Bài 5: Mô hình Multinomial Logit

19 0 0
  • Loading ...
    Loading ...
    Loading ...

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 08/04/2021, 21:12

 ordinal response (ordered probit model – not covered. in this lecture).[r] (1)MULTINOMIAL LOGIT MODEL (2)Multinomial responses  logit/probit model: dependent variable = 0/1  What if more than categories?  Example: long term effect of the exposure to radiation may be  1 – dead of cancer (3)Multinomial responses  Example: choice of health care providers  1 – public hospital  2 – private hospital/clinic  3 – “lang y”  4 – self-treatment  Other examples:  choice of car (Y = Toyota, Honda, Suzuki, Mazda, KIA…)  choice of specialization at university  choice of occupation (4)Multinomial logistic regression model  Multinomial logit model (MNL) is used to analyze the relationship between categorical variables and other explanatory variables  Notice:  nominal response (MNL)  ordinal response (ordered probit model – not covered (5)The dependent variable  The occurrence of an alternative j for individual i  Probability of occurrence of each alternative 1, 2, 3, , i YJ i1 i2 i3 iJ 1 probability = 2 probability = 3 probability = probability = i p p Y p J p (6)The logit (log-odds ratio)  Logit i1 i1 i2 i1 i3 i1 1 log 2 log 3 log 0 i iJ i iJ i iJ i iJ p Y h p p Y h p p Y h p Y J h       (7)Modelling the logits  i1 i1 1 i2 i1 2 i3 i1 3 1 log 2 log 3 log 0 i i iJ i i iJ i i iJ i iJ p Y h X p p Y h X p p Y h X p Y J h (8)Modeling the probabilities  i1 1 i2 1 i3 1 iJ 1 1 probability = 2 probability = 3 probability = (9)Maximum likelihood estimation  MNL model is estimated by maximizing the log-likelihood function 1 1 log ln N J ij ij i j L y p     0 if j is NOT chosen 1 if j is chosen (10)Data id case choice thunhap gioitinh 1 1 2 12 1 1 2 4 12 1 2 1 3 21 1 3 1 17 0 3 2 17 0 3 3 17 0 … Choice: = Commune health center; = Public hospital; = Private hospital; = Lang y; 5 = Individual health care provider (11)Estimate MNL in Stata  mlogit choice thunhap gioitinh (choice==2 is the base outcome) _cons -2.872579 .1263704 -22.73 0.000 -3.12026 -2.624898 gioitinh 0954035 .1621446 0.59 0.556 -.222394 413201 thunhap 1.97e-06 4.44e-07 4.43 0.000 1.10e-06 2.84e-06 _cons -3.795684 .3483009 -10.90 0.000 -4.478342 -3.113027 gioitinh 1885005 .3481328 0.54 0.588 -.4938273 .8708283 thunhap -8.18e-06 4.17e-06 -1.96 0.050 -.0000164 -1.22e-08 _cons -1.763979 .0821101 -21.48 0.000 -1.924912 -1.603046 gioitinh 2087203 .0979244 2.13 0.033 016792 .4006485 thunhap 1.81e-06 4.19e-07 4.32 0.000 9.90e-07 2.63e-06 _cons -1.180521 .1060245 -11.13 0.000 -1.388325 -.9727166 gioitinh 1822304 .1061043 1.72 0.086 -.0257303 .3901911 thunhap -9.39e-06 1.29e-06 -7.29 0.000 -.0000119 -6.86e-06 (12)Explain the estimation results  Suppose there are persons of same sex, A’s income is mil VND higher than that of B, so  A:  B: i1 1 1 1 1 log i i i iJ p X thunhap gioitinh p        1 1 1 1 log A A A AJ p thunhap gioitinh p      1 1 1 1 log B A 1 B BJ p (13)Explain the estimation results  the estimated coefficient indicates the responses of log-odds ratio for a unit change in explanatory variable 1 1 1 1 1 log log log B B A BJ A BJ AJ AJ p p p p p p p p (14)Hypothesis testing  Test the null hypothesis 1 2 1 H0:      j   J  0 Prob > chi2 = 0.0000 chi2( 4) = 82.49 ( 4) [5]thunhap = 0 (15)Hypothesis testing  Kiểm định giả thuyết 1 H0:   0 Prob > chi2 = 0.0000 chi2( 1) = 53.17 ( 1) [1]thunhap = 0 (16)Kiểm định  Test the null hypothesis: all coefs in [1] = Prob > chi2 = 0.0000 chi2( 2) = 56.38 ( 2) [1]gioitinh = 0 ( 1) [1]thunhap = 0 test [1] Prob > chi2 = 0.0000 chi2( 2) = 56.38 ( 2) [1]gioitinh = 0 ( 1) [1]thunhap = 0 (17)Marginal effect  What happens to the probability of choosing [1] if income increase by mil VND? (*) dy/dx is for discrete change of dummy variable from to 1 gioitinh* .0132477 00985 1.34 0.179 -.006067 032563 .527194 thunhap -.0009239 .0001 -8.99 0.000 -.001125 -.000723 82.9054 variable dy/dx Std Err z P>|z| [ 95% C.I ] X = 10632185 y = Pr(choice==1) (predict, p outcome(1)) Marginal effects after mlogit (18)Marginal effect  For a female with income 500 mil VND/year, the probability of choosing [1] if income increase by mil VND? (*) dy/dx is for discrete change of dummy variable from to 1 gioitinh* .0002118 00023 0.91 0.364 -.000246 000669 1 thunhap -.0000202 00001 -2.23 0.026 -.000038 -2.4e-06 500 variable dy/dx Std Err z P>|z| [ 95% C.I ] X = 00199241 y = Pr(choice==1) (predict, p outcome(1)) Marginal effects after mlogit (19)Prediction  Predict the probability of choosing private hospitals/clinic bvtu 3475 .1502158 .0348196 .1121532 .6523073 Variable Obs Mean Std Dev Min Max sum bvtu
- Xem thêm -

Xem thêm: Bài 5: Mô hình Multinomial Logit, Bài 5: Mô hình Multinomial Logit