Baitap Vat Li Dien Tu

48 3 0
  • Loading ...

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 15/10/2020, 20:36

Bài tập vật lý điện tử Đỗ Đức Thọ Bài tập chương I Bài 1: Dữ kiện: U0 = 900V l1 = 2cm l1 + l = 20cm 2 d1 = 0,5cm S =? Giải: −2 D l1  l1 0, 2.2.10  −4 m S= = = 4,5.10  + l2  = −3 U K U0 d  V  900.2.5.10 Bài tập chương I Bài 2: Dữ kiện: U0 = 900V U0 l2 K l1 = R = 5cm l1 M l1 + l2 = 35cm 2R B⊗ W = × 200 = 400; µ0 = 1, 26.10−6 Tm/A e = 1,6.10−19 C; m = 9.10−31 kg D i WR2 H= ; B = µ0 H 2 32 (R + z ) S =? R W µ0 l D e 1  l1  + l2  Giải: S = = 2 32 i 2mU0   2( R + z ) −4 −6 1,6.10−19 6, 25.10 4.10 1.26.10 m −2 −2 S= 5.10 35.10 = 0,618 −31 −4 −4 2.9,1.10 900 A ( 6, 25.10 + 6, 25.10 ) Bài tập chương I Bài 3: Dữ kiện: R = 3cm U1 = 300V U2 = 500V θ1 A θ1 θ z C R ϕ O B f =? Giải: giả sử chùm điện tử chuyển động song song với trục hệ hai lưới cách trục khoảng z > Nd : σ p = enµp = 7, cm.Ω Bài tập chương IV Bài 7: Giải: a Mức Fermi thứ loại n: Nd 1.1015 E f = Ec + kT ln = Ec + 0,026ln = Ec − 0, 266eV 19 1.10 Nc b Mức Fermi thứ hai loại p, Na = 1.1017 cm:−3 Na 1.1017 E f = Ev − kT ln = Ev − 0,026ln = Ec + 0,119eV 19 1.10 Nv c ∆Φ = Φ2 − Φ1 = − ( Ev + 0,119 ) − [ − ( Ec − 0, 226 )] = 0,735eV d Khi hai mẫu tiếp xúc với nhau, mức Fermi ⇒ eU K = ∆Φ = 0,735eV Bài tập chương V Bài 1: Giải: Ta có: sin θ1 n1 = = n1 ⇒ sin θ1 = n1 sin θ2 sin θ2 n0 Điều kiện phản xạ toàn phần mặt biên lõi-vỏ sợi quang: sin ϕc n2 n2 = ⇒ sin ϕc = sin 90 n1 n1 sin θ1 = n1 sin θ2 = n1 sin ( 900 − ϕc ) = n1 cos ϕc 12  n  2 12 sin θ1 = n1 (1 − sin ϕc ) = n1 1 −  = ( n1 − n2 ) Do: n2 = n1 − n1∆  n  sin θ1 = n1 2 (1 − sin2 ϕc ) = ( n12 − n12 + 2n12 − ∆2 n12 ) ≃ n1 ( 2∆ ) 12 12 Bài tập chương V Bài 2: Giải: Một mạch dẫn truyền sợi quang phải thỏa mãn hai điều kiện sau: n2 Điều kiện phản xạ toàn phần: sin ϕm ≥ = 0,99 n1 λ Điều kiện mặt biên: d sin θc ≥ m ; m = 0,1, 2,3 ,( N − 1) Mode dẫn truyền bậc cao (N-1) ứng với góc phản xạ gần góc tới hạn θ = θc ;ϕ = ϕc λ Ta có: d sin θc ≥ N ; N- số mode sin θc n0 12 2 12 sin θi ,max = n1 (1 − sin ϕc ) = ( n1 − n2 ) ≃ n1 ( 2∆ ) ; = = sin θmax n1 n1 2 12 sin θmax ( n1 − n2 ) sin θc = = ≃ 2∆ n1 n1 12 Bài tập chương V Do λ = λ n ta có: N ≤ 2d λ0 n1 sin θc = 2d λ0 n1 ( 2∆ ) = Trường hợp N =1 (đơn mode): N = = Điều kiện đơn mode: 2d λ0 (n ) −n 12 12 2d λ0 n1 sin θc = ≤1 Bước sóng cắt: λc = 2d ( n12 − n22 ) 12  π  2 12 2d ( n1 − n2 ) Trong sợi hình trụ ta có: λc =    2,045  2d λ0 n ( n 1 −n n1 ) 12 Bài tập chương IV Bài 4: Giải: a Bước sóng ngưỡng: λth = hc = 1, 24 = 0,8267µm ∆Eg 1,5 b Khi cường độ ánh sáng mạnh nồng độ điện tử lỗ trống dư tăng cao Điện tử nhanh chóng sau phát sinh chiếm trạng thái thấp gần cực tiểu, lỗ trống chiếm trạng thái cao gần cực đại ⇒ điều kiện để điện tử từ vùng hóa trị chuyển lên vùng dẫn hν = ∆Eg + ∆En + ∆Ep ánh sáng với bước sóng ngưỡng không bị hấp thụ c Giả sử điện tử dư chiếm hết trạng thái thấp gần cực tiểu tuân theo nguyên lý loại trừ Pauli lượng cao bị chiếm E*fn E *  2m  E − Ec dE = n 2π    h  E * fn ∫ c Bài tập chương IV E*fn 3 E*fn − Ec 8π  2m*   2m*  2 2π   E − Ec dE = n =   E  h   h  E ∫ c 3 8π  2m  * n =   ( E fn − Ec )  h  * 2 3 h     ∆En = n    *   8π   2m  ∆En = ∆En = 3,6475.10−2 eV hc 1, 24 λth = = = 0,788µm −2 ∆Eg 1,5 + 2.3,6475.10 Bài tập chương V Bài 5: Dữ kiện: d = 0, 25µm; hν = 3eV; P = 10mW;α = 4.104 cm−1 ; ∆Eg = 1,12eV Giải: lượng ánh sáng bị hấp thụ mẫu 1s là: ∆Φ = Φ0 (1 − e−α d ) = 10−2 1 − exp ( −4.104.0, 25.104 )  = 6,3.10−3 W Phần lượng mà photon truyền cho mạng tinh thể 1s là: hν − ∆Eg − 1,12 = = 62% hν Năng lượng nhiệt truyền cho mạng tinh thể 1s là: 6,3.10−3.62% = 3,9.10−3 W Năng lượng tái hợp xạ 1s là: 6,3.10−3 − 3,9.10−3 =2,4.10−3 W 2, 4.10−3 16 photon = 1,3.10 Số photon tái hợp xạ 1s là: −19 s 1,12.1,6.10 Bài tập chương V Bài 6: Dữ kiện: λ = 0,6µm; P = 15mW; α = 5.104 cm−1 ; ∆Eg = 1, 42eV Giải: lượng ánh thoát ngồi mặt sau tính sau: Φ ∆Φ = Φ0 (1 − R ) e−α d =   −α d Φ0 Φ0 −α d −α d R= Φ1 = Φ0 1 −  e = Φ e = ⇒ e =1 3  3 3 d = 13,86µm 1, 24 = 2,067eV Năng lượng photon ứng với bước sóng λ = 0,6µm: 0,6 Phần trăm lượng nhiệt truyền cho mạng tinh thể: 2,067 − 1, 42 = 31,18% 2,067 Năng lượng nhiệt truyền cho mạng tinh thể 1s: 15 ⋅ 31,18% = 1,559mW Bài tập chương V Bài 7: Giải: σ= U I J =σE = = L WD = enst ( µn + µ p ) I L U W D 2,83.10−3.6.10−3 13 −3 = 1.10 cm a nst = 10.2.10−3.1.10−3.1,6.10−19.5,3.103.10−4 b Sự thay đổi dòng điện sau ngắt chiếu sáng: −t I = I0 e τ dI A ⇒ = − ⋅ I0 = 23,6 ; I0 = 2,83.10−3 A dt t =0 τ s 2,83.10−3 τ= = 0,12.10−3 s 23,6 − t c n ( t ) = n0 e τ0 − = 1.1013.e 10−3 0,12.10−3 = 2, 4.109 cm−3
- Xem thêm -

Xem thêm: Baitap Vat Li Dien Tu, Baitap Vat Li Dien Tu