Tài liệu Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong ppt

10 2.1K 40
Tài liệu Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong ppt

Đang tải... (xem toàn văn)

Thông tin tài liệu

Chương 4: chế hình thành CO HC trong quá trình cháy của động đốt trong 46 4.2.5. Ảnh hưởng của hệ số khí sót Hình 4.10 trình bày ảnh hưởng của hệ số khí sót x b đến nồng độ CO trong khí xả động Toyota. Khi tăng hệ số khí sót, nhiệt độ cháy giảm làm giảm tốc độ phản ứng phân giải CO 2 thành CO do đó nồng độ CO trong sản phẩm cháy giảm. Vì vậy, hệ thống hồi lưu khí xả EGR lắp trên các động hiện đại để khống chế nồng độ NO x đồng thời cũng góp phần làm giảm nồng độ COchế độ tải thấp. 4.3. Cơ chế hình thành hydrocarbure chưa cháy HC 4.3.1. Sự phát sinh hydrocarbure chưa cháy trong khí xả động đốt trong Sự phát sinh hydrocarbure chưa cháy HC, hay nói một cách tổng quát hơn, sự hình thành các sản phẩm hữu cơ, là do quá trình cháy không hoàn toàn hoặc do một bộ phận hỗn hợp nằm ngoài khu vực lan tràn màng lửa. Điều này xảy ra do sự không đồng nhất của hỗn hợp hoặc do sự dập tắt màng lửa ở khu vực gần thành hay trong các không gian chết, nghĩa là ở khu vực nhiệt độ thấp, khác với sự hình thành CO NO x diễn ra trong pha đồng nhất ở những khu vực nhiệt độ cao. Hình 4.11: Biến thiên nồng độ một số hydrocarbure theo góc quay trục khuỷu HC bao gồm các thành phần hydrocarbure rất khác biệt, độc tính khác nhau đối với sức khỏe con người cũng như tính phản ứng khác nhau trong quá trình biến đổi hóa học trong bầu khí quyển. Thông thường HC chứa một bộ phận lớn méthane. Thêm vào đó, chúng còn các thành phần chứa oxygène tính phản ứng cao hơn như aldehyde, cetone, phenol, alcool . Nếu thành phần chứa carbon chỉ chiếm vài phần trăm trong HC của động đánh lửa cưỡng bức thì aldehyde thể đạt đến 10% trong HC động Diesel trong số aldehyde này, formaldehyde chiếm tới 20% tổng số thành phần chứa carbon. Đánh lửa Mở soupape xả Đóng soupape xả C 3 H 8 C 2 H 4 CH 4 0 100 200 300 400 1 10 10 2 10 3 10 4 Độ góc quay trục khuỷu sau ĐCT Nồng độ trong khí xả Chương 4: Cơ chế hình thành CO HC trong quá trình cháy của động đốt trong 47 Những chất còn lại trong hỗn hợp sau khi màng lửa đi qua không phải là nguồn phát sinh HC chính đo được trên đường xả của động đốt trong. Hình 4.11 biểu diễn sự biến thiên nồng độ các thành phần hydrocarbure theo góc quay trục khuỷu đo được trên thành buồng cháy của động một cylindre. Chúng ta thấy rằng, ngay khi màng lửa đi qua, nồng độ HC đo được thấp hơn HC mặt trong khí xả. Vào cuối chu trình, nồng độ HC lại tăng lên. Thật vậy, khi màng lửa đã lan đến khu vực gần thành thì nó bị dập tắt chính HC thoát ra từ các vùng không bị cháy đóng vai trò chủ yếu trong việc làm tăng nồng độ HC. 4.3.2. chế tôi màng lửa Tôi màng lửa hay sự dập tắt màng lửa diễn ra khi nó tiếp xúc với thành buồng cháy. Quá trình tôi màng lửa thể xảy ra trong những điều kiện khác nhau: màng lửa bị làm lạnh khi tiếp xúc với thành trong quá trình dịch chuyển hoặc màng lửa bị dập tắt trong những không gian nhỏ liên thông với buồng cháy, chẳng hạn như khe hở giữa piston thành cylindre (hình 4.12). Hình 4.12: Sự hình thành HC do tôi màng lửa trên thành buồng cháy Khi màng lửa bị tôi, nó giải phóng một lớp mỏng hỗn hợp chưa cháy hay cháy không hoàn toàn trên các bề mặt tiếp xúc (culasse, piston, cylindre, soupape .) hay ở những không gian chết. Bề dày của vùng bị tôi phụ thuộc vào những yếu tố khác nhau: nhiệt độ áp suất của hỗn hợp khí, tốc độ lan tràn màng lửa, hệ số dẫn nhiệt, nhiệt dung riêng, tình trạng bề mặt của thành buồng cháy, lớp muội than, nhiệt độ thành buồng cháy . Người ta thể sử dụng những công thức thực nghiệm để tính kích thước bé nhất của không gian chết để màng lửa thể đi qua mà không bị dập tắt. Quá trình tôi màng lửa diễn ra theo hai giai đoạn: trong giai đoạn đầu, màng lửa bị tắt khi nhiệt lượng hấp thụ vào thành buồng cháy cân bằng với nhiệt lượng do màng lửa tỏa ra. Vài giây sau khi tôi, do diễn ra sự khuếch tán hay sự oxy hóa nên nồng độ HC tại khu vực này nhỏ hơn nồng độ đo được khi tôi. Mặt khác, những hydrocarbure thoát ra trong quá trình oxy hóa ban đầu do màng lửa bị dập tắt thể bị oxy hóa trong quá trình Sản phẩm cháy Hỗn hợp chưa cháy Vùng màng lửa bị kẹt Chương 4: Cơ chế hình thành CO HC trong quá trình cháy của động đốt trong 48 giãn nở hay thải. Cuối cùng lớp dầu bôi trơn trên mặt gương cylindre thể hấp thụ hydrocarbure, nhất là các hydrocarbure trước khi bén lửa thải HC ra hỗn hợp cháy trong kì giãn nở. Quá trình hấp thụ thải HC như vừa nêu đôi khi là nguồn phát sinh HC quan trọng trong khí xả động đốt trong. 4.4. Sự phát sinh HC trong quá trình cháy của động đánh lửa cưỡng bức Khí xả động xăng thường chứa từ 1000 đến 3000ppmC, tương ứng với khoảng từ 1 đến 2,5% lượng nhiên liệu cung cấp cho động cơ. Như đã trình bày trên hình 1.1, nồng độ HC tăng nhanh theo độ đậm đặc của hỗn hợp. Tuy nhiên, khi độ đậm đặc của hỗn hợp quá thấp, HC cũng tăng do sự bỏ lửa hay do sự cháy không hoàn toàn diễn ra ở một số chu trình công tác. Sự hình thành HC trong động đánh lửa cưỡng bức thể được giải thích theo các chế sau đây (hình 4.13): - Sự tôi màng lửa khi tiếp xúc với thành tạo ra một lớp hỗn hợp không bị bén lửa trên mặt thành buồng cháy. - Hỗn hợp chứa trong các không gian chết không cháy được do màng lửa bị dập tắt. - Hơi nhiên liệu hấp thụ vào lớp dầu bôi trơn trên mặt gương cylindre trong giai đoạn nạp nén thải ra trong giai đoạn giãn nở cháy. - Sự cháy không hoàn toàn diễn ra ở một số chu trình làm việc của động (cháy cục bộ hay bỏ lửa) do sự thay đổi độ đậm đặc, thay đổi góc đánh lửa sớm hay hồi lưu khí xả, đặc biệt khi gia giảm tốc độ. Mặt khác, muội than trong buồng cháy cũng thể gây ra sự gia tăng mức độ phát sinh ô nhiễm do sự thay đổi các chế trên đây. Tấ t cả những quá trình này (trừ trường hợp bỏ lửa) làm gia tăng nồng độ HC chưa cháy ở gần thành buồng cháy chứ không phải trong toàn bộ thể tích buồng cháy. Trong quá trình thải thể xuất hiện hai đỉnh cực đại của nồng độ HC: đỉnh thứ nhất tương ứng với đại bộ phận HC sinh ra trong quá trình cháy chính, đỉnh thứ hai xuất hiện vào cuối kì thải ở thời điểm nh ững bộ phận HC cuối cùng thoát ra khỏi cylindre trong điều kiện lưu lượng khí xả đã giảm. Lớp dầu bôi trơn hấp thụ HC Lớp muội than hấp thụ HC Hỗn hợp chưa cháy bị nén vào không gian chết Màng lửa H ỗn hợp cháy không hoàn toàn là nguồn phát sinh HC HC trên thành cylindre bị kéo theo dòng khí xả Lớp muội than giải phóng HC NÉN CHÁY Chương 4: Cơ chế hình thành CO HC trong quá trình cháy của động đốt trong 49 Hình 4.13: Sơ đồ các nguồn phát sinh HC 4.4.1. Tôi màng lửa trên thành buồng cháy Bề dày của lớp bị tôi thay đổi từ 0,05 đến 0,4mm phụ thuộc vào chế độ tải của động cơ. Khi tải càng thấp thì lớp bị tôi càng dày. Sự hiện diện của aldehyde dạng HCHO hay CH 3 CHO trong lớp tôi chứng tỏ rằng khu vực lớp tôi là nơi diễn ra các phản ứng oxy hóa ở nhiệt độ thấp. Sau khi màng lửa bị dập tắt, những phần tử HC mặt trong lớp tôi khuếch tán vào khối khí nhiệt độ cao trong buồng cháy đại bộ phận bị oxy hóa. Trạng thái bề mặt của thành buồng cháy cũng ảnh hưởng đến mức độ phát sinh HC: nồng độ HC thể giảm đi 14% trong trường hợp thành buồng cháy được đánh bóng so với trường hợp thành buồng cháy ở dạng đúc thô. Lớp muội than gây ảnh hưởng đến nồng độ HC tương tự như trường hợp thành buồng cháy nhám. 4.4.2. Ảnh hưởng của các không gian chết Các không gian này được xem là nguyên nhân chủ yếu phát sinh HC. Các không gian chết quan trọng nhất là các khe hở giới hạn giữa piston, segment cylindre (hình 4.15). Những không gian chết khác bao gồm chân ren không gian quanh cực trung tâm của bougie, không gian quanh nấm đế soupape, không gian giới hạn giữa nắp cylindre, thân máy đệm culasse. Ở thời điểm gia tăng áp suất trong quá trình nén, hỗn hợp nhiên liệu-không khí bị đẩy vào các không gian chết. Do tỉ số giữa diện tích bề mặt thể tích của các không gian chết lớn nên lượng khí dồn vào đ ây được làm mát nhanh chóng. Trong giai đoạn cháy, áp suất tiếp tục tăng một bộ phận hỗn hợp mới lại được nén vào không gian chết. Khi màng lửa lan đến các khu vực này, nó thể lan tràn vào bên trong để đốt cháy hỗn hợp này hoặc nó bị tôi ngay trước khi vào trong không gian chết. Khả năng màng lửa bị tôi phụ thuộc vào dạng hình học của lối vào không gian chết, thành phần của hỗn hợp chưa cháy trạng thái nhiệt động học của nó. Thực nghiệm cho thấy sự tôi màng lửa diễn ra khi khe hở giữa piston cylindre nhỏ hơn 0,18mm. Sau khi màng lửa đến Chương 4: Cơ chế hình thành CO HC trong quá trình cháy của động đốt trong 50 bị tôi, khí cháy lại chui vào không gian chết cho đến khi áp suất bắt đầu giảm. Khi áp suất trong không gian chết trở nên lớn hơn áp suất trong cylindre, bộ phận khí chứa trong các không gian này quay trở ngược lại cylindre. Hình 4.15 thể hiện những không gian chết quan trọng nhất, đó là thể tích bao gồm giữa piston, segment thành cylindre. Nó bao gồm một loạt các thể tích nối liền nhau bởi những khe hẹp như khe hở segment, không gian giới hạn giữa hai segment liên tiếp . Dạng hình học của các không gian chết này thay đổi khi segment dịch chuyển trong rãnh để che kín mặt trên hay mặt dưới rãnh segment. Các không gian chết vừa nêu thể chứa từ 5 đến 10% hỗn hợp trong cylindre bộ phận hỗn hợp này không cháy được trong quá trình cháy chính. Trong giai đoạn giãn nở, khi quay ngược lại cylindre, một bộ phận HC chứa trong không gian chết bị oxy hóa, phần còn lại (hơn 50%) thoát ra ngoài theo khí xả. Thực nghiệm cho thấy hơn 80% HC chứa trong sản phẩm cháy do các không gian chết của nhóm piston-segment-cylindre gây ra; 13% lượng HC do không gian chết của đệm culasse 2% do không gian chết của bougie. Giảm khoảng cách giữa segment thứ nhất so với đỉnh piston thể làm giảm nồng độ HC từ 47 đến 74% so với giá trị bình thường tùy theo điều kiện làm việc của động cơ. Vị trí của nến đánh lửa cũng ảnh hưởng đến mức độ phát sinh HC; nếu nến đánh lửa đặt gần các không gian chết thì trong không gian đó chứa một bộ phận sản phẩm cháy; ngược lại, nếu nến đánh lửa đặt xa thì không gian chết chứa chủ yếu hỗn hợp khí chưa cháy. Trong nhiều trường hợp, sự chênh lệch nồng độ HC thể đạt đến 20%. Lọt khí carter là lượng khí lọt từ cylindre xuống carter trong quá trình nén cháy do sự không kín khít của segment. Lọt khí carter cũng là nguồn phát sinh HC nếu nó được thải trực tiếp ra khí quyển. Ngày nay, ở hầu hết động ô tô, lượng khí này được dẫn vào đường nạp để tăng tính kinh tế giảm mức độ phát sinh HC. Để lượng hỗn hợp chưa cháy chứa trong các không gian chết không quay ngược lại buồng cháy, trong một số trường hợp người ta thể giảm độ kín khít của segment để lượng khí này lọt xuống carter bị đốt cháy khi quay vào lại cylindre theo đường nạp. Hình 4.15: Nguồn phát sinh HC trong động đánh lửa cưỡng bức Không gian chết giữa đế nấm soupape Không gian chết ở chân ren bougie Không gian chết ở đệm culasse Không gian chết giữa segment rãnh segment Chương 4: chế hình thành CO HC trong quá trình cháy của động đốt trong 51 Vì vậy, việc thiết kế hợp lí buồng cháy, lựa chọn hợp lí dạng piston, segment, đệm culasse để giảm các không gian chết, lựa chọn vị trí đặt bougie tốt sẽ làm giảm đáng kể nồng độ HC trong khí xả. 4.4.3. Sự hấp thụ giải phóng HC ở màng dầu bôi trơn Pha dầu bôi trơn vào nhiên liệu, như trường hợp động 2 kì, sẽ làm gia tăng mức độ phát sinh HC. Khi pha thêm 5% dầu bôi trơn vào nhiên liệu thì nồng độ HC trong khí xả thể tăng gấp đôi hay gấp ba so với trường hợp động làm việc với nhiên nhiên không pha dầu bôi trơn. chế làm tăng HC khi pha dầu bôi trơn vào nhiên liệu thể giải thích như sau. Trong giai đoạn nạp, màng dầu bôi trơn được tráng trên mặt gương cylindre ở trạng thái bão hòa hơi hydrocarbon ở áp suất nạp. Khi cháy hết nhiên liệu, sự giải phóng hơi nhiên liệu từ màng dầu bôi trơn vào khí cháy bắt đầu đồng thời quá trình này tiếp tục trong kì giãn nở thải. Trong quá trình đó, một bộ phận hơi này sẽ hòa trộn với khí cháy ở nhiệt độ cao bị oxy hóa; một bộ phận khác hòa trộn với hỗn hợp khí cháy nhiệt độ thấp, không bị oxy hóa, góp phần làm tăng HC. Luợng HC này tăng theo độ hòa tan của nhiên liệu trong dầu bôi trơn. Sự hiện diện của muội than trong buồng cháy cũng ảnh hưởng đến sự phát sinh HC. Thực tế cho thấy HC khuynh hướng gia tăng theo mức độ tiêu thụ dầu bôi trơn. Vì vậy, lựa chọn dạng segment dầu hợp lý sẽ làm giảm mức độ tiêu thụ dầu bôi trơn đồng thời làm giảm mức độ phát sinh HC. 4.4.4. Ảnh hưởng của chất lượng quá trình cháy Sự dập tắt màng lửa khi nó lan đến gần thành là một trong những nguyên nhân làm gia tăng HC trong khí xả động cơ. Màng lửa thể bị tắt khi áp suất nhiệt độ giảm xuống nhanh. Hiện tượng này diễn ra ở chế độ không tải hay tải nhỏ tốc độ thấp với thành phần khí sót cao. Ngay cả khi động được điều chỉnh tốt ở chế độ làm việc bình thườ ng, sự dập tắt màng lửa cũng diễn ra ở chế độ quá độ (gia tốc hay giảm tốc). 4.4.5. Ảnh hưởng của lớp muội than Sự hình thành lớp muội than (oxyde chì đối với động sử dụng nhiên liệu pha chì hay là lớp than do dầu bôi trơn bị cháy) xuất hiện trong buồng cháy khi ô tô chạy được khoảng vài ngàn cây số, cũng góp phần làm gia tăng HC. chế làm tăng HC do sự hiện diện của muội than khá phức tạp. Sự hấp thụ giải phóng HC ở lớp muội than cũng giống như màng dầu. Mặt khác, nếu kích thước ban đầu của các không gian chết hẹp, lớp bồ hóng làm giảm lượng hỗn hợp khí chưa cháy chứa trong các không gian này vì vậy làm giảm HC. Ngược lại, nếu các không gian này nguyên thủy đủ lớn, sự bám bồ hóng làm giảm tiết diện lối vào, tăng khả năng dập tắt màng lửa do đó làm tăng mức độ phát sinh HC. Chương 4: chế hình thành CO HC trong quá trình cháy của động đốt trong 52 4.4.6. Ảnh hưởng của sự oxy hóa HC trong kì giãn nở thải Lượng hydrocarbure không tham gia vào quá trình cháy chính trong thực tế lớn hơn nhiều so với lượng hydrocarbure đo được trong khí xả động cơ. Thật vậy, sau khi thoát ra khỏi các không gian chết, nhiên liệu chưa cháy khuếch tán vào khối sản phẩm cháy ở nhiệt độ cao tại đây chúng bị oxy hóa một cách nhanh chóng. Sự oxy hóa này càng thuận lợi khi lượng oxy trong sản vật cháy càng nhiều (hỗn hợp nghèo). Hydrocarbure ở thể khí bị oxy hóa khi nó tồn tại trong môi trường nhiệt độ khoảng 600°C (nhiệt độ thông thường của nấm soupape xả) ít nhất là 50ms. Lượng HC thải ra bao gồm nhiên liệu chưa cháy hết các sản phẩm cháy không hoàn toàn. Mặt khác, quá trình oxy hóa cũng tiếp tục diễn ra trên đường xả làm giảm thêm nồng độ HC sau khi chúng thoát ra khỏi buồng cháy. Vì vậy những điều kiện vận hành của động làm gia tăng nhiệt độ khí xả (hỗn hợp độ đậm đặc xấp xỉ 1, động làm việc với tốc độ cao, đánh lửa muộn, tỉ số nén cao .) thời gian tồn tại của hỗn hợp trong buồng cháy dài (tải thấp) sẽ làm gia tăng tỉ lệ HC bị oxy hóa. Giảm góc đánh lửa sớm làm tăng nhiệt độ hỗn hợp khí ở cuối quá trình giãn nở tạo điều kiện thuận lợi cho việc oxy hóa HC trên đường thải. Về mặt kỹ thuật, để tăng khả năng oxy hóa HC trên đường thải cần làm giảm tổn thất nhiệt ở soupape cổ góp bằng cách gia tăng tiết diện lưu thông cách nhiệt đoạn đầu đường thải, chẳng hạn như phủ một lớp vật liệu gốm trên thành ống. 4.5. Trường hợp động Diesel 4.5.1. Đặc điểm phát sinh HC trong quá trình cháy động Diesel Do nguyên lí làm việc của động Diesel, thời gian lưu lại của nhiên liệu trong buồng cháy ngắn hơn trong động đánh lửa cưỡng bức nên thời gian dành cho việc hình thành sản phẩm cháy không hoàn toàn cũng rút ngắn làm giảm thành phần hydrocarbure cháy không hoàn toàn trong khí xả. Do nhiên liệu Diesel chứa hydrocarbure điểm sôi cao, nghĩa là khối lượng phân tử cao, sự phân hủy nhiệt diễn ra ngay từ lúc phun nhiên liệu. Điều này là tăng tính phức tạp của thành phần hydrocarbure cháy không hoàn toàn trong khí xả. Quá trình cháy trong động Diesel là một quá trình phức tạp, trong quá trình đó diễn ra đồng thời sự bay hơi nhiên liệu hòa trộn nhiên liệu với không khí sản phẩm cháy. Khi độ đậm đặc trung bình của hỗn hợp quá lớn hoặc quá bé đều làm giảm khả năng tự cháy lan tràn màng lửa. Trong trường hợp đó nhiên liệu sẽ được tiêu thụ từng phần trong những phản ứng oxy hóa diễn ra chậm ở giai đoạn giãn nở sau khi hòa trộn thêm không khí. Chúng ta thể chia ra hai khu vực đối với bộ phận nhiên liệu được phun vào buồng cháy trong giai đoạn cháy trễ: khu vực hỗn hợp quá nghèo do pha trộn với không khí quá nhanh khu vực hỗn hợp quá giàu do pha trộn với không khí quá chậm. Trong trường hợp đó, chủ yếu là khu vực hỗn hợp quá nghèo diễn ra sự cháy không hoàn toàn Chương 4: chế hình thành CO HC trong quá trình cháy của động đốt trong 53 còn khu vực hỗn hợp quá giàu sẽ tiếp tục cháy khi hòa trộn thêm không khí. Đối với bộ phận nhiên liệu phun sau giai đoạn cháy trễ, sự oxy hóa nhiên liệu hay các sản phẩm phân hủy nhiệt diễn ra nhanh chóng khi chúng dịch chuyển trong khối khí ở nhiệt độ cao. Tuy nhiên sự hòa trộn không đồng đều thể làm cho hỗn hợp quá giàu cục bộ hay dẫn đến sự làm mát đột ngột làm tắt màng lửa, sinh ra các sản phẩm cháy không hoàn toàn trong khí xả . Mức độ phát sinh HC trong động Diesel phụ thuộc nhiều vào điều kiện vận hành; ở chế độ không tải hay tải thấp, nồng độ HC cao hơn ở chế độ đầy tải. Thêm vào đó, khi thay đổi tải đột ngột thể gây ra sự thay đổi mạnh các điều kiện cháy dẫn đến sự gia tăng HC do những chu trình bỏ lửa. Cuối cùng, khác với động đánh lửa cưỡng bức, không gian chết trong động Diesel không gây ảnh hưởng quan trọng đến nồng độ HC trong khí xả vì trong quá trình nén giai đoạn đầu của quá trình cháy, các không gian chết chỉ chứa không khí khí sót. Ảnh hưởng của lớp dầu bôi trơn trên mặt gương cylindre, ảnh hưởng của lớp muội than trên thành buồng cháy cũng như ảnh hưởng của sự tôi màng lửa đối với sự hình thành HC trong động Diesel cũng không đáng kể so với trường hợp động đánh lửa cưỡng bức. 4.5.2. Phát sinh HC trong trường hợp hỗn hợp quá nghèo Sự phân bố không đồng đều nhiên liệu trong cylindre ngay lúc bắt đầu phun được giới thiệu trên hình 4.16. Trong dòng xoáy lốc, sự tự cháy diễn ra trong khu vực độ đậm đặc hơi thấp hơn 1. Bộ phận nhiên liệu ở ngoài rìa tia nằm ngoài giới hạn dưới của sự tự bén lửa do đó chúng không thể tự cháy cũng không thể duy trì màng lửa. Khu vực đó chỉ thể là vị trí sản sinh các phản ứng chậm dẫn đến sản phẩm cháy không hoàn toàn. Do đó trong vùng này mặt nhiên liệu chưa cháy hết, những sản vật phân giải từ nhiên liệu, những sản phẩm oxy hóa cục bộ (CO, aldehyde những oxyde khác) một bộ phận của những sản phẩm này mặt trong khí xả. Tầm quan trọng của những hydrocarbure chưa cháy từ những khu vực nghèo này phụ thuộc vào lượng nhiên liệu phun vào động trong thời kì cháy trễ, phụ thuộc vào tỉ lệ không khí kéo theo vào tia trong giai đoạn này những điều kiện lí hóa ảnh hưởng đến sự tự cháy trong cylindre. Vòi phun Không khí xoáy lốc Giới hạn tia nhiên liệu Điểm đánh lửa HC trong vùng hỗn hợp quá nghèo f >1 f = 0 f = f L f =1 Chương 4: chế hình thành CO HC trong quá trình cháy của động đốt trong 54 Hình 4.16: Phân bố độ đậm đặc trong tia phun Diesel Vì vậy nồng độ HC trong khí xả độ dài của giai đoạn cháy trễ quan hệ mật thiết với nhau, hay nói cách khác mức độ phát sinh HC liên quan đến chỉ số cetane của nhiên liệu. Những thay đổi điều kiện vận hành của động làm kéo dài thời kì cháy trễ sẽ làm gia tăng nồng độ HC. 4.5.3. Phát sinh HC trong trường hợp hỗn hợp quá giàu hai nguyên nhân dẫn đến sự phát sinh HC do hỗn hợp quá giàu. Nguyên nhân thứ nhất do nhiên liệu rời khỏi vòi phun với tốc độ thấp thời gian phun kéo dài. Nguồn phát sinh HC chính trong trường hợp này là không gian chết ở mũi vòi phun sự phun rớt do sự đóng kim phun không dứt khoát. Nguyên nhân thứ hai là do sự thừa nhiên liệu trong buồng cháy do hỗn hợp quá đậm. Vào cuối giai đoạn phun, lỗ phun (không gian chết) ở mũi vòi phun chứa đầy nhiên liệu. Trong giai đoạn cháy giãn nở , nhiên liệu được sấy nóng một bộ phận bốc hơi thoát ra khỏi lỗ phun (ở pha lỏng hơi) đi vào cylindre với tốc độ thấp hòa trộn chậm với không khí, do đó chúng không bị đốt cháy trong giai đoạn cháy chính. Ở động phun trực tiếp, thời gian của giai đoạn cháy trễ bé, mức độ phát sinh HC tỉ lệ với thể tích không gian chết ở mũi vòi phun. Tuy nhiên, không phải toàn bộ thể tích nhiên liệu chứa trong không gian chết đều mặt trong khí xả. Ví dụ 1mm 3 không gian chết trong buồng cháy động phát sinh khoảng 350ppmC trong khí xả, trong khi đó 1mm 3 nhiên liệu cho 1660ppmC. Sự chênh lệch này là do một bộ phận hydrocarbure nặng tiếp tục lưu lại trong vòi phun một bộ phận hydrocarbure nhẹ bị oxy hóa khi thoát ra khỏi không gian chết. Trong động buồng cháy dự bị chế này cũng diễn ra tương tự nhưng với mức độ thấp hơn. Ở động phun trực tiếp, hiện tượng nhả khói đen làm giới hạn khả năng tăng độ đậm đặc trung bình của hỗn hợp ở chế độ toàn tải. Ở chế độ tải thấp, tốc độ phun bé lượng nhiên liệu phun vào nhỏ, do đó động lượng của tia phun bé làm giảm lượng không khí kéo theo vào tia nên độ đậm đặc cục bộ rất cao. Trong điều kiện quá độ khi gia tốc, hỗn hợp trong buồng cháy thể rất đậm đặc. Trong trường hợp đó, dù tỉ lệ nhiên liệu- không khí tổng quát trong toàn buồng cháy thấp nhưng độ đậm đặc cục bộ rất cao trong giai đoạn giãn nở thải. Khi độ đậm đặc cục bộ vượt quá 0,9 thì nồng độ HC sẽ gia tăng đột ngột. Ảnh hưởng tương tự như vậy cũng diễn ra trong động buồng cháy dự bị. Tuy nhiên chế này chỉ gây ảnh hưởng đến nồng độ HC khi gia tốc nó gây ảnh hưởng đến nồng độ HC ít hơn khi hỗn hợp nghèo ở chế độ không tải hay tải thấp. 4.5.4. Phát sinh HC do tôi ngọn lửa hỗn hợp không tự bốc cháy Như động đánh lửa cưỡng bức, sự tôi ngọn lửa diễn ra gần thành đó chính là nguồn phát sinh HC. Hiện tượng này phụ thuộc đặc biệt vào khu vực va chạm giữa tia Chương 4: chế hình thành CO HC trong quá trình cháy của động đốt trong 55 nhiên liệu thành buồng cháy. Sự bỏ lửa dẫn đến sự gia tăng mạnh nồng độ HC hiếm khi xảy ra đối với động làm việc bình thường. Nó chỉ diễn ra khi động tỉ số nén thấp phun trễ. Mặt khác, sự bỏ lửa cũng xảy ra khi khởi động động Diesel ở trạng thái nguội với sự hình thành khói trắng (chủ yếu là do những hạt nhiên liệu không cháy tạo thành). 4.6. Trường hợp động hai kì đánh lửa cưỡng bức Mặc dù người ta đã nghiên cứu sử dụng nhiều kết cấu của hệ thống quét thải nhằm hạn chế sự hòa trộn giữa khí cháy khí chưa cháy, đặc biệt đối với động hai kỳ dùng bộ chế hòa khí, nhưng vẫn một bộ phận khí nạp mới thoát ra đường xả làm tăng nồng độ HC, đồng thời làm giảm công suất tăng suất tiêu hao nhiên liệu của động cơ. Mặt khác, khi làm việc ở tải cục bộ, loại động này dễ bỏ lửa làm tăng HC. Hiện nay nhiều giải pháp nhằm khắc phục nhược điểm trên của động 2 kỳ trong đó hai giải pháp hữu hiệu nhất. Giải pháp thứ nhất là tạo hỗn hợp không đồng đều trong không gian buồng cháy sao cho chỉ bộ phận hỗn hợp nghèo bị thất thoát ra đường thải. Giải pháp thứ hai là phun nhiên liệu vào buồng cháy một khi cửa thải đã đóng. Trong trường hợp phun nhiên liệu, năng lượng cần thiết để dẫn động bơm phun nhiên liệu thường được trích ra từ động do đó công suất động bị giảm đi một ít. Mặt khác, so với động 4 kì, thời gian dành cho quá trình nén rất ngắn (sau khi đóng cửa nạp cửa thải) do đó phải phun nhiên liệu thật nhanh với tốc độ phun lớn khiến một bộ phận nhiên liệu bám lên thành cylindre làm tăng mức độ phát sinh HC trong khí xả. Một giải pháp nhiều triển vọng hơn là phun nhiên liệu bằng khí nén trích từ buồng cháy động cơ. Lượng không khí này được nạp vào buồng nén trong kì nạp nén của động được nén mạnh trong giai đoạn cháy giãn nở. . 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong 55 nhiên liệu và thành buồng cháy. Sự bỏ lửa dẫn đến sự gia tăng mạnh nồng độ HC. Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong 54 Hình 4.16: Phân bố độ đậm đặc trong tia phun Diesel Vì vậy nồng độ HC trong

Ngày đăng: 20/12/2013, 19:15

Hình ảnh liên quan

Hình 4.10 trình bày ảnh hưởng của hệ số khí sót xb đến nồng độ CO trong khí xả động cơ Toyota - Tài liệu Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong ppt

Hình 4.10.

trình bày ảnh hưởng của hệ số khí sót xb đến nồng độ CO trong khí xả động cơ Toyota Xem tại trang 1 của tài liệu.
Hình 4.12: Sự hình thành HC do tôi màng lửa - Tài liệu Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong ppt

Hình 4.12.

Sự hình thành HC do tôi màng lửa Xem tại trang 2 của tài liệu.
Hình 4.15 thể hiện những không gian chết quan trọng nhất, đó là thể tích bao gồm giữa piston, segment và thành cylindre - Tài liệu Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong ppt

Hình 4.15.

thể hiện những không gian chết quan trọng nhất, đó là thể tích bao gồm giữa piston, segment và thành cylindre Xem tại trang 5 của tài liệu.

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan