Bài tập nâng cao chương 2 - Hình học 9 - Đường tròn

4 8 0
  • Loading ...
    Loading ...
    Loading ...

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 24/02/2021, 06:12

Bài 1 : Cho hai đường tròn (O) và (O’). Chứng minh rằng ba điểm O, I, O’ thẳng hàng. Từ M thuộc cung nhỏ AB vẽ tiếp tuyến thứ ba, nó cắt Ox tại E, cắt Oy tại F. Chứng tỏ rằng chu vi đó[r] (1)BÀI TẬP NÂNG CAO CHƯƠNG – HÌNH HỌC 1 Đường trịn xác định đường trịn Bài 1: Cho hình thang cân ABCD (AD // BC); BC CD 1AD a    a) Chứng minh A, B, C, D nằm đường tròn Hãy xác định tâm O bán kính đường tròn b) Chứng minh AC  OB Bài 2 Cho ABC nội tiếp đường tròn (O) Gọi H trực tâm tam giác, N, P, Q trung điểm AH, AB, AC Chứng minh OPNQ hình bình hành Bài 3: Cho ABC, góc nhọn Vẽ đường trịn đường kính AB, vẽ đường trịn tâm O đường kính AC Đường thẳng OS cắt đường tròn (S) D E, cắt đường tròn (O) H K (các điểm xếp đặt theo thứ tự D, H, E, K) a) Chứng minh BD, BE đường phân giác góc ABC; CK, CH đường phân giác góc ACB b) Chứng minh BDAE, AHCK hình chữ nhật Bài 4: Cho đường trịn (O) dường kính AB Vẽ bán kính OC vng góc với AB O Lấy điểm M cung AC Hạ MH  OA Trên bán kính OM lấy điểm P cho OP = MH a) Tìm quĩ tích điểm P M chạy cung AC b) Tìm quĩ tích điểm P lấy bán kính OM cho OP khoảng cách từ M đến AB M chạy khắp đường trịn (O) 2 Tính chất đối xứng đường tròn Bài 1: Cho hai đường tròn (O ; R) (O’; R) hai dây AB, CD theo thứ tự thuộc hai đường tròn cho B C nằm A D AB < 2R a) Chứng minh AD // OO’ b) Chứng minh AC = OO’ = BD c) Gọi I trung điểm AD, chứng tỏ điểm I nằm đường cố định dây AB, CD thay đổi vị trí cho AB, CD ln B, C nằm A, D Bài 7: Cho góc xOy60 Lấy điểm I cố định tia phân giác Ot góc xOy làm tâm vẽ đường trịn cho cắt Ox A, Oy B (A B không đối xứng qua Ot) Hạ ID  Ox, IE  Oy a) Chứng minh DA = EB b) Gọi T tâm đường tròn qua A, I, B Chứng minh TAI, TBI tam giác Xác định vị trí T cách nhanh (2)c) Tìm quĩ tích điểm T đường trịn tâm I có độ lớn bán kính thay đổi (nhưng cắt Ox, Oy) d) Tìm quĩ tích điểm H, trực tâm AIB (theo điều kiện câu c) Bài 8: Cho tam giác vuông cân ABC (AB = AC) đường cao AH Trên đoạn thẳng HC lấy điểm K dựng hình chữ nhật AHKO Lấy O làm tâm, vẽ đường trịn bán kính OK, đường trịn cắt cạnh AB D, cắt cạnh AC E Gọi F giao điểm thứ hai đường tròn (O) với đường thẳng AB Chứng minh: a) AEF tam giác cân b) DO  OE c) D, A, O, E nằm đường tròn 3 Vị trí tương đối đường thẳng đường trịn – Tính chất tiếp tuyến - Tính chất hai tiếp tuyến cắt Bài 1: Cho hai đường tròn (O) (O’) Một tiếp tuyến chung MM’, tiếp tuyến chung NN’ (M, N nằm (O) ; M’, N’ nằm (O’)) Các đường thẳng MM’ , NN’ cắt tiếp điểm P dây MN, M’N’ cắt PO, PO’ tương ứng điểm Q, Q’ a) Chứng minh tam giác MPO, M’O’P đồng dạng, suy M 'O ' MP M ' P MO b) Chứng minh O 'Q ' PQ Q ' P QO c) Kéo dài MQ, M’Q’ cắt điểm I Chứng minh ba điểm O, I, O’ thẳng hàng Bài 9: Cho góc xOy60 Một đường trịn tâm I bán kính R = cm, tiếp xúc với Ox tại A, tiếp xúc với Oy B Từ M thuộc cung nhỏ AB vẽ tiếp tuyến thứ ba, cắt Ox E, cắt Oy F a) Tính chu vi OEF Chứng tỏ chu vi có giá trị khơng đổi M chạy cung nhỏ AB b) Chứng minh EIF có số đo không đổi M chạy cung nhỏ AB Bài 10: Cho đường tròn tâm O đường kính AB = 2R dây AC tạo với AB góc 300 Tiếp tuyến đường trịn C cắt đường thẳng AB D Chứng minh rằng: a) OAC ~ CAD b) DB.DA = DC2 = 3R2 Bài 11: Cho ABC vuông A, đường cao AH Đường trịn tâm I đường kính BH cắt AB E, đường trịn tâm J đường kính HC cắt AC F Chứng minh rằng: a) AH tiếp tuyến chung hai đường tròn (I) (J) H b) EF tiếp tuyến (I) E, tiếp tuyến (J) F Bài 12: Cho ABC cân A Đường cao AH BK cắt I Chứng minh: (3)a) Đường trịn đường kính AI qua K b) HK tiếp tuyến đường tròn đường kính AI Bài 13: Cho nửa đường trịn tâm O đường kính AB Lấy điểm D bán kính OB Gọi H trung điểm AD Đường vng góc H với AB cắt nửa đường trịn C Đường trịn tâm I đường kính DB cắt CB E a) Tứ giác ACED hình ? b) Chứng minh HCE cân H c) Chứng minh HE tiếp tuyến đường tròn tâm I Bài 14: Cho nửa đường tròn đường kính AB Từ A B vẽ hai tiếp tuyến Ax, By với nửa đường tròn Lấy M điểm tùy ý nửa đường tròn, vẽ đường tiếp tuyến, cắt Ax C, cắt By D Gọi A’ giao điểm BM với Ax, B’ giao điểm BM với By Chứng minh rằng: a) A’AB ~ ABB’ , suy AA’.BB’ = AB2 b) CA = CA’ ; DB = DB’ c) Ba đường thẳng B’A’, DC, AB đồng qui Bài 15: Cho đường tròn tâm O, tiếp tuyến Ax điểm A đường tròn Trên Ax chọn hai điểm B, C tùy ý (C nằm A B) vẽ hai tiếp tuyến BD, CE với đường tròn cho a) Chứng minh: BOCDAE b) Giả sử B, C hai phía điểm A, chứng minh trường hợp BOCDAE=1800 4 Vị trí tương đối hai đường trịn Bài 1: Cho hai đường tròn (O ; cm) (O’ ; cm) cắt điểm phân biệt A B biết OO’ = cm Từ B vẽ đường kính BOC BO’D a) Chứng minh điểm C, A, D thẳng hàng; b) Chứng minh tam giác OBO’ tam giác vng; c) Tính diện tích tam giác OBO’ CBD; d) Tính độ dài đoạn AB, CA, AD Bài 2: Hai đường tròn (O) (O’) tiếp xúc điểm A Đường thẳng OO’ cắt hai đường tròn (O) (O’) B C (khác điểm A) DE tiếp tuyến chung ngồi hai đường trịn, D  (O) ; E  (O’) Gọi M giao điểm hai đường thẳng BD CE Chứng minh rằng: a) 90 DME ; b) MA tiếp tuyến chung hai đường tròn (O) (O’); c) MD.MB = ME.MC Bài 4: Cho đường tròn (O ; R), đường tròn (O1 ; r1) tiếp xúc với (O ; R) đường tròn (O2 ; r2) vừa tiếp xúc với (O ; R) vừa tiếp xúc với (O1 ; r1) a) Tính chu vi tam giác OO1O2 theo R b) Dựng hai đường tròn (O1 ; r1) (O2 ; r2) biết R = cm ; r1 = cm (4)Bài 5: Cho đường tròn (O ; R), đường thẳng d điểm A nằm d Dựng đường tròn tiếp xúc với (O ; R) đồng thời tiếp xúc với d A Bài 9: Cho hình bình hành ABCD (AB > AD) Lấy A làm tâm vẽ đường trịn bán kính AD, cắt AB E Lấy B làm tâm vẽ đường tròn bán kính BE, cắt tiếp đường thẳng DE F a) Chứng minh hai đường tròn (A ; AD) (B ; BE) tiếp xúc b) Chứng minh F, B, C thẳng hàng Bài 11: Cho hai đường trịn (O) (O’) bán kính 3R R tiếp xúc A Đường thẳng d1 qua A cắt (O) B, cắt (O’) B’ Đường thẳng d2 vng góc với d1 A cắt (O) C, cắt (O’) C’ a) Chứng minh BC’, CB’ OO’ đồng qui điểm M cố định b) Chứng minh tiếp tuyến chung PP’ TT’ cắt M c) Gọi I chân đường vuông góc hạ từ A xuống BC’ Tìm quĩ tích điểm I d1 d2 thay đổi vị trí (vẫn qua A vng góc với nhau) Bài 12: Cho hai đường tròn (O) (O’) tiếp xúc A Góc vng xAy quay xung quanh điểm A, Ax cắt (O) B, Ay cắt (O’) C a) Chứng minh OB // O’C b) Gọi C’ điểm đối xứng C qua O’ Chứng minh B, A, C’ thẳng hàng c) Qua O vẽ d  AB, cắt BC M Tìm quĩ tích điểm M dây AB, AC thay đổi vị trí vng góc với
- Xem thêm -

Xem thêm: Bài tập nâng cao chương 2 - Hình học 9 - Đường tròn, Bài tập nâng cao chương 2 - Hình học 9 - Đường tròn