Mass transfer operations for the practic

630 25 0
Mass transfer operations for the practic

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

tài liệu tiếng Anh hóa kỹ thuật. Kỹ thuật hóa học là một nhánh của khoa học ứng dụng khoa học cơ bản (vật lý và hóa học) và khoa học sự sống (vi sinh vật học và hóa sinh) cùng với toán học ứng dụng và kinh tế để tạo ra, chuyển hóa, vận chuyển, và sử dụng hóa chất, vật liệu và năng lượng đúng cách. Về cơ bản, các kỹ sư hóa học thiết kế các quy trình quy mô lớn để chuyến đổi các hóa chất, vật liệu thô, các tế bào sống, vi sinh vật và năng lượng thành các dạng và sản phẩm hữu ích. Kỹ thuật hóa học là một lĩnh vực khoa học và công nghệ nghiên cứu và ứng dụng những kiến thức hóa học và kỹ thuật vào quá trình sản xuất các sản phẩm hóa học phục vụ công nghiệp và đời sống.

Mass Transfer Operations for the Practicing Engineer Mass Transfer Operations for the Practicing Engineer Louis Theodore Francesco Ricci Copyright # 2010 by John Wiley & Sons, Inc All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com Requests to the publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose No warranty may be created or extended by sales representatives or written sales materials The advice and strategies contained herein may not be suitable for your situation You should consult with a professional where appropriate Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002 Wiley also publishes its books in a variety of electronic formats Some content that appears in print may not be available in electronic formats For more information about Wiley products, visit our web site at www.wiley.com Library of Congress Cataloging-in-Publication Data: Theodore, Louis Mass transfer operations for the practicing engineer / Louis Theodore, Francesco Ricci p cm Includes Index ISBN 978-0-470-57758-5 (hardback) Engineering mathematics Mass transfer I Ricci, Francesco II Title TA331.T476 2010 530.40 7501512—dc22 2010013924 Printed in the United States of America 10 To Ann Cadigan and Meg Norris: for putting up with me (LT) and To my mother Laura, my father Joseph, and my brother Joseph Jr: for reasons which need not be spoken (FR) Contents Preface xv Part One Introduction History of Chemical Engineering and Mass Transfer Operations References Transport Phenomena vs Unit Operations Approach References 10 Basic Calculations 11 Introduction 11 Units and Dimensions 11 Conversion of Units 15 The Gravitational Constant gc 17 Significant Figures and Scientific Notation References 18 Process Variables Introduction 19 Temperature 20 Pressure 22 Moles and Molecular Weight Mass, Volume, and Density Viscosity 25 Reynolds Number 28 pH 29 Vapor Pressure 31 Ideal Gas Law 31 References 35 17 19 23 25 vii viii Contents Equilibrium vs Rate Considerations Introduction 37 Equilibrium 37 Rate 38 Chemical Reactions References 40 37 39 Phase Equilibrium Principles 41 Introduction 41 Gibb’s Phase Rule 44 Raoult’s Law 45 Henry’s Law 53 Raoult’s Law vs Henry’s Law 59 Vapor – Liquid Equilibrium in Nonideal Solutions Vapor – Solid Equilibrium 64 Liquid – Solid Equilibrium 68 References 69 61 Rate Principles 71 Introduction 71 The Operating Line Fick’s Law 73 Diffusion in Gases Diffusion in Liquids 72 75 79 Mass Transfer Coefficients 80 Individual Mass Transfer Coefficients 81 Equimolar Counterdiffusion 83 Diffusion of Component A Through Non-diffusing Component B Overall Mass Transfer Coefficients 87 Equimolar Counterdiffusion and/or Diffusion in Dilute Solutions Gas Phase Resistance Controlling 89 Liquid Phase Resistance Controlling 89 Experimental Mass Transfer Coefficients 90 References 84 88 93 Part Two Applications: Component and Phase Separation Processes Introduction to Mass Transfer Operations Introduction 97 97 Contents Classification of Mass Transfer Operations Contact of Immiscible Phases 98 Miscible Phases Separated by a Membrane Direct Contact of Miscible Phases 102 Mass Transfer Equipment ix 97 101 102 Distillation 103 Absorption 104 Adsorption 104 Extraction 104 Humidification and Drying 105 Other Mass Transfer Unit Operations The Selection Decision 106 105 Characteristics of Mass Transfer Operations 107 Unsteady-State vs Steady-State Operation 108 Flow Pattern 109 Stagewise vs Continuous Operation 116 References 117 Distillation 119 Introduction 119 Flash Distillation 120 Batch Distillation 127 Continuous Distillation with Reflux 133 Equipment and Operation 133 Equilibrium Considerations 140 Binary Distillation Design: McCabe–Thiele Graphical Method 142 Multicomponent Distillation: Fenske –Underwood–Gilliland (FUG) Method 161 Packed Column Distillation 184 References 185 10 Absorption and Stripping Introduction 187 Description of Equipment Packed Columns Plate Columns 187 189 189 196 Design and Performance Equations—Packed Columns Liquid Rate 200 Column Diameter 207 Column Height 210 Pressure Drop 224 200 x Contents Design and Performance Equations—Plate Columns Stripping 235 Packed vs Plate Tower Comparison 241 Summary of Key Equations 242 References 243 11 Adsorption 227 245 Introduction 245 Adsorption Classification Activated Carbon Activated Alumina Silica Gel 249 Molecular Sieves 247 248 248 249 Adsorption Equilibria Freundlich Equation Langmuir Isotherms 250 253 253 Description of Equipment 257 Design and Performance Equations Regeneration 283 References 291 264 12 Liquid – Liquid and Solid – Liquid Extraction Introduction 293 Liquid – Liquid Extraction 293 294 The Extraction Process 294 Equipment 295 Solvent Selection 298 Equilibrium 300 Graphical Procedures 301 Analytical Procedures 304 Solid – Liquid Extraction (Leaching) Process Variables 313 Equipment and Operation 315 Design and Predictive Equations References 312 317 325 13 Humidification and Drying Introduction 327 Psychrometry and the Psychrometric Chart Humidification 339 327 327 Contents Equipment 341 Describing Equations Drying xi 343 347 Rotary Dryers Spray Dryers References 352 361 369 14 Crystallization 371 Introduction 371 Phase Diagrams 373 The Crystallization Process 379 Crystal Physical Characteristics 382 Equipment 391 Describing Equations 393 Design Considerations 397 References 404 15 Membrane Separation Processes 407 Introduction 407 Reverse Osmosis 408 Describing Equations Ultrafiltration 420 Describing Equations Microfiltration 421 427 Describing Equations Gas Permeation 428 432 Describing Equations References 414 433 437 16 Phase Separation Equipment 439 Introduction 439 Fluid – Particle Dynamics 442 Gas– Solid (G – S) Equipment 446 Gravity Settlers 447 Cyclones 449 Electrostatic Precipitators Venturi Scrubbers 457 Baghouses 461 454 xii Contents Gas– Liquid (G– L) Equipment Liquid – Solid (L – S) Equipment 465 467 Sedimentation 467 Centrifugation 471 Flotation 472 Liquid – Liquid (L – L) Equipment 475 Solid – Solid (S – S) Equipment 477 High-Gradient Magnetic Separation Solidification 477 References Part Three 477 479 Other Topics 17 Other and Novel Separation Processes 483 Freeze Crystallization 484 Ion Exchange 484 Liquid Ion Exchange 484 Resin Adsorption 485 Evaporation 485 Foam Fractionation 486 Dissociation Extraction 486 Electrophoresis 486 Vibrating Screens 487 References 488 18 Economics and Finance Introduction 489 The Need for Economic Analyses Definitions 491 489 489 Simple Interest 491 Compound Interest 491 Present Worth 492 Evaluation of Sums of Money 492 Depreciation 493 Fabricated Equipment Cost Index 493 Capital Recovery Factor 493 Present Net Worth 494 Perpetual Life 494 Break-Even Point 495 Approximate Rate of Return 495 616 Saturated Steamà Absolute pressure, lbf/in2, P 0.08854 0.09995 0.12170 0.14752 0.17811 0.2563 0.3631 0.5069 0.6982 0.9492 1.2748 1.6924 2.2225 2.8886 3.718 4.741 5.992 7.510 9.339 11.526 Table C.1 Temperature, 8F, T 32 35 40 45 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0.01602 0.01602 0.01602 0.01602 0.01603 0.01604 0.01606 0.01608 0.01610 0.01613 0.01617 0.01620 0.01625 0.01629 0.01634 0.01639 0.01645 0.01651 0.01657 0.01663 Saturated liquid, vl 3306 2947 2444 2036.4 1703.2 1206.6 867.8 633.1 468.0 350.3 265.3 203.25 157.32 122.99 97.06 77.27 62.04 50.21 40.94 33.62 Evaporation difference 3306 2947 2444 2036.4 1703.2 1206.7 867.9 633.1 468.0 350.4 265.4 203.27 157.34 123.01 97.07 77.29 62.06 50.23 40.96 33.64 Saturated vapor, vg Specific volume, ft3/lb 0.00 3.02 8.05 13.06 18.07 28.06 38.04 48.02 57.99 67.97 77.94 87.92 97.90 107.89 117.89 127.89 137.90 147.92 157.95 167.99 Saturated liquid, hl 1075.8 1074.1 1071.3 1068.4 1065.6 1059.9 1054.3 1048.6 1042.9 1037.2 1031.6 1025.8 1020.0 1014.1 1008.2 1002.3 996.3 990.2 984.1 977.9 Evaporation difference Enthalpy, Btu/lb 1075.8 1077.1 1079.3 1081.5 1083.7 1088.0 1092.3 1096.6 1100.9 1105.2 1109.5 1113.7 1117.9 1122.0 1126.1 1130.2 1134.2 1138.1 1142.0 1145.9 Saturated vapor, hg 0.0000 0.0061 0.0162 0.0262 0.0361 0.0555 0.0745 0.0932 0.1115 0.1295 0.1471 0.1645 0.1816 0.1984 0.2149 0.2311 0.2472 0.2630 0.2785 0.2938 Saturated liquid, sl 2.1877 2.1709 2.1435 2.1167 2.0903 2.0393 1.9902 1.9428 1.8972 1.8531 1.8106 1.7694 1.7296 1.6910 1.6537 1.6174 1.5822 1.5480 1.5147 1.4824 2.1877 2.1770 2.1597 2.1429 2.1264 2.0948 2.0647 2.0360 2.0087 1.9826 1.9577 1.9339 1.9112 1.8894 1.8685 1.8485 1.8293 1.8109 1.7932 1.7762 Saturated vapor, sg (Continued) Evaporation difference Entropy, Btu/lb 8R 617 210 212 