TÍCH PHÂN 12

19 2.9K 5
TÍCH PHÂN 12

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

DẠY KÈM TẠI NHÀ - ĐT: 0909 64 65 97 “THẦY GIỎI – TRÒ GIỎI” Chuyên đề TÍCH PHÂN CÔNG THỨC Bảng nguyên hàm Nguyên hàm của những hàm số sơ cấp thường gặp Nguyên hàm của những hàm số thường gặp Nguyên hàm của những hàm số hợp Cxdx += ∫ ( ) 1 1 1 ≠+ + = + ∫ α α α α C x dxx ( ) 0ln ≠+= ∫ xCx x dx Cedxe xx += ∫ ( ) 10 ln ≠<+= ∫ aC a a dxa x x Cxxdx += ∫ sincos Cxxdx +−= ∫ cossin Cxdx x += ∫ tan cos 1 2 Cxdx x +−= ∫ cot sin 1 2 ( ) ( ) Cbax a baxd ++=+ ∫ 1 ( ) ( ) ( ) 1 1 1 1 ≠+ + + =+ + ∫ α α α α C bax a dxbax ( ) 0ln 1 ≠++= + ∫ xCbax abax dx Ce a dxe baxbax += ++ ∫ 1 ( ) ( ) Cbax a dxbax ++=+ ∫ sin 1 cos ( ) ( ) Cbax a dxbax ++−=+ ∫ cos 1 sin ( ) ( ) Cbax a dx bax ++= + ∫ tan 1 cos 1 2 ( ) ( ) Cbax a dx bax ++−= + ∫ cot 1 sin 1 2 Cudu += ∫ ( ) 1 1 1 ≠+ + = + ∫ α α α α C u duu ( ) 0ln ≠+= ∫ uCu u du Cedue uu += ∫ ( ) 10 ln ≠<+= ∫ aC a a dxa u u Cuudu += ∫ sincos Cuudu +−= ∫ cossin Cudu u += ∫ tan cos 1 2 Cudu u +−= ∫ cot sin 1 2 I. ĐỔI BIẾN SỐ TÓM TẮT GIÁO KHOA VÀ PHƯƠNG PHÁP GIẢI TOÁN 1. Đổi biến số dạng 2 Để tính tích phân b / a f[u(x)]u (x)dx ò ta thực hiện các bước sau: Bước 1. Đặt t = u(x) và tính / dt u (x)dx= . Bước 2. Đổi cận: x a t u(a) , x b t u(b)= Þ = = a = Þ = = b . Bước 3. b / a f[u(x)]u (x)dx f(t)dt b a = ò ò . Ví dụ 7. Tính tích phân 2 e e dx I xlnx = ò . Giải Đặt dx t ln x dt x = Þ = 2 x e t 1, x e t 2= Þ = = Þ = 2 2 1 1 dt I ln t ln2 t Þ = = = ò . Vậy I ln2= . Ví dụ 8. Tính tích phân 4 3 0 cosx I dx (sinx cosx) p = + ò . Chuyên đề: Tích phân * Trang 1 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0909 64 65 97 “THẦY GIỎI – TRÒ GIỎI” Hướng dẫn: 4 4 3 3 2 0 0 cosx 1 dx I dx . (sinx cosx) (tanx 1) cos x p p = = + + ò ò . Đặt t tan x 1= + ĐS: 3 I 8 = . Ví dụ 9. Tính tích phân 3 1 2 dx I (1 x) 2x 3 = + + ò . Hướng dẫn: Đặt t 2x 3= + ĐS: 3 I ln 2 = . Ví dụ 10. Tính tích phân 1 0 3 x I dx 1 x - = + ò . Hướng dẫn: Đặt 3 2 2 2 1 3 x t dt t 8 1 x (t 1) - = Þ + + ò L ; đặt t tanu= L ĐS: I 3 2 3 p = - + . Chú ý: Phân tích 1 0 3 x I dx 1 x - = + ò , rồi đặt t 1 x= + sẽ tính nhanh hơn. 2. Đổi biến số dạng 1 Cho hàm số f(x) liên tục trên đoạn [a;b], để tính ( ) b a f x dx ∫ ta thực hiện các bước sau: Bước 1. Đặt x = u(t) và tính / ( )dx u t dt= . Bước 2. Đổi cận: , x a t x b t α β = ⇒ = = ⇒ = . Bước 3. / ( ) [ ( )] ( ) ( ) b a f x dx f u t u t dt g t dt β β α α = = ∫ ∫ ∫ . Ví dụ 1. Tính tích phân 1 2 2 0 1 I dx 1 x = - ò . Giải Đặt x sint, t ; dx costdt 2 2 p p é ù = Î - Þ = ê ú ë û 1 x 0 t 0, x t 2 6 p = Þ = = Þ = 6 6 2 0 0 cost cost I dt dt cost 1 sin t p p Þ = = - ò ò 6 6 0 0 dt t 0 6 6 p p p p = = = - = ò . Vậy I 6 p = . Ví dụ 2. Tính tích phân 2 2 0 I 4 x dx= - ò . Chuyên đề: Tích phân * Trang 2 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0909 64 65 97 “THẦY GIỎI – TRÒ GIỎI” Hướng dẫn: Đặt x 2sin t= ĐS: I = p . Ví dụ 3. Tính tích phân 1 2 0 dx I 1 x = + ò . Giải Đặt 2 x tant, t ; dx (tan x 1)dt 2 2 æ ö p p ÷ ç = Î - Þ = + ÷ ç ÷ ÷ ç è ø x 0 t 0, x 1 t 4 p = Þ = = Þ = 4 4 2 2 0 0 tan t 1 I dt dt 4 1 tan t p p + p Þ = = = + ò ò . Vậy I 4 p = . Ví dụ 4. Tính tích phân 3 1 2 0 dx I x 2x 2 - = + + ò . Hướng dẫn: 3 1 3 1 2 2 0 0 dx dx I x 2x 2 1 (x 1) - - = = + + + + ò ò . Đặt x 1 tan t+ = ĐS: I 12 p = . Ví dụ 5. Tính tích phân 2 2 0 dx I 4 x = - ò . ĐS: I 2 p = . Ví dụ 6. Tính tích phân 3 1 2 0 dx I x 2x 2 - = + + ò . ĐS: I 12 p = . 3. Các dạng đặc biệt 3.1. Dạng lượng giác Ví dụ 11 (bậc sin lẻ). Tính tích phân 2 2 3 0 I cos x sin xdx p = ò . Hướng dẫn: Đặt t cosx= ĐS: 2 I 15 = . Ví dụ 12 (bậc cosin lẻ). Tính tích phân 2 5 0 I cos xdx p = ò . Hướng dẫn: Đặt t sin x= ĐS: 8 I 15 = . Chuyên đề: Tích phân * Trang 3 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0909 64 65 97 “THẦY GIỎI – TRÒ GIỎI” Ví dụ 13 (bậc sin và cosin chẵn). Tính tích phân 2 4 2 0 I cos x sin xdx p = ò . Giải 2 2 4 2 2 2 0 0 1 I cos x sin xdx cos xsin 2xdx 4 p p = = ò ò 2 2 2 0 0 1 1 (1 cos4x)dx cos2x sin 2xdx 16 4 p p = - + ò ò 2 2 2 0 0 1 1 (1 cos4x)dx sin 2xd(sin2x) 16 8 p p = - + ò ò 3 2 0 x 1 sin 2x sin4x 16 64 24 32 p æ ö p ÷ ç = - + = ÷ ç ÷ ç è ø . Vậy I 32 p = . Ví dụ 14. Tính tích phân 2 0 dx I cosx sinx 1 p = + + ò . Hướng dẫn: Đặt x t tan 2 = . ĐS: I ln2= . Biểu diễn các hàm số LG theo tan 2 a t = : 2 2 2 2 2 1 2 sin ; cos ; tan . 1 1 1 t t t a a a t t t − = = = + + − 3.2. Dạng liên kết Ví dụ 15. Tính tích phân 0 xdx I sin x 1 p = + ò . Giải Đặt x t dx dt= p - Þ = - x 0 t , x t 0= Þ = p = p Þ = ( ) 0 0 ( t)dt t I dt sin( t) 1 sin t 1 sin t 1 p p p - p Þ = - = - p - + + + ò ò 0 0 dt dt I I sin t 1 2 sin t 1 p p p = p - Þ = + + ò ò ( ) ( ) 2 2 0 0 dt dt t t t 2 4 cos sin cos 2 4 2 2 p p p p = = p - + ò ò 2 0 0 t d 2 4 t tan 2 t 2 2 4 cos 2 4 p p æ ö p ÷ ç - ÷ ç ÷ ÷ ç æ ö è ø p p p ÷ ç = = - = p ÷ ç ÷ ÷ ç æ ö è ø p ÷ ç - ÷ ç ÷ ÷ ç è ø ò . Vậy I = p . Tổng quát: 0 0 xf(sinx)dx f(sin x)dx 2 p p p = ò ò . Ví dụ 16. Tính tích phân 2 2007 2007 2007 0 sin x I dx sin x cos x p = + ò . Giải Đặt x t dx dt 2 p = - Þ = - Chuyên đề: Tích phân * Trang 4 * GV: Nguyễn Văn Huy DY KẩM TI NH - T: 0909 64 65 97 THY GII TRề GII x 0 t , x t 0 2 2 p p = ị = = ị = ( ) ( ) ( ) 2007 0 2007 2007 2 sin t 2 I dx sin t cos t 2 2 p p - ị = - p p - + - ũ 2 2007 2007 2007 0 cos t dx J sin t cos t p = = + ũ (1). Mt khỏc 2 0 I J dx 2 p p + = = ũ (2). T (1) v (2) suy ra I 4 p = . Tng quỏt: 2 2 n n n n n n 0 0 sin x cos x dx dx ,n sin x cos x sin x cos x 4 p p + p = = ẻ + + ũ ũ Z . Vớ d 17. Tớnh tớch phõn 6 2 0 sin x I dx sin x 3cosx p = + ũ v 6 2 0 cos x J dx sin x 3cosx p = + ũ . Gii I 3J 1 3- = - (1). ( ) 6 6 0 0 dx 1 dx I J dx 2 sin x 3cosx sin x 3 p p + = = p + + ũ ũ t t x dt dx 3 p = + ị = 1 I J ln3 4 + = (2). T (1) v (2) 3 1 3 1 1 3 I ln3 , J ln3 16 4 16 4 - - = + = - . Vớ d 18. Tớnh tớch phõn 1 2 0 ln(1 x) I dx 1 x + = + ũ . Gii t 2 x tant dx (1 tan t)dt= ị = + x 0 t 0, x 1 t 4 p = ị = = ị = ( ) 4 4 2 2 0 0 ln(1 tant) I 1 tan t dt ln(1 tant)dt 1 tan t p p + ị = + = + + ũ ũ . t t u dt du 4 p = - ị = - t 0 u , t u 0 4 4 p p = ị = = ị = 0 4 0 4 I ln(1 tant)dt ln 1 tan u du 4 p p ộ ổ ửự p ữ ỗ ờ ỳ ị = + = - + - ữ ỗ ữ ữ ỗ ờ ỳ ố ứ ở ỷ ũ ũ 4 4 0 0 1 tanu 2 ln 1 du ln du 1 tanu 1 tanu p p ổ ử ổ ử - ữ ữ ỗ ỗ = + = ữ ữ ỗ ỗ ữ ữ ữ ữ ỗ ỗ ố ứ ố ứ + + ũ ũ ( ) 4 4 0 0 ln2du ln 1 tanu du ln2 I 4 p p p = - + = - ũ ũ . Chuyờn : Tớch phõn * Trang 5 * GV: Nguyn Vn Huy DY KẩM TI NH - T: 0909 64 65 97 THY GII TRề GII Vy I ln2 8 p = . Vớ d 19. Tớnh tớch phõn 4 x 4 cosx I dx 2007 1 p p - = + ũ . Hng dn: t x t= - S: 2 I 2 = . Tng quỏt: Vi a > 0 , 0a > , hm s f(x) chn v liờn tc trờn on [ ] ; - a a thỡ x 0 f(x) dx f(x)dx a 1 a a - a = + ũ ũ . Vớ d 20. Cho hm s f(x) liờn tc trờn Ă v tha f( x) 2f(x) cosx- + = . Tớnh tớch phõn 2 2 I f(x)dx p p - = ũ . Gii t 2 2 J f( x)dx p p - = - ũ , x t dx dt= - ị = - x t , x t 2 2 2 2 p p p p = - ị = = ị = - [ ] 2 2 2 2 I f( t)dt J 3I J 2I f( x) 2f(x) dx p p p p - - ị = - = ị = + = - + ũ ũ 2 2 0 2 cosxdx 2 cosxdx 2 p p p - = = = ũ ũ . Vy 2 I 3 = . 3.3. Cỏc kt qu cn nh i/ Vi a > 0 , hm s f(x) l v liờn tc trờn on [a; a] thỡ a a f(x)dx 0 - = ũ . ii/ Vi a > 0 , hm s f(x) chn v liờn tc trờn on [a; a] thỡ a a a 0 f(x)dx 2 f(x)dx - = ũ ũ . iii/ Cụng thc Walliss (dựng cho trc nghim) 2 2 n n 0 0 (n 1)!! , n!! cos xdx sin xdx (n 1)!! . , n!! 2 p p ỡ - ù ù ù ù ù = = ớ ù - p ù ù ù ù ợ ũ ũ neỏu n leỷ neỏu n chaỹn . Trong ú n!! c l n walliss v c nh ngha da vo n l hay chn. Chng hn: Chuyờn : Tớch phõn * Trang 6 * GV: Nguyn Vn Huy DẠY KÈM TẠI NHÀ - ĐT: 0909 64 65 97 “THẦY GIỎI – TRÒ GIỎI” 0!! 1; 1!! 1; 2!! 2; 3!! 1.3; 4!! 2.4; 5!! 1.3.5;= = = = = = 6!! 2.4.6; 7!! 1.3.5.7; 8!! 2.4.6.8; 9!! 1.3.5.7.9; 10!! 2.4.6.8.10= = = = = . Ví dụ 21. 2 11 0 10!! 2.4.6.8.10 256 cos xdx 11!! 1.3.5.7.9.11 693 p = = = ò . Ví dụ 22. 2 10 0 9!! 1.3.5.7.9 63 sin xdx . . 10!! 2 2.4.6.8.10 2 512 p p p p = = = ò . II. TÍCH PHÂN TỪNG PHẦN 1. Công thức Cho hai hàm số u(x), v(x) liên tục và có đạo hàm trên đoạn [a; b]. Ta có ( ) ( ) / / / / / / uv u v uv uv dx u vdx uv dx= + Þ = + ( ) b b b a a a d uv vdu udv d(uv) vdu udvÞ = + Þ = + ò ò ò b b b b b b a a a a a a uv vdu udv udv uv vduÞ = + Þ = - ò ò ò ò . Công thức: b b b a a a udv uv vdu= - ò ò (1). Công thức (1) còn được viết dưới dạng: b b b / / a a a f(x)g (x)dx f(x)g(x) f (x)g(x)dx= - ò ò (2). 2. Phương pháp giải toán Giả sử cần tính tích phân b a f(x)g(x)dx ò ta thực hiện Cách 1. Bước 1. Đặt u f(x), dv g(x)dx= = (hoặc ngược lại) sao cho dễ tìm nguyên hàm v(x) và vi phân / du u (x)dx= không quá phức tạp. Hơn nữa, tích phân b a vdu ò phải tính được. Bước 2. Thay vào công thức (1) để tính kết quả. Đặc biệt: i/ Nếu gặp b b b ax a a a P(x)sinaxdx, P(x)cosaxdx, e .P(x)dx ò ò ò với P(x) là đa thức thì đặt u P(x)= . ii/ Nếu gặp b a P(x)ln xdx ò thì đặt u lnx= . Cách 2. Viết lại tích phân b b / a a f(x)g(x)dx f(x)G (x)dx= ò ò và sử dụng trực tiếp công thức (2). Ví dụ 1. Tính tích phân 1 x 0 I xe dx= ò . Giải Chuyên đề: Tích phân * Trang 7 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0909 64 65 97 “THẦY GIỎI – TRÒ GIỎI” Đặt x x u x du dx dv e dx v e = = ì ì ï ï ï ï Þ í í = ï ï = ï ïî î (chọn C 0= ) 1 1 1 1 x x x x 0 0 0 0 xe dx xe e dx (x 1)e 1Þ = - = - = ò ò . Ví dụ 2. Tính tích phân e 1 I x ln xdx= ò . Giải Đặt 2 dx du u lnx x dv xdx x v 2 ì ï = ï = ì ï ï ï ï Þ í í ï ï = ï ï î = ï ï î e e e 2 2 1 1 1 x 1 e 1 xln xdx ln x xdx 2 2 4 + Þ = - = ò ò . Ví dụ 3. Tính tích phân 2 x 0 I e sin xdx p = ò . Giải Đặt x x u sin x du cosxdx dv e dx v e = = ì ì ïï ï ï Þ í í ï ï = = ï ï î î 2 2 x x x 2 2 0 0 0 I e sin xdx e sinx e cosxdx e J p p p p Þ = = - = - ò ò . Đặt x x u cosx du sin xdx dv e dx v e = = - ì ì ï ï ï ï Þ í í = ï ï = ï ïî î 2 2 x x x 2 0 0 0 J e cosxdx e cosx e sin xdx 1 I p p p Þ = = + = - + ò ò 2 2 e 1 I e ( 1 I) I 2 p p + Þ = - - + Þ = . Chú ý: Đôi khi ta phải đổi biến số trước khi lấy tích phân từng phần. Ví dụ 7. Tính tích phân 2 4 0 I cos xdx p = ò . Hướng dẫn: Đặt t x= 2 0 I 2 t costdt 2 p Þ = = = p - ò L L . Ví dụ 8. Tính tích phân e 1 I sin(ln x)dx= ò . ĐS: (sin1 cos1)e 1 I 2 - + = . III. TÍCH PHÂN CHỨA GIÁ TRỊ TUYỆT ĐỐI Chuyên đề: Tích phân * Trang 8 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0909 64 65 97 “THẦY GIỎI – TRÒ GIỎI” Phương pháp giải toán 1. Dạng 1 Giả sử cần tính tích phân b a I f(x) dx= ò , ta thực hiện các bước sau Bước 1. Lập bảng xét dấu (BXD) của hàm số f(x) trên đoạn [a; b], giả sử f(x) có BXD: x a 1 x 2 x b f(x) + 0 - 0 + Bước 2. Tính 1 2 1 2 b x x b a a x x I f(x) dx f(x)dx f(x)dx f(x)dx= = - + ò ò ò ò . Ví dụ 9. Tính tích phân 2 2 3 I x 3x 2 dx - = - + ò . Giải Bảng xét dấu x 3- 1 2 2 x 3x 2- + + 0 - 0 ( ) ( ) 1 2 2 2 3 1 59 I x 3x 2 dx x 3x 2 dx 2 - = - + - - + = ò ò . Vậy 59 I 2 = . Ví dụ 10. Tính tích phân 2 2 0 I 5 4cos x 4sinxdx p = - - ò . ĐS: I 2 3 2 6 p = - - . 2. Dạng 2 Giả sử cần tính tích phân [ ] b a I f(x) g(x) dx= ± ò , ta thực hiện Cách 1. Tách [ ] b b b a a a I f(x) g(x) dx f(x) dx g(x) dx= ± = ± ò ò ò rồi sử dụng dạng 1 ở trên. Cách 2. Bước 1. Lập bảng xét dấu chung của hàm số f(x) và g(x) trên đoạn [a; b]. Bước 2. Dựa vào bảng xét dấu ta bỏ giá trị tuyệt đối của f(x) và g(x). Ví dụ 11. Tính tích phân ( ) 2 1 I x x 1 dx - = - - ò . Giải Cách 1. ( ) 2 2 2 1 1 1 I x x 1 dx x dx x 1 dx - - - = - - = - - ò ò ò 0 2 1 2 1 0 1 1 xdx xdx (x 1)dx (x 1)dx - - = - + + - - - ò ò ò ò Chuyên đề: Tích phân * Trang 9 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0909 64 65 97 “THẦY GIỎI – TRÒ GIỎI” 0 2 1 2 2 2 2 2 1 0 1 1 x x x x x x 0 2 2 2 2 - - æ ö æ ö ÷ ÷ ç ç = - + + - - - = ÷ ÷ ç ç ÷ ÷ ç ç è ø è ø . Cách 2. Bảng xét dấu x –1 0 1 2 x – 0 +  + x – 1 – – 0 + ( ) ( ) ( ) 0 1 2 1 0 1 I x x 1 dx x x 1 dx x x 1 dx - = - + - + + - + - + ò ò ò ( ) 1 2 0 2 1 1 0 x x x x 0 - = - + - + = . Vậy I 0= . 3. Dạng 3 Để tính các tích phân { } b a I max f(x), g(x) dx= ò và { } b a J min f(x), g(x) dx= ò , ta thực hiện các bước sau: Bước 1. Lập bảng xét dấu hàm số h(x) f(x) g(x)= - trên đoạn [a; b]. Bước 2. + Nếu h(x) 0> thì { } max f(x), g(x) f(x)= và { } min f(x), g(x) g(x)= . + Nếu h(x) 0< thì { } max f(x), g(x) g(x)= và { } min f(x), g(x) f(x)= . Ví dụ 12. Tính tích phân { } 4 2 0 I max x 1, 4x 2 dx= + - ò . Giải Đặt ( ) ( ) 2 2 h(x) x 1 4x 2 x 4x 3= + - - = - + . Bảng xét dấu x 0 1 3 4 h(x) + 0 – 0 + ( ) ( ) ( ) 1 3 4 2 2 0 1 3 80 I x 1 dx 4x 2 dx x 1 dx 3 = + + - + + = ò ò ò . Vậy 80 I 3 = . Ví dụ 13. Tính tích phân { } 2 x 0 I min 3 , 4 x dx= - ò . Giải Đặt ( ) x x h(x) 3 4 x 3 x 4= - - = + - . Bảng xét dấu x 0 1 2 h(x) – 0 + ( ) 1 2 2 1 x 2 x 0 1 0 1 3 x 2 5 I 3 dx 4 x dx 4x ln3 2 ln3 2 æ ö ÷ ç = + - = + - = + ÷ ç ÷ ç è ø ò ò . Vậy 2 5 I ln3 2 = + . IV. BẤT ĐẲNG THỨC TÍCH PHÂN Phương pháp giải toán 1. Dạng 1 Chuyên đề: Tích phân * Trang 10 * GV: Nguyễn Văn Huy . t+ = ĐS: I 12 p = . Ví dụ 5. Tính tích phân 2 2 0 dx I 4 x = - ò . ĐS: I 2 p = . Ví dụ 6. Tính tích phân 3 1 2 0 dx I x 2x 2 - = + + ò . ĐS: I 12 p = . 3 2 2 3 0 I cos x sin xdx p = ò . Hướng dẫn: Đặt t cosx= ĐS: 2 I 15 = . Ví dụ 12 (bậc cosin lẻ). Tính tích phân 2 5 0 I cos xdx p = ò . Hướng dẫn: Đặt t sin

Ngày đăng: 28/12/2013, 23:06

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan