chứng minh 4466sin a cos a 1 2sin a cos a 1 3+−=+− Ta có: ()244 22 22 2sin a cos a 1 sin a cos a 2sin acos a 1 2sin acos a+−= + − −=−2 Và: ()()()66 224224442222 2222sin a cos a 1 sin a cos a sin a sin acos a cos a 1sin a cos a sin acos a 11 2sinacosa sinacosa 13sin acos a+−= + − +=+ − −=− − −=−− Do đó: 44 2266 22sin a cos a 1 2sin acos a 2sin a cos a 1 3sin acos a 3+−−==+−− Bài 2: Rút gọn biểu thức ()221cosx1cosxA1sin x sin x⎡⎤−+==+⎢⎥⎢⎥⎣⎦ Tính giá trò A nếu 1cosx2=− và x2π<<π Ta có: 2221cosxsinx12cosxcosxAsin x sin x⎛⎞++−+=⎜⎟⎝⎠ ()221 cosx1cosxA.sin x sin x−+⇔= ()223321 cosx2sin x 2Asin x sin x sin x−⇔= = = (với sinx 0≠) Ta có: 2213sin x 1 cos x 144=−=−= Do: x2π<<π nên sin x 0>Vậy 3sin x2= Do đó 244Asin x 33===3 Bài 3: Chứng minh các biểu thức sau đây không phụ thuộc x: a. 4422A 2cos x sin x sin x cos x 3sin x=−+ +2 b. 2cotgxBtgx1 cotgx1+=+−−1 a. Ta có: 4422A 2cos x sin x sin x cos x 3sin x=−+ +2 ()()()()242 22 242424A 2cos x 1 cos x 1 cos x cos x 3 1 cos xA 2cos x 1 2cos x cos x cos x cos x 3 3cos x⇔= −− +− + −⇔= −− + + − +−2 A2⇔= (không phụ thuộc x) b. Với điều kiện sinx.cosx 0,tgx1≠≠ Ta có: 2cotgxBtgx1 cotgx11+=+−− 11221tgxtgxB1tgx1 tgx11tgx1tgx++⇔= + = +−−−− ()21tgx1tgxB1tgx 1 tgx 1−−−⇔= = =−−− (không phụ thuộc vào x) Bài 4: Chứng minh ()222222221cosa1cosa cosbsinc1cotgbcotgccotga12sina sin a sin bsin c⎡⎤−+−−+−=⎢⎥⎢⎥⎣⎦− Ta có: * 222222cos b sin ccotgb.cotgcsin b.sin c−− 22222cotgb1cotgbcotgcsin c sin b=−− ()()22 222cotgb1 cotgc1cotgbcotgbcotgc=+−+− 1=− (1) * ()221cosa1cosa12sina sin a⎡⎤−+−⎢⎥⎢⎥⎣⎦ ()221cosa1cosa12sina 1 cos a⎡⎤−+=−⎢⎥−⎢⎥⎣⎦ 1cosa 1cosa12sina 1 cosa+−⎡⎤=−⎢⎥+⎣⎦ 1cosa2cosa.cotga2sina 1 cosa+==+ (2) Lấy (1) + (2) ta được điều phải chứng minh xong. Bài 5: Cho tùy ý với ba góc đều là nhọn. ABCΔ Tìm giá trò nhỏ nhất của PtgA.tgB.tgC= Ta có: AB C+=π−Nên: ()tg A B tgC+=− tgA tgBtgC1 tgA.tgB+⇔=−− tgAtgBtgCtgA.tgB.tgC⇔+=−+ Vậy: PtgA.tgB.tgCtgAtgBtgC==++ Áp dụng bất đẳng thức Cauchy cho ba số dương tgA,tgB, tgC ta được 3tgA tgB tgC 3 tgA.tgB.tgC++≥ 3P3P⇔≥ 32P3P33⇔≥⇔≥ Dấu “=” xảy ra ==⎧π⎪⇔⇔=⎨π<<⎪⎩tgA tgB tgCABC30A,B,C2== Do đó: MinP 3 3 A B C3π=⇔=== Bài 6 : Tìm giá trò lớn nhất và nhỏ nhất của a/ 84y2sinxcos2x=+ b/ 4ysinxcos=−x a/ Ta có : 441cos2xy2 cos2x2−⎛⎞=+⎜⎟⎝⎠ Đặt với thì tcos2x= 1t1−≤ ≤()441y1t8=−+t => ()331y' 1 t 4t2=− − + Ta có : Ù () y' 0=331t 8t−=⇔ 1t 2t−=⇔ 1t3= Ta có y(1) = 1; y(-1) = 3; 11y32⎛⎞=⎜⎟⎝⎠7 Do đó : ∈=xy3Max và ∈=x1yMin27 b/ Do điều kiện : sin và co nên miền xác đònh x 0≥ s x 0≥π⎡⎤=π+π⎢⎥⎣⎦Dk2, k22 với ∈k Đặt tcos= xx với thì 0t1≤≤42 2tcosx1sin==−Nên 4sin x 1 t=− Vậy 84y1t=−−t trên []D' 0,1= Thì ()−=−<−3748ty' 1 02. 1 t [)t0;1∀∈ Nên y giảm trên [ 0, 1 ]. Vậy :()∈==xDmax y y 0 1, ()∈==−xDmin y y 1 1 Bài 7: Cho hàm số 44ysinxcosx2msinxcos=+− x Tìm giá trò m để y xác đònh với mọi x Xét 44f (x) sin x cos x 2m sin x cos x=+−()()222 2fx sinx cosx msin2x 2sinxcosx=+ − −2 ()21f x 1 sin 2x m sin 2x2=− − Đặt : với tsin2x=[]t1,∈− 1 y xác đònh ⇔ x∀()fx 0x R≥∀∈⇔ 211tmt02−−≥[ ]t1,1−∀∈ ⇔ ()2gt t 2mt 2 0=+ −≤[]t1,∀∈− 1t Do nên g(t) có 2 nghiệm phân biệt t1, t2 2'm 20Δ= + > m∀Lúc đó t t1 t2 g(t) + 0 - 0 Do đó : yêu cầu bài toán ⇔ 12t11≤−< ≤ ⇔ ⇔ ()()1g 1 01g 1 0−≤⎧⎪⎨≤⎪⎩2m 1 02m 1 0−−≤⎧⎨−≤⎩⇔ 1m21m2−⎧≥⎪⎪⎨⎪≤⎪⎩ ⇔ 11m22−≤ ≤ Cách khác : gt ()2t 2mt 2 0=+ −≤[]t1,1−∀∈ {}[,]max ( ) max ( ), ( )tgt g g∈−⇔≤ ⇔−≤110110 {}max ), )mm⇔−−−+≤21210⇔ 1m21m2−⎧≥⎪⎪⎨ ⎪≤⎪⎩m⇔− ≤ ≤1122 Bài 8 : Chứng minh 4444357A sin sin sin sin16 16 16 16 2π πππ=+++3= Ta có : 7sin sin cos16 2 16 16πππ π⎛⎞=−=⎜⎟⎝⎠πππ⎛⎞=−=⎜⎟⎝⎠55sin cos cos16 2 16 16π3 Mặt khác : ()244 22 22cos sin cos 2sin cosα+ α= α+ α − α αsin 2212sin cos=−αα 211sin22=−α Do ủoự : 444473A sin sin sin sin16 16 16 16 =+++5 44 4433sin cos sin cos16 16 16 16 =+++ 22111sin 1sin28 2 8= +3 22132 sin sin28 8= + 2212sincos28 8= + =3do sin cos88 13222= = Baứi 9 : Chửựng minh :oooo16 sin 10 .sin 30 .sin 50 .sin 70 1= Ta coự : ooAcos10 1Acos10 cos10==o(16sin10ocos10o)sin30o.sin50o.sin70o ()ooo11oA8sin20 cos40 .cos202cos10= ()0oo1oA4sin20 cos20 .cos40cos10= ()ooo1A2sin40 cos40cos10= oooo1cos10Asin 80 1cos10 cos10=== Baứi 10 : Cho ABC. Chửựng minh : ABBCCAtg tg tg tg tg tg 122 22 22++= Ta coự : ABC22+2= Vaọy : ABCtg cot g22+= ABtg tg122ABC1tg .tg tg22 2+= ABC Atg tg tg 1 tg tg222 2+=B2 ACBCABtg tg tg tg tg tg 122 22 22++ = Baứi 11 : Chửựng minh : () ++ +=84tg 2tg tg cotg *81632 32 Ta có : (*) ⇔ 8cotg tg 2tg 4tg32 32 16 8ππ π=−−−πMà : 22cos a sin a cos a sin acot ga tgasin a cos a si n a cos a−−=−= cos 2a2cotg2a1sin 2a2== Do đó : cot g tg 2tg 4tg 832 32 16 8π⎡⎢ππ π⎤−−−=⎥⎣⎦ (*) ⇔ 2cotg 2tg 4tg 816 16 8ππ π⎡⎤−−⎢⎥⎣⎦ ⇔ =4cotg 4tg 8⇔ 88ππ= −8cotg 8π⇔ = (hiển nhiên đúng) 4 Bài :12 : Chứng minh : 22 222cos x cos x cos x33ππ⎛⎞⎛⎞+++−⎜⎟⎜⎟⎝⎠⎝⎠ 32= a/ 111 1cot gx cot g16x b/ sin 2x sin 4x sin 8x sin16x+++ =− a/ Ta có : 22 222cos x cos x cos x33ππ⎛⎞⎛+++−⎜⎟⎜⎝⎠⎝ ⎞⎟⎠()11 4141cos2x 1cos2x 1cos 2x22 323⎡π⎤⎡π⎤⎛⎞ ⎛⎞=+ ++ + ++ −⎜⎟ ⎜⎟⎢⎥⎢⎥⎝⎠ ⎝⎠⎣⎦⎣⎦ 31 4 4cos 2x cos 2x cos 2x22 3 3⎡ππ⎤⎛⎞⎛⎞=+ + + + −⎜⎟⎜⎟⎢⎥⎝⎠⎝⎠⎣⎦ 31 4cos2x 2cos2xcos22 3π⎡⎤=+ +⎢⎥⎣⎦ 31 1cos2x 2cos2x22 2⎡⎤⎛⎞=+ + −⎜⎟⎢⎥⎝⎠⎣⎦ 3= 2b/ Ta có : cos a cos b sin b cos a sin a cos bcot ga cot gbsin a sin b sin a sin b−−=−= ()sin b asin a sin b−= Do đó : ()()sin 2x x1cot gx cot g2x 1sin x sin 2x sin 2x−−= = ()()sin 4x 2x1cot g2 x cot g4x 2sin2xsin4x sin4x−−= = [...]... 4x ) 1 = ( 3) sin 4x sin 8x sin 8x sin (16 x − 8x ) 1 cot g8x − cot g16x = = (4) sin16x sin 8x sin16x Lấy (1) + (2) + (3) + (4) ta được 1 1 1 1 cot gx − cot g16x = + + + sin 2x sin 4x sin 8x sin16x cot g4x − cot g8x = Bài 13 : Chứng minh : 8sin3 18 0 + 8sin2 18 0 = 1 Ta có: sin180 = cos720 ⇔ sin180 = 2cos2360 - 1 ⇔ sin180 = 2 (1 – 2sin 218 0)2 – 1 ⇔ sin180 = 2 (1 – 4sin 218 0+4sin 418 0) -1 ⇔ 8sin 418 0 – 8sin 218 0... = 2 (1 – 4sin 218 0+4sin 418 0) -1 ⇔ 8sin 418 0 – 8sin 218 0 – sin180 + 1 = 0 (1 ) ⇔ (sin180 – 1) (8sin 318 0 + 8sin 218 0 – 1) = 0 ⇔ 8sin 318 0 + 8sin 218 0 – 1 = 0 (do 0 < sin180 < 1) Cách khác : Chia 2 vế của (1) cho ( sin180 – 1 ) ta có ( 1 ) ⇔ 8sin 218 0 ( sin180 + 1 ) – 1 = 0 Bài 14 : Chứng minh : 1 ( 3 + cos 4x ) 4 1 b/ sin 6x + cos 6x = ( 5 + 3 cos 4x ) 8 1 c/ sin8 x + cos8 x = ( 35 + 28 cos 4x + cos 8x ) 64 a/... 60o + cos 30o ) =− 3 +1 2 Bài 17 : Tính P = sin2 50o + sin2 70 − cos 50o cos70o 1 1 1 Ta có : P = (1 − cos100o ) + (1 − cos140o ) − ( cos120o + cos 20o ) 2 2 2 1 1⎛ 1 ⎞ P = 1 − ( cos100o + cos140o ) − ⎜ − + cos 20o ⎟ 2 2⎝ 2 ⎠ 1 1 P = 1 − ( cos120o cos 20o ) + − cos 20o 4 2 5 1 1 5 P = + cos 20o − cos 20o = 4 2 2 4 Bài 18 : Chứng minh : tg30o + tg40o + tg50o + tg60o = sin ( a + b ) cos a cos b o o Ta... cos 3.2x ) 4 1 = ( 3 cos 2x + 4 cos3 2x − 3 cos 2x ) ( bỏ dòng này cũng được) 4 = cos3 2x Bài 16 : Chứng minh : cos12o + cos18o − 4 cos15o.cos 21o cos 24 o = − Ta có : cos12o + cos 18 o − 4 cos15o ( cos 21o cos 24o ) 3 +1 2 = 2 cos15o cos 3o − 2 cos15o ( cos 45o + cos 3o ) = 2 cos15o cos 3o − 2 cos15o cos 45o − 2 cos15o cos 3o = −2 cos15o cos 45o = − ( cos 60o + cos 30o ) =− 3 +1 2 Bài 17 : Tính P =... 4x ) − sin4 2x 16 16 2 1 1 1 ⎤ = 9 + 6 cos 4x + cos2 4x ) − ⎢ (1 − cos 4x ) ⎥ ( 16 8 ⎣2 ⎦ 9 3 1 1 = + cos 4x + (1 + cos 8x ) − (1 − 2 cos 4x + cos2 4x ) 16 8 32 32 9 3 1 1 1 = + cos 4x + cos 8x + cos 4x − (1 + cos 8x ) 16 8 32 16 64 35 7 1 = + cos 4x + cos 8x 64 16 64 = Bài 15 : Chứng minh : sin 3x.sin3 x + cos 3x.cos3 x = cos3 2x Cách 1: Ta có : sin 3x.sin3 x + cos 3x.cos3 x = cos3 2x = ( 3sin x −... 2 2 sin2 2x 4 1 = 1 − (1 − cos 4 x ) 4 3 1 = + cos 4x 4 4 =1 b/ Ta có : sin6x + cos6x = ( sin 2 x + cos2 x )( sin 4 x − sin 2 x cos2 x + cos4 x ) = ( sin4 x + cos4 x ) − 1 sin2 2x 4 ⎛3 11 = ⎜ + cos 4x ⎟ − (1 − cos 4x ) ⎝4 4 ⎠ 8 3 5 = cos 4x + 8 8 ( do kết quả câu a ) c/ Ta có : sin 8 x + cos8 x = ( sin 4 x + cos4 x ) − 2 sin 4 x cos4 x 2 1 2 2 ( 3 + cos 4x ) − sin4 2x 16 16 2 1 1 1 ⎤ = 9 + 6 cos... ⎣ 2 2 2⎦ 1 A A⎤ 1 ⎡ B B⎤ 1 ⎡ C C⎤ = ⎢ tg + cot g ⎥ + ⎢ tg + cot g ⎥ + ⎢ tg + cot g ⎥ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 1 1 1 = + + sin A sin B sin C BÀI TẬP 1 Chứng minh : π 2π 1 = a/ cos − cos 2 5 5 o o cos15 + sin15 = 3 b/ cos15o − sin15o 2π 4π 6π 1 + cos + cos =− c/ cos 7 7 7 2 3 3 d/ sin 2x sin 6x + cos 2x.cos 6x = cos3 4x e/ tg20o.tg40o.tg60o.tg80o = 3 π 2π 5π π 8 3 π + tg + tg + tg = cos 6 9 18 3 3 9... = sin 90o sin 90o + cos 50o cos 40o cos 30o cos 60o 1 1 = + o o 1 sin 40 cos 40 cos 30o 2 2 2 = + o sin 80 cos 30o 1 ⎞ ⎛ 1 = 2⎜ + ⎟ o cos 30o ⎠ ⎝ cos10 ⎛ cos 30o + cos10o ⎞ = 2⎜ o o ⎟ ⎝ cos10 cos 30 ⎠ = cos 20p cos10o cos10o cos 30o 8 3 = cos 20o 3 Bài 19 : Cho ΔABC , Chứng minh : =4 8 3 cos 20o 3 A B C cos cos 2 2 2 A B C b/ socA + cos B + cos C = 1 + 4 sin sin sin 2 2 2 c/ sin 2A + sin 2B + sin 2C... + tg + tg + tg = cos 6 9 18 3 3 9 π 2π 3π 4π 5π 6π 7π 1 cos cos cos cos cos = g/ cos cos 15 15 15 15 15 15 15 27 ⎡π ⎤ ⎡π ⎤ h/ tgx.tg ⎢ − x ⎥ tg ⎢ + x ⎥ = tg3x ⎣3 ⎦ ⎣3 ⎦ f/ tg k/ tg20o + tg40o + 3tg20o.tg40o = 3 3 8 o o o o m/ tg5 tg55 tg65 tg75 = 1 e/ sin 20o.sin 40o.sin 80o = ⎧sin x = 2 sin ( x + y ) ⎪ 2 Chứng minh rằng nếu ⎨ π ⎪ x + y ≠ ( 2k + 1) ( k ∈ z ) ⎩ 2 thì tg ( x + y ) = sin y cos y − 2 3... 2x 1 − sin 2 x cos2 x ⎤ ⎣ ⎦ 1 ⎛ ⎞ = −3 cos 2x + 4 cos 2x ⎜ 1 − sin 2 2x ⎟ 4 ⎝ ⎠ 1 ⎡ ⎛ ⎞⎤ = cos 2x ⎢ −3 + 4 ⎜ 1 − sin 2 2x ⎟ ⎥ 4 ⎝ ⎠⎦ ⎣ = cos 2x (1 − sin 2 2x ) = cos3 2x Cách 2 : Ta có : sin 3x.sin3 x + cos 3x.cos3 x ⎛ 3sin x − sin 3x ⎞ ⎛ 3 cos x + cos 3x ⎞ = sin 3x ⎜ ⎟ ⎟ + cos 3x ⎜ 4 4 ⎠ ⎝ ⎠ ⎝ 3 1 = ( sin 3x sin x + cos 3x cos x ) + ( cos2 3x − sin2 3x ) 4 4 3 1 = cos ( 3x − x ) + cos 6x 4 4 1 = . ()()()= + +ooo 11 1P 1 cos100 1 cos140 cos120 cos20222 oTa coự : ()oo 11 1P 1 cos100 cos140 cos 20222= + + o()oo 11 P 1 cos120 cos20 cos. 0,tgx1≠≠ Ta có: 2cotgxBtgx1 cotgx1 1 +=+−− 1 1221tgxtgxB 1 tgx1 tgx11tgx 1 tgx++⇔= + = +−−−− ()21tgx1tgxB1tgx 1 tgx 1 −−−⇔=
- Xem thêm -

Xem thêm: Tài liệu Ôn thi đại học môn Toán phần lượng giác_Chương 1 doc, Tài liệu Ôn thi đại học môn Toán phần lượng giác_Chương 1 doc, Tài liệu Ôn thi đại học môn Toán phần lượng giác_Chương 1 doc