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 TABLE C.1 14.123 14.696 17.186 20.780 24.969 29.825 35.429 41.858 49.203 57.556 67.013 77.68 89.66 103.06 118.01 134.63 153.04 173.37 195.77 220.37 247.31 276.75 308.83 343.72 381.59 422.6 Saturated Steamà 0.01670 0.01672 0.01677 0.01684 0.01692 0.01700 0.01709 0.01717 0.01726 0.01735 0.01745 0.01755 0.01765 0.01776 0.01787 0.01799 0.01811 0.01823 0.01836 0.01850 0.01864 0.01878 0.01894 0.01910 0.01926 0.0194 27.80 26.78 23.13 19.365 16.306 13.804 11.746 10.044 8.628 7.444 6.449 5.609 4.896 4.289 3.770 3.324 2.939 2.606 2.317 2.0651 1.8447 1.6512 1.4811 1.3308 1.1979 1.0799 27.82 26.80 23.15 19.382 16.323 13.821 11.763 10.061 8.645 7.461 6.466 5.626 4.914 4.307 3.788 3.342 2.957 2.625 2.335 2.0836 1.8633 1.6700 1.5000 1.3499 1.2171 1.0993 178.05 180.07 188.13 198.23 208.34 218.48 228.64 238.84 249.06 259.31 269.59 279.92 290.28 300.68 311.13 321.63 332.18 342.79 353.45 364.17 374.97 385.83 396.77 407.79 418.90 430.1 971.6 970.3 965.2 958.8 952.2 945.5 938.7 931.8 924.7 917.5 910.1 902.6 894.9 887.0 879.0 870.7 862.2 853.5 844.6 835.4 826.0 816.3 806.3 796.0 785.4 774.5 1149.7 1150.4 1153.4 1157.0 1160.5 1164.0 1167.3 1170.6 1173.8 1176.8 1179.7 1182.5 1185.2 1187.7 1190.1 1192.3 1194.4 1196.3 1198.1 1199.6 1201.0 1202.1 1203.1 1203.8 1204.3 1204.6 0.3090 0.3120 0.3239 0.3387 0.3531 0.3675 0.3817 0.3958 0.4096 0.4234 0.4369 0.4504 0.4637 0.4769 0.4900 0.5029 0.5158 0.5286 0.5413 0.5539 0.5664 0.5788 0.5912 0.6035 0.6158 0.6280 1.4508 1.4446 1.4201 1.3901 1.3609 1.3323 1.3043 1.2769 1.2501 1.2238 1.1980 1.1727 1.1478 1.1233 1.0992 1.0754 1.0519 1.0287 1.0059 0.9832 0.9608 0.9386 0.9166 0.8947 0.8730 0.8513 (Continued) 1.7598 1.7566 1.7440 1.7288 1.7140 1.6998 1.6860 1.6727 1.6597 1.6472 1.6350 1.6231 1.6115 1.6002 1.5891 1.5783 1.5677 1.5573 1.5471 1.5371 1.5272 1.5174 1.5078 1.4982 1.4887 1.4793 618 Temperature, 8F, T 0.0196 0.0198 0.0200 0.0202 0.0204 0.0209 0.0215 0.0221 0.0228 0.0236 0.0247 0.0260 0.0278 0.0305 0.0369 Saturated liquid, vl 0.9748 0.8811 0.7972 0.7221 0.6545 0.5385 0.4434 0.3647 0.2989 0.2432 0.1955 0.1538 0.1165 0.0810 0.0392 Evaporation difference 0.9944 0.9009 0.8172 0.7423 0.6749 0.5594 0.4649 0.3868 0.3217 0.2668 0.2201 0.1798 0.1442 0.1115 0.0761 Saturated vapor, vg Specific volume, ft3/lb 441.4 452.8 464.4 476.0 487.8 511.9 536.6 562.2 588.9 617.0 646.7 678.6 714.2 757.3 823.3 Saturated liquid, hl 763.2 751.5 739.4 726.8 713.9 686.4 656.6 624.2 588.4 548.5 503.6 452.0 390.2 309.9 172.1 Evaporation difference Enthalpy, Btu/lb 1204.6 1204.3 1203.7 1202.8 1201.7 1198.2 1193.2 1186.4 1177.3 1165.5 1150.3 1130.5 1104.4 1067.2 995.4 Saturated vapor, hg 0.6402 0.6523 0.6645 0.6766 0.6887 0.7130 0.7374 0.7621 0.7872 0.8131 0.8398 0.8679 0.8987 0.9351 0.9905 Saturated liquid, sl 0.8298 0.8083 0.7868 0.7653 0.7438 0.7006 0.6568 0.6121 0.5659 0.5176 0.4664 0.4110 0.3485 0.2719 0.1484 Evaporation difference 1.4700 1.4606 1.4513 1.4419 1.4325 1.4136 1.3942 1.3742 1.3532 1.3307 1.3062 1.2789 1.2472 1.2071 1.1389 Saturated vapor, sg Entropy, Btu/lb 8R A bridged from Thermodynamic Properties of Steam, by Joseph H Keenan and Frederick G Keyes Copyright 1936, by Joseph H Keenan and Frederick G Keyes, Published by John Wiley & Sons, Inc., Hoboken, NJ à 466.9 514.7 566.1 621.4 680.8 812.4 962.5 1133.1 1325.8 1542.9 1786.6 2059.7 2365.4 2708.1 3093.7 Absolute pressure, lbf/in2, P 460 470 480 490 500 520 540 560 580 600 620 640 660 680 700 Saturated Steamà TABLE C.1 619 40 (267.25) 20 (227.96) 14.696 (212.00) 10 (193.21) (162.24) (101.74) v h s v h s v h s v h s v h s v h s v Absolute pressure, lbf/ in2 (Saturated temperature) 392.6 1150.4 2.0512 78.16 1148.8 1.8718 38.85 1146.6 1.7927 200 404.5 1159.5 2.0647 80.59 1158.1 1.8857 40.09 1156.2 1.8071 27.15 1154.4 1.7624 220 Table C.2 Superheated Steam 452.3 1195.8 2.1153 90.25 1195.0 1.9370 45.00 1193.9 1.8595 30.53 1192.8 1.8160 22.36 1191.6 1.7808 11.040 1186.8 1.6994 7.259 300 482.2 1218.7 2.1444 96.26 1218.1 1.9664 48.03 1217.2 1.8892 32.62 1216.4 1.8460 23.91 1215.6 1.8112 11.843 1211.9 1.7314 7.818 350 512.0 1241.7 2.1720 102.26 1241.2 1.9942 51.04 1240.6 1.9172 34.68 1239.9 1.8743 25.43 1239.2 1.8396 12.628 1236.5 1.7608 8.357 400 541.8 1264.9 2.1983 108.24 1264.5 2.0205 54.05 1264.0 1.9436 36.73 1263.5 1.9008 26.95 1262.9 1.8664 13.401 1260.7 1.7881 8.884 450 571.6 1288.3 2.2233 114.22 1288.0 2.0456 57.05 1287.5 1.9689 38.78 1287.1 1.9261 28.46 1286.6 1.8918 14.168 1284.8 1.8140 9.403 500 550 601.4 1312.0 2.2468 120.19 1311.7 2.0692 60.04 1311.3 1.9924 40.82 1310.9 1.9498 29.97 1310.5 1.9160 14.93 1308.9 1.8384 9.916 Temperature, 8F 631.2 1335.7 2.2702 126.16 1335.4 2.0927 63.03 1335.1 2.0160 42.86 1334.8 1.9734 31.47 1334.4 1.9392 15.688 1333.1 1.8619 10.427 600 690.8 1383.8 2.3137 138.10 1383.6 2.1361 69.01 1383.4 2.0596 46.94 1383.2 2.0170 34.47 1382.9 1.9829 17.198 1381.9 1.9058 11.441 700 750.4 1432.8 2.3542 150.03 1432.7 2.1767 74.98 1432.5 2.1002 51.00 1432.3 2.0576 37.46 1432.1 2.0235 18.702 1431.3 1.9467 12.449 800 869.5 1533.5 2.4283 173.87 1533.4 2.2509 86.92 1533.2 2.1744 59.13 1533.1 2.1319 43.44 1533.0 2.0978 21.70 1532.4 2.0214 14.454 1000 (Continued) 809.9 1482.7 2.3923 161.95 1482.6 2.2148 80.95 1482.4 2.1383 55.07 1482.3 2.0958 40.45 1482.1 2.0618 20.20 1481.4 1.9850 13.452 900 620 180 (373.06) 160 (363.53) 140 (353.02) 120 (341.25) 100 (327.81) 80 (312.03) 60 (292.71) h s v h s v h s v h s v h s v h s v h s v Absolute pressure, lbf/ in2 (Saturated temperature) TABLE C.2 200 220 Superheated Steam 1181.6 1.6492 300 1208.2 1.6830 5.803 1204.3 1.6475 4.592 1200.1 1.6188 3.783 1195.7 1.5944 350 1233.6 1.7135 6.220 1230.7 1.6791 4.937 1227.6 1.6518 4.081 1224.4 1.6287 3.468 1221.1 1.6087 3.008 1217.6 1.5908 2.649 1214.0 1.5745 2.361 400 1258.5 1.7416 6.624 1256.1 1.7078 5.268 1253.7 1.6813 4.363 1251.3 1.6591 3.715 1248.7 1.6399 3.230 1246.1 1.6230 2.852 1243.5 1.6077 2.549 450 1283.0 1.7678 7.020 1281.1 1.7346 5.589 1279.1 1.7085 4.636 1277.2 1.6869 3.954 1275.2 1.6683 3.443 1273.1 1.6519 3.044 1271.0 1.6373 2.726 500 550 1307.4 1.7926 7.410 1305.8 1.7598 5.905 1304.2 1.7339 4.902 1302.5 1.7127 4.186 1300.9 1.6945 3.648 1299.3 1.6785 3.229 1297.6 1.6642 2.895 Temperature, 8F 1331.8 1.8162 7.797 1330.5 1.7836 6.218 1329.1 1.7581 5.165 1327.7 1.7370 4.413 1326.4 1.7190 3.849 1325.0 1.7033 3.411 1323.5 1.6894 3.060 600 1380.9 1.8605 8.562 1379.9 1.8281 6.835 1378.9 1.8029 5.683 1377.8 1.7822 4.861 1376.8 1.7645 4.244 1375.7 1.7491 3.764 1374.7 1.7355 3.380 700 1430.5 1.9015 9.322 1429.7 1.8694 7.446 1428.9 1.8443 6.195 1428.1 1.8237 5.301 1427.3 1.8063 4.631 1426.4 1.7911 4.110 1425.6 1.7776 3.693 800 1531.9 1.9762 10.830 1531.3 1.9442 8.656 1530.8 1.9193 7.207 1530.2 1.8990 6.172 1529.7 1.8817 5.396 1529.1 1.8667 4.792 1528.6 1.8534 4.309 1000 (Continued) 1480.8 1.9400 10.077 1480.1 1.9079 8.052 1479.5 1.8829 6.702 1478.8 1.8625 5.738 1478.2 1.8451 5.015 1477.5 1.8301 4.452 1476.8 1.8167 4.002 900 621 400 (444.59) 350 (431.72) 300 (417.33) 280 (411.05) 260 (404.42) 240 (397.37) 220 (389.86) 200 (381.79) h s v h s v h s v h s v h s v h s v h s v h s TABLE C.2 Superheated Steam 1210.3 1.5594 2.125 1206.5 1.5453 1.9276 1202.5 1.5319 1240.7 1.5937 2.301 1237.9 1.5808 2.094 1234.9 1.5686 1.9183 1232.0 1.5573 1.7674 1228.9 1.5464 1.6364 1225.8 1.5360 1.3734 1217.7 1.5119 1.1744 1208.8 1.4892 1268.9 1.6240 2.465 1266.7 1.6117 2.247 1264.5 1.6003 2.063 1262.3 1.5897 1.9047 1260.0 1.5796 1.7675 1257.6 1.5701 1.4923 1251.5 1.5481 1.2851 1245.1 1.5281 1295.8 1.6513 2.621 1294.1 1.6395 2.393 1292.4 1.6286 2.199 1290.5 1.6184 2.033 1288.7 1.6087 1.8891 1286.8 1.5998 1.6010 1282.1 1.5792 1.3843 1277.2 1.5607 1322.1 1.6767 2.772 1320.7 1.6652 2.533 1319.2 1.6546 2.330 1317.7 1.6447 2.156 1316.2 1.6354 2.005 1314.7 1.6268 1.7036 1310.9 1.6070 1.4770 1306.9 1.5894 1373.6 1.7232 3.066 1372.6 1.7120 2.804 1371.5 1.7017 2.582 1370.4 1.6922 2.392 1369.4 1.6834 2.227 1368.3 1.6751 1.8980 1365.5 1.6563 1.6508 1362.7 1.6398 1424.8 1.7655 3.352 1424.0 1.7545 3.068 1423.2 1.7444 2.827 1422.3 1.7352 2.621 1421.5 1.7265 2.442 1420.6 1.7184 2.084 1418.5 1.7002 1.8161 1416.4 1.6842 1476.2 1.8048 3.634 1475.5 1.7939 3.327 1474.8 1.7839 3.067 1474.2 1.7748 2.845 1473.5 1.7662 2.652 1472.8 1.7582 2.266 1471.1 1.7403 1.9767 1469.4 1.7247 1528.0 1.8415 3.913 1527.5 1.8308 3.584 1526.9 1.8209 3.305 1526.3 1.8118 3.066 1525.8 1.8033 2.859 1525.2 1.7954 2.445 1523.8 1.7777 2.134 1522.4 1.7623 622 Absolute pressure, lbf/in2, P 0.0885 0.0808 0.0505 0.0309 0.0185 0.0108 0.0062 0.0035 Temperature, 8F, T 32 30 20 10 210 220 230 Table C.3 Saturated Steam –Ice 0.01747 0.01747 0.01745 0.01744 0.01742 0.01741 0.01739 0.01738 Saturated ice, vi 3.306 3.609 5.658 9.05 14.77 24.67 42.2 74.1 Saturated steam, vg  1023 Specific volume, ft3/lb Sublimation difference 1219.1 1219.3 1219.9 1220.4 1220.7 1221.0 1221.2 1221.2 Saturated ice, hi 2143.35 2144.35 2149.31 2154.17 2158.93 2163.59 2168.16 2172.63 Enthalpy, Btu/lb 1075.8 1074.9 1070.6 1066.2 1061.8 1057.4 1053.0 1048.6 Saturated steam, hg 20.2916 20.2936 20.3038 20.3141 20.3241 20.3346 20.3448 20.3551 Saturated ice, si 2.4793 2.4897 2.5425 2.5977 2.6546 2.7143 2.7764 2.8411 Sublimation difference Entropy, Btu/lb 8R 2.1877 2.1961 2.2387 2.2836 2.3305 2.3797 2.4316 2.4860 Saturated steam, sg Index Absorption, 187 absorption factor, A, 211, 212 Chen equation (column diameter), 208 Chen equation (number of theoretical trays), 229 Coburn’s equation, 211 column diameter, 207 –210 column height, 210– 212 flooding (flooding velocity), 207 height of a single transfer unit, HOG, 210, 212 key equations for absorption calculation, 242, 243 Kremser– Brown– Sounders equation (number of theoretical trays), 229 loading, 207 minimum liquid –to–gas ratio, 202 number of overall transfer units, NOG, 210 –212 NOG for column with constant absorption factor, 211 overall efficiency of bubble-cap tray absorbers, 230, 231 packing height as function of efficiency & packing size (ceramic), 223 packing height as function of efficiency & packing size (plastic), 222 pressure drop through packed column, 224 theoretical stage, 228 weeping, 228 Absorption equipment, 189 absorption column, 191 packed vs trayed column comparison, 241, 242 packed column absorbers, 189– 192, 200–227 typical packings, 193, 194 “rules of thumb” for design of packed columns, 224 tray column absorbers, 196, 227–235 bubble-cap tray absorbers, 197, 198 sieve tray absorbers, 199, 200 Activity coefficient, 61 NRTL equation, 62 parameters, 64 Wilson equation, 62 parameters, 63 Adsorption, 245 breakthrough point, 266 activated alumina, properties of, 248 activated carbon pressure drop curves (EPA chart), 270 activated carbon, properties of, 248 adsorbate/adsorbent, 245 adsorbent activation, 246 adsorbent capacity, 246 adsorption equilibria, 250 adsorption isotherms of carbon dioxide on activated carbon, 255 breakthrough capacity (BC), 266 breakthrough curve, 265 chemisorption, 246 critical diameter, 246 equilibrium capacity (CAP), 266 Freundlich equation, 253 heat capacities of common adsorbents (ambient conditions), 269 heat of adsorption (chemisorption vs physisorption), 252 HEEL, 266 Langmuir isotherms, 253, 254 Mass Transfer Operations for the Practicing Engineer By Louis Theodore and Francesco Ricci Copyright # 2010 John Wiley & Sons, Inc 623 624 Index Adsorption (Continued ) mass transfer zone (MTZ), 265 molecular sieve pressure drop chart, 270 molecular sieves, properties of, 249 physisorption, 245, 246 regeneration of adsorbent, 251, 266 saturation capacity (SAT), 266 silica gel, properties of, 249 “sorption” 245 vapor/solid equilibrium (Adsorption) isotherms carbon dioxide on molecular sieves, 252 carbon tetrachloride on activated carbon, 65 selected hydrocarbons on activated carbon, 251 working capacity/charge (WC), 266, 267 Adsorption equipment, 257 adsorption cycle vs desorption cycle, 259 classification of adsorption/desorption cycles, 283 contact condensers, 263 continuous rotary bed, 261 overall design procedure, 271 surface condensers, 263 Adsorption isotherm, See also “Adsorption” adsorbent capacity, 65 adsorption equilibrium, 64 BET isotherm, 66 Freundlich isotherm, 65, 66 Langmuir isotherm, 66 Polanyi potential theory, 66, 67 Antoine equation, 47– 49, 166 coefficients, 48 Apparent rejection, 423 Atomic mass units, 23 Atomic weight, 23 Avogadro’s number, 23 Baghouse, 461 collection efficiency of a baghouse, 462 Darcy equation (pressure drop), 463 gas-to-cloth (G/C) ratio, 462 Barometer, 22 Batch operation, 108 Boiling Bubble point calculations bubble point pressure (BPP), 50, 166, 175 bubble point temperature (BPT), 167 Buffer region, 81 Cascade, 116 Celsius scale, 20, 21 Centrifugation, 471 Chemical engineering, history of, Chemical reactions, 39, 40 Conservation law, Continuous-contact operation, 116, 117 Controlling resistance, 89 –90 controlling films for various systems, 90 Convection convective transfer, Conversion factors, See “Units” Cooling towers, 340–343 Critical properties critical temperature, 42 Crystallization, 371 agglomeration, 381, 389 crystal growth, 379, 380 crystal size distribution (CSD), 381, 386, 387 crystallization processes, types of, 372 design considerations, 397, 398 efficiency of crystallization separation, 390, 391 magma, 393 mixed magma underflow, 381 mother liquor, 371, 381 nucleation, 372 occlusion, 393 schematic diagram of generalized crystallization process, 380 seeds, 380 surface area ration (SAR), 389 volume ratio (VR), 389 Crystallization equipment crystallizers, types of, 392, 393 forced circulation crystallizer, 399 Swenson –Walker crystallizer, 392 evaporative crystallizer line diagram, 394 Cunningham correction factor (CCF), 444, 458 Cyclones, 449 critical diameter, 450 Index cut diameter, 450 Lapple calculation procedure, 451 multiclone, 449 Theodore–De Paola Equation, 453 Decanter, 264, 475 horizontal decanter schematic, 476 settling time, 476 Degrees of freedom, 44, 45, 375 Density of air, 25 of water, 25 Dew point, 41 Differential element, Diffusion Fick’s first law, 73, 74 molecular diffusion, 43 Diffusion, steady state molecular in gases, 75 diffusion in multicomponent mixtures, 76 diffusion of A through non-diffusing B, 75, 84, 85 equimolar counterdiffusion, 76, 83, 84 equimolar counterdiffusion and/or diffusion in dilute solutions, 88–90 in liquids, 79 diffusion of A through non-diffusing B, 80 equimolar counterdiffusion, 80 Diffusion, thermal diffusion, 102 Diffusion, turbulent diffusion, 80 Diffusivity, 74, 82 estimation methods for gases, 78 –79 estimation methods for liquids: Wilke–Chang equation, 80 of common gases at, 08C, 78 of water vapor in air at, 258C and, atm, 366 Distillate, 119 Distillation, 119 approach to flooding velocity, 159 batch distillation, 127 –133 boil-up ratio, RB, 135 Chang correlation (substitute for Gilliland correlation), 170, 171, 178 column diameter, 159 –161 column height, 161 625 constant molal overflow, 142 distributed vs undistributed components, 163 entrainment (entrainment flooding point), 140, 159 equilibrium stage, 122 ethanol/water equilibrium diagram (via Wilson equation, 1atm), 124 Fair flooding correlation, 159, 180, 181 feed condition factor, q, 146, 147 feed tray, graphical location of, 149 Fenske equation (minimum theoretical stages), 168, 177 Fenske –Underwood–Gilliland (FUG) shortcut method, 161–173 flash distillation, 120– 127 graphical solution of binary flash, 122 multicomponent flash, 125–127 fractional recovery, 164 Gilliland correlation (number of theoretical stages), 169–170, 178 height equivalent to a theoretical plate (HETP), 184, 185 internal reflux ratio, 143 key components, 162 Kirkbride equation (theoretical feed tray location), 171, 179 McCabe –Thiele graphical method, 142–158 step-by-step procedure, 152–154 overall efficiency, 154, 171–173 O’Connell correlation, 171–173, 179, 180 partial condensation, 121 phase equilibrium constant, K, 121 pinch point, 152 q-line, 148 Rachford –Rice equation, 125–127 Rayleigh equation, 127–133 reboiler pressure, 167 rectification section, 119, 135 rectification section operating line (ROL), 144 reflux ratio, R, 134 minimum reflux ratio, Rmin 150 optimum reflux ratio, 152, 153 reflux ratio optimization multipliers, m, 153 626 Index Distillation (Continued ) relative volatility, 121, 141, 167 geometric mean relative volatility, 167, 168 sharp separation, 163 side streams, 136 stripping section, 119, 135 stripping section operating line (SOL), 145 surge volume, 161, 183 theoretical stage, 141 total reflux, 149, 150 transfer unit, 184 tray efficiency, 154 Underwood equations (minimum reflux ratio), 169, 177 weeping, 140, 159 Distillation equipment overflow weir, 137 packed column distillation, 184, 185 partial condenser, 140 partial reboiler, 140 setting the column pressure, 164 –167 shortcut design methods (binary or multicomponent), 161 sieve tray column (single crossflow), 138, 139 tray, types of bubble-cap tray, 137 sieve tray, 138 valve tray, 138 tray, single crossflow configuration, 137 active area, 139 bubbling area, 160 net area, 160 tray spacing, 182 Drag coefficient, 443 for spheres, 444 Drag force, 443 Drying, 347 constant rate period, 349 drop diameters, 364 falling rate period, 349 Friedman and Marshall heat transfer coefficient equation, 356 moisture content critical moisture content, 348, 349 equilibrium moisture content, 347 final moisture content, 349 free moisture content, 350 rotary dryer flight arrangements, 354 rotary dryers, 352–356 rotary dryer unit (Manhattan College), 353 spray dryers, 361 spray dryer unit (Manhattan College), 362 Economic analysis, 490 Eddies Eddy transfer, 80 Efficiency fractional stage efficiency, 116 overall efficiency of bubble-cap tray absorbers, 230, 231 overall efficiency of trayed distillation columns, 154, 171– 173 Electrodialysis, 101 Electrophoresis, 486 Electrostatic attraction, 442 Deutsch –Anderson equation, 455, 456 Matts –Ohnfeldt equation, 456 particle migration velocity, 455 typical precipitation rate parameters for various applications, 455 Electrostatic precipitators (ESPs), 454 Elutriator, 447 Encapsulation, 478 Engineering economics, 489 bonds, 496 break-even point, 495 compound interest, 491 depreciation, 493 fabricated equipment cost index (FECI), 493 incremental cost, 496 perpetual life, 494 present net worth (PNW), 494 present worth, 492 profit, 498 rate of return, 495, 496 simple interest, 491 Environmental issues of concern, 566–568 Equilibrium, 37 –40 equilibrium considerations, 37, 38 Index Ergun equation, 269 Ethics, 549 code of ethics, 549 engineering and environmental ethics, 557 –559 Evaporation (as a novel mass transfer operation), 485 Extraction, 293 analytical calculation procedures, 304 –309 Baker equation, 322 Chen equation (number of theoretical stages), 324 countercurrent extraction, 296, 309 crosscurrent extraction, 296, 305 dissociation extraction, 486 equilibrium data for n-butanol/acetic acid/water system at, 308C, 302 extract, 295 fractional extraction, 294 Kremser equation, 309 leaching/lixiviation, 293 liquid –liquid extraction, 294 overflow, 316 variable vs constant overflow, 317, 318 phase ratio, 297 plait point, 300, 301 raffinate, 295 solid –liquid extraction, 312 types of, 313 solvent selectivity, 298 ternary equilibrium diagram, 300, 301 theoretical stage, 295 underflow, 316 Extraction equipment liquid –liquid extraction column (Manhattan College), 297 multistage devices, 296 single stage units, 295, 296, 306 solid –liquid extraction equipment, 315, 316 Fahrenheit scale, 20, 21 Filtration, 474 Flocculation, 474 Flotation processes, 472 Flow patterns cocurrent flow, 109 –111 627 countercurrent flow, 111, 112 crossflow, 112, 113 Flux, 74 net flux, 75 Foam fractionation, 486 Freeze crystallization, 484 Freezing point, 41 Gas laws Boyle’s law, 31, 32 Charle’s law, 31, 32, 34 Dalton’s law, 35 ideal gas law, 31–35 Gas permeation, 432 describing equations, 433–435 “stage cut” 434 Gibb’s phase rule, 375 Gravitational constant, gc, 17 Gravity sedimentation, 467 circular-basin continuous thickener, 468 clarification vs thickening, 467 hindered settling, 469 thickener operating zones, 468 wall effect, 469 Gravity settlers, 447, See “decanter” Heat duty of a condenser, 150, 151 Heat exchangers dimensions of heat exchanger tubes, 614 Heat transfer classic equation for, 393 Henry’s law, 187, 200 High-gradient magnetic separation (HGMS), 477 Hindered settling, 469 Humidification, 327 adiabatic saturation temperature, 329, 333 cooling ponds, 343 cooling towers, 340–343 dew point temperature, Tdp, 329 humid enthalpy, 330 humid heat capacity, 328 humid volume, 328, 330 humidity absolute humidity, 327 molal humidity, 327 relative humidity, 328 628 Index Humidification (Continued ) psychrometric chart, 329 high temperature, 332 low temperature, 331 saturation curve, 330 spray columns, 343 wet-bulb temperature, Twb, 329 Ideal gas law, 31 –35 Ideal stage, See “Theoretical stage” Inertial collectors, 447 Inertial impaction, 442 Ion exchange, 484 Kelvin scale, 20, 21 Kinetic analysis, 39 Laminar film, 81 Laminar flow, 28 Liquid ion exchange (LIE), 484 Liquid–solid equilibrium (LSE), 68, 69 See also “Adsorption” Logarithmic mean logarithmic mean humidity difference, 361 logarithmic mean temperature difference, 360 Lognormal probability distribution, 385, 386 Manometer, 22 Mass fraction, 24 Mass transfer macroscopic approach, 8, 10 microscopic approach, molecular approach, Mass transfer, theories of boundary layer theory, 81 empirical approaches, 81 surface renewal theory, 81 two film theory, 81, 82 Mass transfer coefficients, 80 experimental mass transfer coefficients, 90 individual mass transfer coefficients, 81– 87 overall mass transfer coefficients, 87 Mass transfer equipment absorption, 104 adsorption, 104 crystallization, 392–393 distillation, 103, 104 extraction, 104– 105 humidification and drying, 105 Mass transfer operations classification of, 97– 102 contact of immiscible phases, 98– 101 direct contact of miscible phases, 102 miscible phases separated by a membrane, 101 Maximization/minimization first derivative test, 509 Melting point, 41 Membrane separation, 407 desalination (via reverse osmosis), 410 electrodialysis, 408 gas permeation, 408, 432 describing equations, 433– 435 microfiltration, 407, 427 describing equations, 428– 430 nanofiltration, 407 permeate, 407, 409 retentate, 407, 409 reverse osmosis (RO), 407–414 describing equations, 414– 418 ultrafiltration (UF), 420 describing equations, 421– 425 Membrane separation equipment dialysis membrane, 408 reverse osmosis, hollow fine fiber (HFF) for, 409, 410 Microfiltration, 427 average transmembrane pressure (ATP), 428 describing equations, 428–430 Mixing macroscopic, 28 molecular, 28 Mole fraction, 24 Molecular diffusion, Molecular weight, 23, 24 Moles, 23, 24 Momentum, 17 Nonideal solutions, 61 –64 Normal boiling point, 41 Normal probability distribution, 385 Novel separation processes, 483 Index Numerical methods, 513 differentiation methods, 515– 517 finite difference method, 520 lumped-parameter method, 521 method of least squares, 516 Newton –Raphson method, 526–528 regression analysis, 515 Runge–Kutta method, 522 –526 trapezoidal rule, 518 –520 Optimization, 530 Osmosis osmotic pressure, 412 Partial differential equations, 529 Particulate matter, 10 (PM10), 440 Particulate matter, 2.5 (PM2.5), 440 pH, 29, 30 Phase diagram, 41 eutectic point, 373 isothermal invariant point, 376 lever rule, 376 plait point, 300, 301 ternary equilibrium diagram, 300, 301 two component solid –liquid system, 373 Phase equilibrium, 41 Gibbs phase rule, 44, 45 Phase separation vs component separation processes, 483 Piping dimensions, capacities and weights of standard steel pipes, 612, 613 Poise, 25 Pressure, 22, 23 interfacial partial pressure, 82 vapor pressure, 31 Process variables, 19 Properties intensive vs extensive, 20 of air at, atm, 611 of selected gases at, atm and, 208C (688F), 607 of selected liquids at, atm and, 208C (688F), 608, 609 of water at, 1atm, 610 physical vs chemical, 19 saturated steam tables, 616 –618 saturated steam-ice tables, 622 superheated steam tables, 619 –621 629 Psychrometric chart, 329 definitions of psychrometric terms, 330 high temperature, 332 low temperature, 331 Radiation radiative transfer, Rankine scale, 20, 21 Rate considerations, 38, 39, 71 Relative volatility, 121 Resin adsorption, 485 Reverse osmosis (RO), 407– 414 describing equations, 414–418 Van’t Hoff equation, 414 Reynolds number, 28, 29 Risk assessment cost/protection analysis, 581 hazard analysis (HAZAN), 585 hazard and operability study (HAZOP), 584, 585 hazard risk assessment, 571–574 health risk assessment, 568–571 Scientific notation, 17, 18 Screen mesh, 382, 383 Screen scales, Tyler and US Standard, 383 Semi-batch operation, 108 Significant figures, 17, 18 Simpson’s, 3-point rule, 128 Solidification, 477 Stagewise operation, 116 Standard conditions standard vs actual conditions, 33 –35 STP, 32, 33 Standard deviation (sample), 384 State function, 151 Steady state, 108 Steam tables, 616–622 Steel pickling, 212 Stoke’s law, 443 Stripping, 235 key equations for stripping calculation, 242, 243 number of transfer units (NTU), 240 removal efficiency, 240 stripping of an EO-water system, 238 Stripping column, 103, 137 Sublimation, 99 630 Index Temperature, 20 Temperature scales, 20, 21 Theoretical stage, 110, 111, 141 Transient operation, See “Unsteady state” Transport phenomena, transport equations, transport phenomena approach, Triple point, 42 Turbulent flow, 28 Ultrafiltration, 420 concentration polarization, 423 describing equations, 421 –425 gel formation, 423 Unit conversion, 15, 16 Unit operations definition of, unit operations approach, unit operations concept, 4, Units, 11 –14 abbreviations, selected common, 603, 604 conversion factors, 15, 16 conversion factors, common engineering, 606 English engineering units, 11, 13 prefixes, 14 SI units, 11, 13 SI conversion constants, 599 –602 SI multiples and prefixes, 599 Universal gas constant, R, 32, 33 Unsteady state, 108 Vacuum, 22 Vapor, 42 Vapor pressure, 31 Antoine equation, 47–49 coefficients of selected substances, 48 Clapeyron equation, 47, 48 coefficients of selected substances, 47 Vapor-liquid equilibrium (VLE) Henry’s law, 45, 53– 59 Henry’s law constants for gases in water, 55 P-x,y diagram methanol-water system at, 408C (Raoult’s law), 52 Raoult’s law, 45–53 modified Raoult’s law, 61 Raoult’s law vs Henry’s Law, 59– 61 T-x,y diagram ethanol-water system at, atm, 51 x,y diagram methanol –water system at, 408C (Raoult’s law), 53 Vapor– solid equilibrium (VSE) adsorbent capacity, 65 adsorption equilibrium, 64 BET isotherm, 66 Freundlich isotherm, 65, 66 Langmuir isotherm, 66 Polanyi potential theory, 66, 67 vapor/solid equilibrium isotherms carbon dioxide on molecular sieves, 252 carbon tetrachloride on activated carbon, 65 selected hydrocarbons on activated carbon, 251 Venturi scrubber, 457 gas velocity, typical values for, 458 Johnstone collection efficiency equation, 457 Nukiyama –Tanasawa relationship, 458 overall efficiency of N scrubbers in parallel, 458, 459 Vibrating screens (as a novel mass transfer operation), 487 Viscosity absolute viscosity, 25, 26 of air, 26 of water, 26 kinematic viscosity, 25, 26 Saybolt seconds, 26 Saybolt universal viscometer, 26 Volume fraction, 24 ... principles The next Part is concerned with describing and designing the various mass transfer unit operations and equipment Mass Transfer Operations for the Practicing Engineer By Louis Theodore... Rate of Transfer ¼ (Driving Force)(Area Available for Transfer) (Resistance to Transfer) (5:1) For mass transfer, the equation becomes Rate of Mass Transfer ¼ (Concentration Driving Force)(Area... Data: Theodore, Louis Mass transfer operations for the practicing engineer / Louis Theodore, Francesco Ricci p cm Includes Index ISBN 978-0-470-57758-5 (hardback) Engineering mathematics Mass transfer

Ngày đăng: 26/09/2020, 09:59

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan