Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)

47 32 0
Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)Một định lý hội tụ mạnh giải bài toán chấp nhận tách và bài toán điểm bất động trong không gian banach (luận văn thạc sĩ)

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC  - VŨ THỊ THANH NGA MỘT ĐỊNH LÝ HỘI TỤ MẠNH GIẢI BÀI TOÁN CHẤP NHẬN TÁCH VÀ BÀI TỐN ĐIỂM BẤT ĐỘNG TRONG KHƠNG GIAN BANACH Chuyên ngành: Toán ứng dụng Mã số : 46 01 12 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS Trương Minh Tuyên TS Li ZhenYang THÁI NGUYÊN - 2019 ✐✐ ▲í✐ ❝↔♠ ì♥ ❚æ✐ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ rữỡ ữớ t t ữợ ❞➝♥✱ ❣✐ó♣ ✤ï tỉ✐ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ♥❣❤✐➯♥ ❝ù✉ ✤➸ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥✳ ❚æ✐ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❇❛♥ ●✐→♠ ❤✐➺✉✱ ❝→❝ t❤➛② ❣✐→♦✱ ❝ỉ ❣✐→♦ tr♦♥❣ ❦❤♦❛ ❚♦→♥ ✕ ❚✐♥✱ tr÷í♥❣ ✣↕✐ ❤å❝ ❑❤♦❛ ❤å❝✕✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥ ✤➣ t➟♥ t➻♥❤ ❣✐ó♣ ✤ï tỉ✐ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ ♥❣❤✐➯♥ ❝ù✉ t↕✐ ❚r÷í♥❣✳ ◆❤➙♥ ❞à♣ ♥➔②✱ tỉ✐ ❝ơ♥❣ ①✐♥ ❣û✐ ❧í✐ ❝↔♠ ỡ t tợ ỳ ữớ t tr ỗ t↕♦ ✤✐➲✉ ❦✐➺♥ ❣✐ó♣ ✤ï tỉ✐ tr♦♥❣ q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ ♥❣❤✐➯♥ ❝ù✉✳ ✐✐✐ ▼ư❝ ❧ư❝ ▲í✐ ❝↔♠ ì♥ ởt số ỵ t tt ữỡ tự ổ pỗ ✐✐ ✐✈ ✶ ✸ ✤➲✉ ✈➔ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ trì♥ ✤➲✉ ✳ ✳ ✳ ✸ ✶✳✶✳✶ ❑❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ♣❤↔♥ ①↕ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✶✳✶✳✷ ❙ü ❤ë✐ tư ②➳✉ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ỗ ởt số t t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✶✳✶✳✹ ❑❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✶✳✶✳✺ ❑❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ trì♥ ✤➲✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ pỗ ố ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ✶✳✸ ❑❤♦↔♥❣ ❝→❝❤ ❇r❡❣♠❛♥ ✈➔ ♣❤➨♣ ❝❤✐➳✉ ❇r❡❣♠❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ✶✳✸✳✶ ❑❤♦↔♥❣ ❝→❝❤ ❇r❡❣♠❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ✶✳✸✳✷ P❤➨♣ ❝❤✐➳✉ ❇r❡❣♠❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✼ ✶✳✹ ❇➔✐ t♦→♥ ❝❤➜♣ ♥❤➟♥ t→❝❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶ ✶✳✺ ❇➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣ ❝õ❛ →♥❤ ①↕ ❇r❡❣♠❛♥ ❦❤æ♥❣ ❣✐➣♥ ♠↕♥❤ tr ữỡ ởt ỵ tử ❣✐↔✐ ❜➔✐ t♦→♥ ❝❤➜♣ ♥❤➟♥ t→❝❤ ✈➔ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✷✻ ✷✳✶ P❤→t ❜✐➸✉ ❜➔✐ t♦→♥ ✷✳✷ P❤÷ì♥❣ ♣❤→♣ ❝❤✐➳✉ ❧❛✐ ❣❤➨♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✼ ✷✳✸ ❱➼ ❞ö ♠✐♥❤ ❤å❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✺ ❑➳t ❧✉➟♥ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✻ ✹✵ ✹✶ ✐✈ ởt số ỵ t tt E ổ ❇❛♥❛❝❤ E∗ ❦❤ỉ♥❣ ❣✐❛♥ ✤è✐ ♥❣➝✉ ❝õ❛ R t➟♣ ❤đ♣ số tỹ inf M ữợ ✤ó♥❣ ❝õ❛ t➟♣ ❤đ♣ sè M sup M ❝➟♥ tr➯♥ ✤ó♥❣ ❝õ❛ t➟♣ ❤đ♣ sè M max M sè ❧ỵ♥ ♥❤➜t tr♦♥❣ t➟♣ ❤ñ♣ sè M sè ♥❤ä ♥❤➜t tr♦♥❣ t➟♣ ❤ñ♣ sè ❛r❣♠✐♥x∈X F (x) t➟♣ ❝→❝ ✤✐➸♠ ❝ü❝ t✐➸✉ ❝õ❛ ❤➔♠ ∅ t➟♣ ré♥❣ ∀x ✈ỵ✐ ♠å✐ ❞♦♠(A) ♠✐➲♥ ❤ú✉ ❤✐➺✉ ❝õ❛ t♦→♥ tû I t♦→♥ tû ỗ t Lp () ổ t ❜➟❝ lp ❦❤æ♥❣ ❣✐❛♥ ❝→❝ ❞➣② sè ❦❤↔ tê♥❣ ❜➟❝ E M F tr➯♥ X x A ❣✐ỵ✐ ❤↕♥ tr➯♥ ❝õ❛ ❞➣② sè {xn } lim inf xn ❣✐ỵ✐ ❤↕♥ ữợ số {xn } xn x0 {xn } ❤ë✐ tö ♠↕♥❤ ✈➲ xn ❞➣② {xn } ❤ë✐ tö ②➳✉ ✈➲ lim sup xn M p tr➯♥ p n→∞ n→∞ x0 x0 x0 Jp →♥❤ ①↕ ✤è✐ E () ổ ỗ ổ ρE (τ ) ♠ỉ ✤✉♥ trì♥ ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ F ix(T ) ❤♦➦❝ F (T ) t➟♣ ✤✐➸♠ ❜➜t ✤ë♥❣ ❝õ❛ →♥❤ ①↕ T E E Ω ✈ ✐♥tM tr t ủ rr s số trữợ PC ♣❤➨♣ ♠➯tr✐❝ ❧➯♥ f M C ♣r♦❥C ♣❤➨♣ ❝❤✐➳✉ r iC t ỗ C C ✶ ▼ð ✤➛✉ ❈❤♦ H1 ✈➔ C ✈➔ H2 ✱ Q t ỗ õ rộ ❝õ❛ ❝→❝ ❦❤ỉ♥❣ ❣✐❛♥ ❍✐❧❜❡rt t÷ì♥❣ ù♥❣✳ ❈❤♦ T : H1 −→ H2 ❧➔ ♠ët t♦→♥ tû t✉②➳♥ t➼♥❤ ❜à ❝❤➦♥✳ ❇➔✐ t♦→♥ ❝❤➜♣ ♥❤➟♥ t→❝❤ ✭❙❋P✮ ❝â ❞↕♥❣ ♥❤÷ s❛✉✿ ❚➻♠ ♠ët ♣❤➛♥ tû x∗ ∈ C s❛♦ ❝❤♦ T x∗ ∈ Q ✭✵✳✶✮ ❉↕♥❣ tê♥❣ q✉→t ❝õ❛ ❇➔✐ t♦→♥ ✭✵✳✶✮ ❧➔ ❜➔✐ t♦→♥ ✭✵✳✷✮✱ ❜➔✐ t♦→♥ ♥➔② ✤÷đ❝ ♣❤→t ❜✐➸✉ ♥❤÷ s❛✉✿ ❈❤♦ ✤â♥❣ ❝õ❛ H1 ✈➔ H2 Ci ✱ i = 1, 2, , N ✈➔ Qj ✱ j = 1, 2, , M ❧➔ ❝→❝ t➟♣ ỗ tữỡ ự ởt tỷ (∩M x∗ ∈ S = ∩N j=1 Qj ) = ∅ i=1 Ci ∩ T ✭✵✳✷✮ ▼æ ❤➻♥❤ ❜➔✐ t♦→♥ P t ữủ ợ t ự ❜ð✐ ❨✳ ❈❡♥s♦r ✈➔ ❚✳ ❊❧❢✈✐♥❣ ❬✻❪ ❝❤♦ ♠æ ❤➻♥❤ ❝→❝ ❜➔✐ t♦→♥ ♥❣÷đ❝✳ ❇➔✐ t♦→♥ ♥➔② ✤â♥❣ ✈❛✐ trá q✉❛♥ trå♥❣ tr♦♥❣ ❦❤ỉ✐ ♣❤ư❝ ❤➻♥❤ ↔♥❤ tr♦♥❣ ❨ ❤å❝✱ ✤✐➲✉ ❦❤✐➸♥ ❝÷í♥❣ ✤ë ①↕ trà tr♦♥❣ ✤✐➲✉ trà ❜➺♥❤ ✉♥❣ t❤÷✱ ❦❤ỉ✐ ♣❤ư❝ t➼♥ ❤✐➺✉ ✭①❡♠ ❬✸❪✱ ❬✹❪✮ ❤❛② ❝â t❤➸ →♣ ❞ö♥❣ ❝❤♦ ✈✐➺❝ ❣✐↔✐ ❝→❝ ❜➔✐ t♦→♥ tr t ỵ tt trỏ ỡ ❜✐➳t r➡♥❣ C = F (PC )✕t➟♣ ✤✐➸♠ ❜➜t ✤ë♥❣ ❝õ❛ ♣❤➨♣ ❝❤✐➳✉ ♠➯tr✐❝ tø H1 ❧➯♥ C ✳ ❉♦ ✤â✱ ❜➔✐ t♦→♥ ❝❤➜♣ ♥❤➟♥ t→❝❤ ✭✵✳✶✮ ❧➔ ♠ët tr÷í♥❣ ❤ñ♣ ✤➦❝ ❜✐➺t ❝õ❛ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣ t→❝❤✳ ❉↕♥❣ tê♥❣ q✉→t ❝õ❛ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣ ❝❤✉♥❣ t→❝❤ ✤÷đ❝ ♣❤→t ❜✐➸✉ ♥❤÷ s❛✉✿ ❈❤♦ j = 1, 2, , M Ti : H1 −→ H1 ✱ i = 1, 2, , N ❧➔ ❝→❝ →♥❤ ①↕ ❦❤æ♥❣ ❣✐➣♥ tr➯♥ ❚➻♠ ♣❤➛♥ tû H1 ✈➔ H2 ✱ ✈➔ Sj : H2 −→ H2 ✱ t÷ì♥❣ ù♥❣✳ −1 x∗ ∈ S = ∩N ∩M i=1 F ix(Ti ) ∩ T j=1 F ix(Sj ) = ∅ ✭✵✳✸✮ ❈❤♦ ✤➳♥ ♥❛② ❇➔✐ t♦→♥ ✭✵✳✸✮ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✤➣ ✈➔ ✤❛♥❣ ❧➔ ❝❤õ ✤➲ t❤✉ ❤ót ♥❤✐➲✉ ♥❣÷í✐ ❧➔♠ t♦→♥ tr ữợ q t ự ✤➣ ❝â ♠ët sè t→❝ ❣✐↔ ✤➲ ❝➟♣ ✤➳♥ ✈✐➺❝ ự t ữỡ ợ t ởt ♥❣❤✐➺♠ ❝❤✉♥❣ ❝õ❛ ❇➔✐ t♦→♥ ✭✵✳✶✮ ❤❛② ✭✵✳✸✮ ✈➔ ❝→❝ ❧ỵ♣ ❜➔✐ t♦→♥ ❦❤→❝ ✭❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣✱ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣✱ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✳✳✳✮✳ ▼ö❝ ✤➼❝❤ ❝õ❛ ❧✉➟♥ ✈➠♥ ♥➔② ❧➔ tr➻♥❤ ❜➔② ❧↕✐ ❝→❝ ❦➳t q✉↔ ❝õ❛ ❚✉②❡♥ ❚✳▼✳ ✈➔ ❍❛ ✷ ◆✳❙✳ tr♦♥❣ t➔✐ ❧✐➺✉ ❬✶✼❪ ♣❤÷ì♥❣ ♣❤→♣ ❝❤✐➳✉ ❧❛✐ ❣❤➨♣ t➻♠ ♠ët ♥❣❤✐➺♠ ❝❤✉♥❣ ❝õ❛ ❇➔✐ t♦→♥ ✭✵✳✷✮ ✈➔ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣ ❝❤✉♥❣ ❝õ❛ ♠ët ❤å ❤ú✉ ❤↕♥ t♦→♥ tû ❇r❡❣♠❛♥ ❦❤æ♥❣ ❣✐➣♥ ♠↕♥❤ tr→✐ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ◆ë✐ ❞✉♥❣ ❝õ❛ ❧✉➟♥ ✈➠♥ ✤÷đ❝ ❝❤✐❛ ❧➔♠ ❤❛✐ ❝❤÷ì♥❣ ❝❤➼♥❤✿ ❈❤÷ì♥❣ ✶✳ ❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔②✱ ❧✉➟♥ ✈➠♥ ✤➲ ❝➟♣ ✤➳♥ ♠ët sè ✈➜♥ ✤➲ ✈➲ ❦❤æ♥❣ ổ pỗ trỡ →♥❤ ①↕ ✤è✐ ♥❣➝✉❀ ❦❤♦↔♥❣ ❝→❝❤ ❇r❡❣♠❛♥✱ ♣❤➨♣ ❝❤✐➳✉ ❇r❡❣♠❛♥❀ ❜➔✐ t♦→♥ ❝❤➜♣ ♥❤➟♥ t→❝❤ ✈➔ ❜➔✐ t♦→♥ t➻♠ ✤✐➸♠ ❜➜t ✤ë♥❣ ❝õ❛ t♦→♥ tû ❇r❡❣♠❛♥ ❦❤æ♥❣ ❣✐➣♥ ♠↕♥❤ tr→✐✳ ữỡ ởt ỵ tử t♦→♥ ❝❤➜♣ ♥❤➟♥ t→❝❤ ✈➔ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔② ❧✉➟♥ ✈➠♥ t➟♣ tr✉♥❣ tr➻♥❤ ❜➔② ❧↕✐ ♠ët ❝→❝❤ ❝❤✐ t✐➳t ❝→❝ ❦➳t q✉↔ ❝õ❛ ❚✉②❡♥ ❚✳▼✳ ✈➔ ❍❛ ◆✳❙✳ tr♦♥❣ t➔✐ ❧✐➺✉ ❬✶✼❪ ✈➲ ♣❤÷ì♥❣ ♣❤→♣ ❝❤✐➳✉ ❧❛✐ ❣❤➨♣ t➻♠ ♠ët ♥❣❤✐➺♠ ❝❤✉♥❣ ❝õ❛ ❜➔✐ t♦→♥ ❝❤➜♣ ♥❤➟♥ t→❝❤ ✈➔ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣ ❝õ❛ t♦→♥ tû ❇r❡❣♠❛♥ ❦❤æ♥❣ ❣✐➣♥ ♠↕♥❤ tr tr ổ trỡ pỗ ✸ ❈❤÷ì♥❣ ✶ ❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ❈❤÷ì♥❣ ♥➔② ❜❛♦ ỗ ử tr ởt số t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕✱ ❦❤ỉ♥❣ ỗ trỡ ợ t ✈➲ →♥❤ ①↕ ✤è✐ ♥❣➝✉ ❝❤✉➞♥ t➢❝✳ ▼ö❝ ✶✳✸ ✤➲ ❝➟♣ ✤➳♥ ❝→❝ ❦❤→✐ ♥✐➺♠ ♣❤➨♣ ❝❤✐➳✉ ♠➯tr✐❝ ✈➔ ♣❤➨♣ ❝❤✐➳✉ tê♥❣ q✉→t ❝ị♥❣ ✈ỵ✐ ♠ët sè t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ❝❤ó♥❣✳ ▼ư❝ ✶✳✹ tr➻♥❤ ❜➔② ✈➲ t♦→♥ tû ✤ì♥ ✤✐➺✉ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✱ t♦→♥ tû ❣✐↔✐ tê♥❣ q✉→t ✈➔ t♦→♥ tû ❣✐↔✐ ♠➯tr✐❝✳ ◆ë✐ ❞✉♥❣ ❝õ❛ ❝❤÷ì♥❣ ♥➔② ✤÷đ❝ t❤❛♠ ❦❤↔♦ tr♦♥❣ ❝→❝ t➔✐ ❧✐➺✉ ❬✷✱ ✶✶✱ ổ pỗ ổ ❇❛♥❛❝❤ trì♥ ✤➲✉ ✶✳✶✳✶ ❑❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ♣❤↔♥ ①↕ ❈❤♦ X ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥ ✈➔ X∗ ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤è✐ ♥❣➝✉ ❝õ❛ ♥â✳ ✣➸ ❝❤♦ ✤ì♥ ❣✐↔♥ ✈➔ t❤✉➟♥ t✐➺♥ ❤ì♥✱ ❝❤ó♥❣ tỉ✐ t❤è♥❣ ♥❤➜t sû ❞ö♥❣ ❦➼ ❤✐➺✉ t↕✐ ✤✐➸♠ ✤➸ ❝❤➾ ❝❤✉➞♥ tr xX tỗ t X tr ❝õ❛ ♣❤✐➳♠ ❤➔♠ t✉②➳♥ t➼♥❤ x∗ ∈ X ∗ x, x ữủ ỵ x E ∗∗ ✱ X ✳ ❑❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ x∈E E ữủ ợ s x, x∗ = x∗ , x∗∗ , ✈ỵ✐ ♠å✐ x∗ ∈ E ∗ ✳ ❱➼ ❞ö ✶✳✶✳✷✳ ❣✐❛♥ lp ❤❛② ▼å✐ ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥ ❤ú✉ ❤↕♥ ❝❤✐➲✉✱ ❝→❝ ❦❤ỉ♥❣ Lp (Ω)✱ ✈ỵ✐ < p < ∞✱ ❧➔ ❝→❝ ❦❤ỉ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕ ✭①❡♠ ❬✷❪✮✳ ✹ ❈❤ó ỵ t t ữợ ổ ❇❛♥❛❝❤ ♣❤↔♥ ①↕ ❝â t❤➸ t➻♠ t❤➜② tr♦♥❣ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❬✷❪✳ ✐✮ ◆➳✉ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ Y✱ t❤➻ X X ỗ ổ t t ợ ổ ①↕ ❝ơ♥❣ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕✳ ✐✐✮ ▼å✐ ❦❤ỉ♥❣ ❣✐❛♥ ❝♦♥ ✤â♥❣ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕ ❧➔ ❦❤æ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕❀ ✐✐✐✮ ❑❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ E ❧➔ ♣❤↔♥ ①↕ ❦❤✐ ✈➔ ❝❤➾ ❦❤ỉ♥❣ ❣✐❛♥ ❧✐➯♥ ❤đ♣ E∗ ❝õ❛ ♥â ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕✳ ✶✳✶✳✷ ❙ü ❤ë✐ tư ②➳✉ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✣à♥❤ ♥❣❤➽❛ ✶✳✶✳✹✳ {xn} ❉➣② tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥ x∈E ❣å✐ ❧➔ tử ởt tỷ ữủ ỵ ❤✐➺✉ ❧➔ xn x✱ E ✤÷đ❝ ♥➳✉ lim xn , x∗ = x, x∗ , n→∞ ✈ỵ✐ ♠å✐ x∗ ∈ X ∗ ✳ ◆❤➟♥ ①➨t ✶✳✶✳✺✳ {xn } ◆➳✉ ❞➣② ❤ë✐ tư ②➳✉ ✈➲ ❦❤ỉ♥❣ ❣✐❛♥ ❍✐❧❜❡rt x✳ l2 ✱ {xn } ❤ë✐ tö ♠↕♥❤ ✈➲ ✭✈➻ tù❝ ❧➔ xn − x → 0✱ t❤➻ ❞➣② ❚✉② ♥❤✐➯♥✱ ✤✐➲✉ ♥❣÷đ❝ ❧↕✐ ❦❤ỉ♥❣ ✤ó♥❣✳ ❈❤➥♥❣ ❤↕♥✱ ①➨t ❞➣② {en } ①→❝ ✤à♥❤ ❜ð✐ en = (0, , 0, ✈ỵ✐ ♠å✐ x✱ ✈à tr➼ t❤ù n , 0, ), n ≥ 1✱ ❤ë✐ tö ②➳✉ ✈➲ ❦❤ỉ♥❣ ✭①❡♠ ❬✷❪✮✱ ♥❤÷♥❣ ❦❤ỉ♥❣ ❤ë✐ tư ♠↕♥❤ ✈➲ ❦❤ỉ♥❣ en = ✈ỵ✐ ♠å✐ n ≥ 1✮✳ ▼➺♥❤ ✤➲ ✶✳✶✳✻✳ ❈❤♦ E ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥✱ ❞➣② {xn} ⊂ E ❤ë✐ tö ②➳✉ ✈➲ x ∈ E ✳ ❑❤✐ ✤â✱ ❞➣② {xn } ❜à ❝❤➦♥✳ ❈❤ù♥❣ ♠✐♥❤✳ ❱ỵ✐ ♠é✐ x∗ , Hxn = xn , x∗ n ≥ 1✱ ✈ỵ✐ ♠å✐ ①➨t ❞➣② ♣❤✐➳♠ ❤➔♠ x∗ ∈ E ∗ ✳ {Hxn } ⊂ E ∗∗ ❑❤✐ ✤â✱ ✈ỵ✐ ♠é✐ x∗ ∈ E ∗ ✱ ①→❝ ✤à♥❤ ❜ð✐ t❛ ❝â x∗ , Hxn = xn , x∗ → x, x∗ ✶ ❉♦ ✤â✱ t❤❡♦ ❤➺ q ỵ ợ t t ❝â sup xn = sup Hxn < ∞ n ✶ ❈❤♦ n X ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✱ Y ❧➔ ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥ ✈➔ {An } ⊂ L(X, Y )✳ ◆➳✉ ✈ỵ✐ ♠é✐ x ∈ X ✱ ❞➣② {An x} ❤ë✐ tö tr♦♥❣ Y ✱ t❤➻ supn An < ∞ ✺ ▼➺♥❤ ✤➲ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ▼➺♥❤ ✤➲ ✶✳✶✳✼✳ ❈❤♦ E ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥✱ A ⊂ E ❧➔ ♠ët t➟♣ ❝♦♠♣❛❝t t÷ì♥❣ ✤è✐ ✈➔ {xn } ⊂ A t❤ä❛ ♠➣♥ xn ❈❤ù♥❣ sỷ xn x õ tỗ t >0 x✳ ❑❤✐ ✤â✱ xn → x✳ ✈➔ ♠ët ❞➣② ❝♦♥ {xnk } ⊂ {xn } s❛♦ ❝❤♦ xnk − x ≥ ε, ✈ỵ✐ ♠å✐ ❱➻ ✭✶✳✶✮ k ≥ 1✳ {xnk } ⊂ A {xnk } s❛♦ ❝❤♦ ❞♦ ✤â y = x✳ ✈➔ A ❧➔ t➟♣ ❝♦♠♣❛❝t t÷ì♥❣ ✤è✐✱ ♥➯♥ tỗ t xnkl y sỹ ❤ë✐ tö ♠↕♥❤ ❦➨♦ t❤❡♦ ❤ë✐ tö ②➳✉ ♥➯♥ ❚r♦♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ✭✶✳✶✮✱ t❤❛② xnk ❜ð✐ xnkl {xnkl } ⊂ xnkl y ✈➔ t❛ ✤÷đ❝ xnkl − y ≥ ε, ♠➙✉ t❤✉➝♥ ✈ỵ✐ xnkl y✳ xn → x✳ ❱➟② ❚r♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔②✱ ❝❤ó♥❣ tỉ✐ t❤÷í♥❣ ①✉②➯♥ sû ❞ư♥❣ t t ữợ ổ ▼➺♥❤ ✤➲ ✶✳✶✳✽✳ ✭①❡♠ ❬✷❪ tr❛♥❣ ✹✶✮ ❈❤♦ E ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ❑❤✐ ✤â✱ ❝→❝ ❦❤➥♥❣ ✤à♥❤ s❛✉ ❧➔ t÷ì♥❣ ✤÷ì♥❣✿ ✐✮ ✐✐✮ E ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕✳ ▼å✐ ❞➣② ❜à ❝❤➦♥ tr♦♥❣ E ✱ ✤➲✉ ❝â ởt tử ữợ ❝❤♦ t❛ ♠è✐ ❧✐➯♥ ❤➺ ❣✐ú❛ t➟♣ ✤â♥❣ ✈➔ t➟♣ ✤â♥❣ ②➳✉ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥✳ ▼➺♥❤ C t ỗ õ ❦❤→❝ ré♥❣ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥ X ✱ t❤➻ C ❧➔ t➟♣ ✤â♥❣ ②➳✉✳ ❈❤ù♥❣ ♠✐♥❤✳ ❝❤♦ xn ♥❣➦t x ✈➔ ❚❛ ❝❤ù♥❣ ♠✐♥❤ ❜➡♥❣ ự sỷ tỗ t x / C x ữ C tự tỗ t ỵ t t ỗ tỗ t >0 s y, x∗ ≤ x, x∗ − ε, {xn } ⊂ C x∗ ∈ X ∗ s❛♦ t→❝❤ ✷✽ ❇➙② ❣✐í✱ t❛ ❝❤➾ r❛ ∆p (zn , u) ≤ ∆p (yn , u)✳ ✣➦t wn = A(yn ) − PQjn A(yn )✳ ❑❤✐ ✤â t❛ ❝â zn = Jq∗ (Jp (yn ) − tn A∗ Jp (wn )) ❚ø ✤à♥❤ ♥❣❤➽❛ ❝õ❛ Jp ✈➔ ✭✶✳✶✹✮✱ t❛ ❝â A(yn ) − A(u), Jp (wn ) = A(yn ) − PQjn A(yn ) p + PQjn A(yn ) − A(u), Jp (wn ) ✭✷✳✹✮ ≥ wn p ❉♦ ✤â✱ tø ▼➺♥❤ ✤➲ ✶✳✷✳✺ ✈➔ ✭✷✳✹✮✱ t❛ ♥❤➟♥ ✤÷đ❝ ∆p (zn , u) = ∆p (Jq∗ (Jp (yn ) − tn A∗ Jp (wn )), u) = Jp (yn ) − tn A∗ Jp (wn ) q − u, Jp (yn ) q + tn A(u), Jp (wn ) + u p p Cq (tn A )q ≤ Jp (yn ) q − tn Ayn , Jp (wn ) + Jp (wn ) q q q − u, Jp (yn ) + tn Au, Jp (wn ) + u p p 1 = yn q − u, Jp (yn ) + u p + tn A(u) − A(yn ), Jp (wn ) q p q Cq (tn A ) wn q + q Cq (tn A )q = ∆p (yn , u) + tn A(u) − A(yn ), Jp (wn ) + wn q q q Cq (tn A ) ≤ ∆p (yn , u) − (tn − ) wn p q ❚ø ✤✐➲✉ ❦✐➺♥ ✭✶✳✶✻✮✱ t❛ t❤✉ ✤÷đ❝ ∆p (zn , u) ≤ ∆p (yn , u) ❉♦ ✈➟②✱ tø ✭✷✳✷✮✱ ✭✷✳✸✮ ✈➔ ✭✷✳✺✮✱ s✉② r❛ ❈✉è✐ ❝ò♥❣ t❛ ❝❤➾ r❛ S ⊂ D0 ✳ ●✐↔ sû S ⊂ Dn S ⊂ Dn xn+1 = ΠHn ∩Dn (x0 ) ✈ỵ✐ u ∈ Hn ✳ ✈ỵ✐ ♠å✐ n ≥ ❱➻ ✈➟② ✭✷✳✺✮ S ⊂ Hn n ≥ 0✳❚❤➟t ♥➔♦ ✤â✱ ❦❤✐ ✤â ✈ỵ✐ ♠å✐ ✈➟②✱ ✈➻ D0 = E ✱ S ⊂ Hn ∩ Dn ✳ ✈➔ ✭✶✳✶✹✮✱ t❛ ❝â xn+1 − u, Jp (x0 ) − Jp (xn+1 ) ≥ 0, n ≥ 0✳ ♥➯♥ ❉♦ ✤â✱ tø ✷✾ ✤✐➲✉ ♥➔② s✉② r❛ ♠å✐ u ∈ Dn+1 ✳ ❜➡♥❣ q✉② ♥↕♣ t♦→♥ ❤å❝✱ t❛ ♥❤➟♥ ✤÷đ❝ S Dn ợ n ữủ ❝❤ù♥❣ ♠✐♥❤✳ ▼➺♥❤ ✤➲ ✷✳✷✳✷✳ ❚r♦♥❣ P❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✷✳✶✱ t❛ ❝â xn+1 − xn → ❦❤✐ n → ∞✳ ❈❤ù♥❣ ♠✐♥❤✳ ❈è ✤à♥❤ ❚ø ▼➺♥❤ ✤➲ ✷✳✷✳✶✱ s✉② r❛ ❞➣② u ∈ S✳ ❚ø xn+1 = ΠHn ∩Dn (x0 ) {xn } ❧➔ ❤♦➔♥ t♦➔♥ ①→❝ ✤à♥❤✳ ✈➔ ✭✶✳✶✺✮ s✉② r❛ ∆p (xn+1 , u) ≤ ∆p (x0 , u) ❉♦ ✤â✱ ❞➣② ✭✷✳✻✮ {∆p (xn , u)} ❜à ❝❤➦♥✳ ❱➻ ✈➟②✱ tø ✭✶✳✶✷✮✱ s✉② r❛ ❞➣② {xn } ❝ô♥❣ ❜à ❝❤➦♥✳ ❚✐➳♣ t❤❡♦✱ tø xn+1 ∈ Dn ✈➔ ✤à♥❤ ♥❣❤➽❛ ❝õ❛ t➟♣ ❤ñ♣ Dn ✱ t❛ ❝â xn − xn+1 , Jp (x0 ) − Jp (xn ) ≥ ✭✷✳✼✮ xn − x0 , Jp (x0 ) − Jp (xn ) ≥ xn+1 − x0 , Jp (x0 ) − Jp (xn ) ✭✷✳✽✮ ❉♦ ✈➟②✱ t❛ ♥❤➟♥ ✤÷đ❝ ❉♦ ✤â✱ tø ✭✶✳✶✷✮✱ t❛ ❝â xn+1 − x0 , Jp (x0 ) − Jp (xn ) ≥ ∆p (xn , x0 ) + ∆p (x0 , xn ) ✭✷✳✾✮ ❱➻ ✈➟②✱ tø ✭✶✳✶✶✮✱ t❛ ♥❤➟♥ ✤÷đ❝ −∆p (xn , xn+1 ) + ∆p (xn , x0 ) + ∆p (x0 , xn+1 ) ≥ ∆p (xn , x0 ) + ∆p (x0 , xn ) tữỡ ữỡ ợ p (x0 , xn+1 ) ≥ ∆p (x0 , xn ) + ∆p (xn , xn+1 ), s✉② r❛ {∆p (x0 , xn )} ❧➔ ❞➣② t➠♥❣✳ ❉♦ ✤â✱ tø t➼♥❤ ❜à ❝❤➦♥ ❝õ❛ ✭✷✳✶✵✮ {∆p (x0 , xn )}✱ t↕✐ ❣✐ỵ✐ ❤↕♥ ❤ú✉ ❤↕♥ a = lim ∆p (x0 , xn ) n→∞ ❱➻ ✈➟②✱ tø ✭✷✳✶✵✮✱ t❛ t❤✉ ✤÷đ❝ lim ∆p (xn , xn+1 ) = 0✳ n→∞ lim xn+1 − xn = n→∞ ▼➺♥❤ ✤➲ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❚ø ✭✶✳✶✷✮ s✉② r tỗ r Pữỡ ✷✳✶✱ ❝→❝ ❞➣② {xn − yn}✱ {xn − zn} ✈➔ {xn − tn } ❤ë✐ tö ✈➲ ❦❤✐ n → ∞✳ ❈❤ù♥❣ ♠✐♥❤✳ ❱➻ xn+1 ∈ Hn ✱ ♥➯♥ t❛ ❝â ∆p (tn , xn+1 ) ≤ ∆p (zn , xn+1 ) ≤ ∆(yn , xn+1 ) ≤ ∆(xn , xn+1 ) ❉♦ ✤â✱ tø ▼➺♥❤ ✤➲ ✷✳✷✳✷ ✭∆(xn , xn+1 ) → 0✮✱ t❛ t❤✉ ✤÷đ❝ ∆p (tn , xn+1 ) → 0, ∆p (zn , xn+1 ) → 0, ∆(yn , xn+1 ) → ❚ø ✭✶✳✶✷✮ s✉② r❛ xn+1 − tn → 0, xn+1 − zn → 0, xn+1 − yn → ❦➳t ❤đ♣ ✈ỵ✐ xn+1 − xn → 0✱ t❛ ♥❤➟♥ ✤÷đ❝ xn − tn → 0, xn − zn → 0, ✈➔ xn − yn → ▼➺♥❤ ✤➲ ✷✳✷✳✹✳ ❚r♦♥❣ P❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✷✳✶✱ t❛ ❝â ω✇(xn) ⊂ S ✱ ð ✤➙② ω✇(xn) ❧➔ t➟♣ ❝→❝ ✤✐➸♠ tö ②➳✉ ❝õ❛ ❞➣② {xn } ự ó r tỗ t ởt ωw (xn ) = ∅ {xnk } ❝õ❛ ❞➣② ✈➻ ❞➣② {xn } {xn } ❜à ❝❤➦♥✳ ▲➜② ❤ë✐ tö ②➳✉ ✈➲ x¯ ∈ ωw (xn )✱ ❦❤✐ ✤â x¯✳ ự t ữợ s K ữợ x F (Tk ) k=1 ứ ▼➺♥❤ ✤➲ ✷✳✷✳✸✱ t❛ ❝â tn ✱ ✤à♥❤ ♣❤➛♥ tû ♠å✐ tn − zn → ✈➔ ❞♦ ✤â ∆p (tn , zn ) → 0✳ ❚ø ❝→❝❤ ①→❝ ∆p (tk,n , zn ) → 0✱ tù❝ ❧➔ ∆p (Tk (zn ), zn ) → ✈ỵ✐ x¯ ∈ Fˆ (Tk ) = F (Tk ) ✈ỵ✐ ♠å✐ k = 1, 2, , K ✳ ❉♦ ✈➟② t❛ ♥❤➟♥ ✤÷đ❝ k = 1, 2, , K ✳ ❙✉② r❛ K x F (Tk ) k=1 ữợ x N Ci i=1 ❚ø ▼➺♥❤ ✤➲ ✷✳✷✳✸✱ t❛ ❝â s✉② r❛ ∆p (yi,n , xn ) → ∆p (yn , xn ) → 0✳ ❉♦ ✤â✱ tø ❝→❝❤ ①→❝ ✤à♥❤ ♣❤➛♥ tû yn ✈➔ ✈➻ ✈➟② yi,n − xn → 0, ✭✷✳✶✶✮ ✸✶ ✈ỵ✐ ♠å✐ i = 1, 2, , N ✳ ❚❛ ❝➛♥ ❝❤➾ r❛ r➡♥❣ ∆p (¯ x, ΠCi (¯ x)) = ✈ỵ✐ ♠å✐ i = 1, 2, , N ✳ ❚❤➟t ✈➟②✱ tø ✭✶✳✶✶✮✱ ✭✶✳✶✹✮ ✈➔ ✭✶✳✶✷✮✱ t❛ ♥❤➟♥ ✤÷đ❝ ✤→♥❤ ❣✐→ s❛✉ ∆p (¯ x, ΠCi (¯ x)) ≤ x¯ − ΠCi x¯, Jp (¯ x) − Jp (ΠCi (¯ x)) = x¯ − xnk , Jp (¯ x) − Jp (ΠCi (¯ x)) + xnk − ΠCi (xnk ), Jp (¯ x) − Jp (ΠCi (¯ x)) + ΠCi (xnk ) − ΠCi (¯ x), Jp (¯ x) − Jp (ΠCi (¯ x)) ≤ x¯ − xnk , Jp (¯ x) − Jp (ΠCi (¯ x)) + xnk − ΠCi (xnk ), Jp (¯ x) − Jp (ΠCi (¯ x)) x)) = x¯ − xnk , Jp (¯ x) − Jp (ΠCi (¯ x)) + xnk − yi,nk , Jp (¯ x) − Jp (ΠCi (¯ ❚ø ✭✷✳✶✶✮✱ ❝❤♦ k→∞ t❛ ♥❤➟♥ ữủ p ( x, Ci ( x)) = ợ ♠å✐ i = 1, 2, , N ✱ N tù❝ ❧➔ x¯ ∈ Ci ✈ỵ✐ ♠å✐ i = 1, 2, , N x Ci i=1 ữợ x¯ ∈ M A−1 Qj j=1 ❚ø ▼➺♥❤ ✤➲ ✷✳✷✳✸✱ t❛ ❝â t❛ ♥❤➟♥ ✤÷đ❝ ∆p (zn , yn ) → 0✳ ∆p (zj,n , yn ) → ❉♦ ✤â✱ tø ❝→❝ ①→❝ ✤à♥❤ ♣❤➛♥ tû ✈➔ ✈➻ ✈➟② t t ữủ zj,n yn 0, ợ ❱➻ E zn ✱ ✭✷✳✶✷✮ j = 1, 2, , M ✳ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ trì♥ ✤➲✉✱ ♥➯♥ →♥❤ ①↕ ✤è✐ ♥❣➝✉ Jp ❧✐➯♥ tö❝ ✤➲✉ tr➯♥ ❝→❝ t➟♣ ỵ ✤â t❛ ❝â tn A∗ Jp (I − PQj )A(yn ) = Jp (yn ) − Jp (zj,n ) → ❱➻ < t ≤ tn ✈ỵ✐ ♠å✐ n✱ ♥➯♥ t❛ ♥❤➟♥ ✤÷đ❝ A∗ Jp (I − PQj )A(yn ) → ❇➙② ❣✐í t❛ ❝è ✤à♥❤ u ∈ S✱ ❦❤✐ ✤â A(u) ∈ Qj ✈ỵ✐ ♠å✐ ✭✷✳✶✸✮ j = 1, 2, , M ✳ s✉② r❛ (I − PQj )A(ynk ) p = (I − PQj )A(ynk ), Jp (I − PQj )A(ynk ) ❚ø ✭✶✳✶✹✮ ✸✷ = A(ynk ) − A(u), Jp (I − PQj )A(ynk ) + A(u) − PQj A(ynk ), Jp (I − PQj )A(ynk ) ≤ A(ynk ) − A(u), Jp (I − PQj )A(ynk ) ≤ K0 (I − PQj )A(ynk ) p−1 , ✤✐➲✉ ♥➔② ❦➳t ❤đ♣ ✈ỵ✐ ✭✷✳✶✸✮✱ t❛ ♥❤➟♥ ữủ (I PQj )A(ynk ) ợ j = 1, 2, , M ✱ ð ✤➙② ✭✷✳✶✹✮ K0 = A (supk ynk + u ) < ∞✳ ❚ø ✭✶✳✶✹✮✱ t❛ ❝â p x) (I − PQj )A(¯ x)) x), Jp (A(¯ x) − PQj A(¯ = A(¯ x) − PQj A(¯ x)) = A(¯ x) − A(ynk ), Jp (A(¯ x) − PQj A(¯ x)) x), Jp (A(¯ x) − PQj A(¯ + A(ynk ) − PQj A(¯ x)) x) − A(ynk ), Jp (A(¯ x) − PQj A(¯ + PQj A(¯ x)) ≤ A(¯ x) − A(ynk ), Jp (A(¯ x) − PQj A(¯ x)) x), Jp (A(¯ x) − PQj A(¯ + A(ynk ) − PQj A(¯ ❚ø t➼♥❤ ❧✐➯♥ tö❝ ❝õ❛ ❝❤♦ k→∞ A✱ xn − yn → ✈➔ x nk x¯✱ s✉② r❛ A(ynk ) A(¯ x)✳ ❉♦ ✤â✱ ✈➔ sû ❞ư♥❣ ✭✷✳✶✹✮✱ t❛ ♥❤➟♥ ✤÷đ❝ x) = 0, A(¯ x) − PQj A(¯ M ✈ỵ✐ ♠å✐ j = 1, 2, , M ✱ tù❝ ❧➔ A−1 Qj ✳ A(¯ x) j=1 õ tứ ữợ ữợ ữợ t ữủ x S ✳ ❱➻ x¯ ❧➔ ❜➜t ❦ý✱ ωw (xn ) ⊂ S ✳ ▼➺♥❤ ✤➲ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❙ü ❤ë✐ tư ♠↕♥❤ ❝õ❛ P❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✷✳✶ ✤÷đ❝ ❝❤♦ tr♦♥❣ ✤à♥❤ ỵ ữợ ỵ r t t ❞➣② {xn} ❤ë✐ tö ♠↕♥❤ ✈➲ x† = ΠS (x0)✱ ❦❤✐ n → ∞✳ ❈❤ù♥❣ ♠✐♥❤✳ ●✐↔ sû {xnk } tø ▼➺♥❤ ✤➲ ✷✳✷✳✹✱ t❛ ❝â ❧➔ ♠ët ❞➣② ❝♦♥ ❝õ❛ x∗ ∈ S ✳ {xn } s❛♦ ❝❤♦ x nk x∗ ✳ ❑❤✐ ✤â ✸✸ ❱➻ xn+1 = ΠHn ∩Dn (x0 )✱ ♥➯♥ xn+1 ∈ Dn ✳ ❉♦ ✤â✱ tø ΠS (x0 ) ∈ S ⊂ Dn ✱ t❛ ❝â ∆p (xn+1 , x0 ) ≤ ∆p (ΠS x0 , x0 ), ❦➳t ❤đ♣ ✈ỵ✐ ∆p (xn+1 , x0 ) ≥ ∆p (xn , x0 )✱ t❛ ♥❤➟♥ ✤÷đ❝ ∆p (xn , x0 ) ≤ ∆p (ΠS x0 , x0 ), ∀n ≥ ✭✷✳✶✺✮ ❉♦ ✈➟②✱ tø ✭✶✳✶✵✮✱ ✭✶✳✶✶✮ ❛♥❞ ✭✷✳✶✺✮✱ t❛ t❤✉ ✤÷đ❝ ∆p (xnk , ΠS (x0 )) = ∆p (xnk , x0 ) + ∆p (x0 , ΠS (x0 )) + xnk − x0 , Jp (x0 ) − Jp (ΠS (x0 )) ≤ ∆p (ΠS (x0 ), x0 ) + ∆p (x0 , ΠS (x0 )) + ΠS (x0 ) − x0 , Jp (x0 ) − Jp (ΠS (x0 )) + xnk − ΠS (x0 ), Jp (x0 ) − Jp (ΠS (x0 )) = xnk − ΠS (x0 ), Jp (x0 ) − Jp (ΠS (x0 )) ❱➻ ✈➟②✱ t❛ ❝â lim sup ∆p (xnk , ΠS (x0 )) ≤ lim sup xnk − ΠS (x0 ), Jp (x0 ) − Jp (ΠS (x0 )) k→∞ k→∞ ≤ x∗ − ΠS (x0 ), Jp (x0 ) − Jp (ΠS (x0 )) ≤ 0, s✉② r❛ lim ∆p (xnk , ΠS (x0 )) = ✈➔ ❞♦ ✤â tø ✭✶✳✶✷✮ t❛ ❝â xnk → ΠS (x0 ) ✳ ❚ø t➼♥❤ k→∞ ❞✉② t r ứ tỗ t >0 ΠS (x0 )✱ s✉② r❛ ❞➣② {xn } ❤ë✐ tö ②➳✉ ✈➲ ΠS (x0 )✳ s❛♦ ❝❤♦ τ xn − ΠS (x0 ) ≤ xn − ΠS (x0 ), Jp (x0 ) − Jp (ΠS (x0 )) ❈❤♦ n → ∞✱ t❛ ♥❤➟♥ ✤÷đ❝ xn → x† = S (x0 ) t tứ ỵ t õ q ữợ rữợ t õ ♠ët ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤➸ ❣✐↔✐ ❜➔✐ t♦→♥ ✭▼❙❙❋P✮ tr♦♥❣ ❤❛✐ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ❍➺ q✉↔ ✷✳✷✳✻✳ ❈❤♦ Ci✱ i = 1, 2, , N ✈➔ Qj ✱ j = 1, 2, , M t ỗ õ rộ ổ pỗ ✈➔ trì♥ ✤➲✉ E ✈➔ F ✱ t÷ì♥❣ ù♥❣✳ ❈❤♦ A : E → F ❧➔ ♠ët t♦→♥ tû t✉②➳♥ t➼♥❤ ❜à ❝❤➦♥✳ ●✐↔ sû ✸✹ M N S = A−1 (Qj ) Ci j=1 i=1 ✭✶✳✶✻✮✱ = ∅✳ ◆➳✉ ❞➣② sè {tn } t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ t❤➻ ❞➣② {xn } ①→❝ ✤à♥❤ ❜ð✐ x0 ∈ E ✈➔ yi,n = ΠCi (xn ), i = 1, 2, , N, ❈❤å♥ in s❛♦ ❝❤♦ ∆p (yin ,n , xn ) = max ∆p (yi,n , xn ), ✤➦t yn = yin ,n , i=1, ,N zj,n = Jq∗ [Jp (yn ) − tn A∗ Jp (I − PQj )A(yn )], j = 1, 2, , M ❈❤å♥ jn s❛♦ ❝❤♦ ∆p (zjn ,n , yn ) = max ∆p (zj,n , yn ), ✤➦t zn = zjn ,n , j=1, ,M Hn = {z ∈ E : ∆p (zn , z) ≤ ∆p (yn , z) ≤ ∆p (xn , z)}, Dn = {z ∈ E : xn − z, Jp (x0 ) − Jp (xn ) ≥ 0}, xn+1 = ΠHn ∩Dn (x0 ), n ≥ 0, ❤ë✐ tö ♠↕♥❤ ✈➲ x† = ΠS (x0 )✱ ❦❤✐ n → ự ỵ ợ k = 1, 2, , K ✱ Tk (x) = x ợ x E t ữủ ✤✐➲✉ ♣❤↔✐ ❝❤ù♥❣ ♠✐♥❤✳ ❈✉è✐ ❝ò♥❣✱ t❛ ❝â ❦➳t q✉↔ ữợ t t ởt t ❝❤✉♥❣ ❝õ❛ ♠ët ❤å ❤ú✉ ❤↕♥ t♦→♥ tû ▲✲❇❙◆❊ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ❍➺ q✉↔ ✷✳✷✳✼✳ ❈❤♦ E ❧➔ ♠ët ổ pỗ trỡ Tk : E → E ✱ k = 1, 2, , K ❧➔ ♠ët ❤å ❤ú✉ ❤↕♥ ❝→❝ t♦→♥ tû ❇r❡❣♠❛♥ ❦❤æ♥❣ ❣✐➣♥ K ♠↕♥❤ tr→✐ s❛♦ ❝❤♦ Fˆ (Tk ) = F (Tk ) ✈➔ S = F (Tk ) = ∅✳ ❑❤✐ ✤â ❞➣② {xn } ①→❝ k=1 ✤à♥❤ ❜ð✐ x0 ∈ E ✈➔ tk,n = Tk (xn ), k = 1, 2, , K, ❈❤å♥ kn s❛♦ ❝❤♦ ∆p (tkn ,n , xn ) = max ∆p (tk,n , xn ), ✤➦t tn = tkn ,n , k=1, ,K Hn = {z ∈ E : ∆p (tn , z) ≤ ∆p (xn , z)}, Dn = {z ∈ E : xn − z, Jp (x0 ) − Jp (xn ) ≥ 0}, xn+1 = ΠHn ∩Dn (x0 ), n ≥ 0, ❤ë✐ tö ♠↕♥❤ ✈➲ x† = ΠS (x0 )✱ ❦❤✐ n → ∞✳ ❈❤ù♥❣ ♠✐♥❤✳ ⑩♣ ❞ö♥❣ ỵ ợ i = 1, 2, , N ✱ j = 1, 2, , M ✈➔ A = I✱ E ≡ F ✈➔ C i = Qj = E ợ t ữủ ự ✸✺ ✷✳✸ ❱➼ ❞ö ♠✐♥❤ ❤å❛ ❱➼ ❞ö ✷✳✸✳✶✳ ❚❛ ①➨t ❇➔✐ t♦→♥ ✭✷✳✶✮ ✈ỵ✐ Ci ⊂ Rn Qj ⊂ R m ✈➔ ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ C Ci = {x ∈ RN : aC i , x ≤ bi }, Q Qj = {x ∈ RM : aQ j , x ≤ bj }, tr♦♥❣ ✤â ✈➔ Tk Q N M aC i ∈ R , aj ∈ R ✈➔ ❧➔ ♣❤➨♣ ❝❤✐➳✉ ♠➯tr✐❝ tø Q bC i , bj ∈ R RN ❧➯♥ Sk Sk = {x ∈ Rn : ✈ỵ✐ ♠å✐ k = 1, 2, , K ✈➔ ✈ỵ✐ ♠å✐ i = 1, 2, , N ✱ j = 1, 2, , M ✈ỵ✐ x − Ik ≤ Rk2 }, A ❧➔ ♠ët t♦→♥ tû t✉②➳♥ t➼♥❤ ❜à ❝❤➦♥ tø RN ♠❛ tr➟♥ ❝â ❝→❝ ♣❤➛♥ tû ✤÷đ❝ s✐♥❤ ♥❣➝✉ ♥❤✐➯♥ tr♦♥❣ ✤♦↕♥ ❚✐➳♣ t❤❡♦✱ t❛ ❧➜② ♥❣➝✉ ♥❤✐➯♥ ❣✐→ trà ❝→❝ tå❛ ✤ë ❝õ❛ ✈➔ Q bC i ✱ bj tr♦♥❣ ✤♦↕♥ ❬✷✱✹❪✱ tå❛ ✤ë t➙♠ Sk ❤➻♥❤ ❝➛✉ tr♦♥❣ ✤♦↕♥ [2, 10]✱ ✈ỵ✐ [2, 4]✳ Q aC i ✱ aj [−1, 1] tr♦♥❣ ✤♦↕♥ ✈➔ ❜→♥ ❦➼♥❤ [1, 3] Rk ❝õ❛ K −1 A (Qj ) j=1 i=1 RM t÷ì♥❣ ù♥❣✳ Ci S= tr♦♥❣ ✤♦↕♥ M N ❉➵ t❤➜② Ik ❧➯♥ F (Tk ) = ∅✱ ✈➻ ∈ S✳ k=1 ❇➙② ❣✐í✱ t❛ ❦✐➸♠ tr❛ sü ❤ë✐ tư ❝õ❛ ❚❤✉➟t t♦→♥ ✷✳✶✱ ✈ỵ✐ ♣❤➛♥ tû ❜❛♥ ✤➛✉ x0 ∈ RN ❝â ❝→❝ tå❛ ✤ë ✤÷đ❝ s✐♥❤ ♥❣➝✉ ♥❤✐➯♥ tr♦♥❣ ✤♦↕♥ M = 40✱ N = 50✱ M = 100✱ K = 200 ✈➔ tn = A [−5, 5]✱ N = 20✱ ✳ ❙❛✉ ♥➠♠ ❧➛♥ t❤û✱ t❛ t❤✉ ✤÷đ❝ ❜↔♥❣ t q số ữợ ứ n < 10−5 ✣✐➲✉ ❦✐➺♥ ❞ø♥❣✿ ❚❖▲n < 10−6 ◆♦✳ ❚❖▲n n ◆♦✳ ❚❖▲n n ✶ 9.73191e − 006 525 ✶ 9.82257e − 007 2692 ✷ 9.72380e − 006 382 ✷ 9.88394e − 007 1084 ✸ 9.74093e − 006 594 ✸ 9.99178e − 007 1878 ✹ 9.81788e − 006 793 ✹ 9.82163e − 007 1922 ✺ 9.77395e − 006 250 ✺ 9.98486e − 007 1644 ❇↔♥❣ ✷✳✶✿ ❇↔♥❣ ❦➳t q✉↔ sè ❝❤♦ ú ỵ n = N ❚r♦♥❣ ✈➼ ❞ư tr➯♥✱ ❤➔♠ sè ❚❖▲ ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ N xn − PCi xn i=1 + M M Axn − PQj Axn j=1 + K K xn − Tk xn , k=1 ✸✻ ợ xn n ú ỵ r t ữợ tự n n =0 t xn S ✱ tù❝ ❧➔ ❧➔ ♠ët ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥✳ ❱➼ ❞ö ✷✳✸✳✸✳ E = F = L2 ([0, 1]) ợ t ổ ữợ f, g = f (t)g(t)dt ✈➔ ❝❤✉➞♥ ①→❝ ✤à♥❤ ❜ð✐ 1/2 f = f (t)dt , ✈ỵ✐ ♠å✐ f, g ∈ L2 ([0, 1]) ✣➦t tr♦♥❣ ✤â (t) = ti−1 ✱ Ci = {x ∈ L2 ([0, 1]) : , x = bi }, ✈ỵ✐ ♠å✐ i = 1, 2, , N ✈➔ t ∈ [0, 1]✱ bi = i+1 Qj = {x ∈ L2 ([0, 1]) : cj , x ≥ dj }, tr♦♥❣ ✤â cj (t) = t + j ✱ dj = ✈ỵ✐ ♠å✐ j = 1, 2, , M ✈➔ t ∈ [0, 1]✱ Tk = P S k , ð ✤➙② Sk = {x ∈ L2 ([0, 1]) : k = 1, 2, , K ✈➔ x − Ik ≤ k + 1}, Ik (t) = t + k ✈ỵ✐ t ∈ [0, 1]✳ ●✐↔ sû A : L2 ([0, 1]) −→ L2 ([0, 1]), (Ax)(t) = ❚❛ ①➨t ❜➔✐ t♦→♥ t➻♠ ♠ët ♣❤➛♥ tû N † x ∈S= S = ∅✱ ✈➻ x† x(t) s❛♦ ❝❤♦ M K −1 Ci i=1 ❉➵ t❤➜② ✈ỵ✐ ♠å✐ A (Qj ) F (Tk ) j=1 k=1 ΠCi (x) = PCi (x) = bi − , x + x, x(t) = t ∈ S ✳ ❚❛ ❝â PQj (x) = max 0, dj − cj , x cj cj + x, ✭✷✳✶✻✮ ✸✼ ✈➔ Tk (x) =   x,  Ik + ♥➳✉ k+1 (x − Ik ), x − Ik tr♦♥❣ ❝→❝ tr÷í♥❣ ❤đ♣ ❦❤→❝ N = 10, M = 20 ❙û ❞ư♥❣ ❚❤✉➟t t♦→♥ ✷✳✶ ✈ỵ✐ x − Ik ≤ k + 1, ✈➔ K = 40✱ t❛ t❤✉ ✤÷đ❝ ❜↔♥❣ ❦➳t q số ữợ ứ xn+1 xn tn = 1✱ x0 (t) = t2 ❡rr xn+1 − xn n < ❡rr −2 10 9.92326e − 003 128 −3 9.90940e − 004 2159 10 −4 10 9.98327e − 005 47840 tn = 1✱ x0 (t) = exp(t) ❡rr xn+1 − xn −2 10 9.06924e − 03 −3 10 9.95338e − 004 −4 10 9.97943e − 005 n 125 1091 11352 ❇↔♥❣ ✷✳✷✿ ❇↔♥❣ ❦➳t q✉↔ sè ❝❤♦ ❱➼ ❞ö ✷✳✸✳✸ ❉→♥❣ ✤✐➺✉ ❝õ❛ xn+1 − xn tr♦♥❣ ❇↔♥❣ ữủ ổ t ỗ t ữợ 10 x0(t)=exp(t) x0(t)=t2 −1 ||xn+1−xn|| 10 −2 10 −3 10 500 1000 1500 2000 2500 Number of interations ❍➻♥❤ ✷✳✶✿ ❉→♥❣ ✤✐➺✉ ❝õ❛ xn+1 − xn ❉→♥❣ ✤✐➺✉ ❝õ❛ ♥❣❤✐➺♠ ①➜♣ ①➾ ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ ❞ø♥❣ xn+1 − xn < 10−3 xn (t) tr♦♥❣ ❝↔ ❤❛✐ tr÷í♥❣ ❤đ♣ xn+1 xn < 103 ữủ tr ữợ ✸✽ 0.9 0.8 The solution x*(t)=t xn(t) with x0(t)=exp(t) 0.7 xn(t) with x0(t)=t2 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 ❍➻♥❤ ✷✳✷✿ ❉→♥❣ ✤✐➺✉ ❝õ❛ xn(t) ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ ❞ø♥❣ 0.7 0.8 0.9 xn+1 − xn < 10−3 ❚✐➳♣ t❤❡♦✱ ♥❤➡♠ ✤÷❛ r❛ ♠ët s♦ s→♥❤ ✤ì♥ ❣✐↔♥ ❣✐ú❛ ❤❛✐ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✶✳✷✷✮ ✈➔ ✭✷✳✶✮✱ t❛ ①➨t ♠ët tr÷í♥❣ ❤đ♣ ✤➦❝ ❜✐➺t ❝õ❛ ❇➔✐ t♦→♥ ✭✷✳✶✻✮ ♥❤÷ s❛✉✿ ❚➻♠ ♠ët ♣❤➛♥ tû tr♦♥❣ ✤â C = C ✱ Q = Q2 ✈➔ x† ∈ C ∩ A−1 (Q) ∩ F (T ), ✭✷✳✶✼✮ T = T2 ✳ ⑩♣ ❞ö♥❣ Pữỡ ợ tn = 1✱ αn = n ✈ỵ✐ ♠å✐ n ≥ ✈➔ u(t) = x0 (t) = ❡①♣(t2 + 1) ✈ỵ✐ ♠å✐ t ∈ [0, 1]✱ t❛ ♥❤➟♥ ✤÷đ❝ ❜↔♥❣ ❦➳t q số ữợ ứ xn+1 xn P❤÷ì♥❣ ♣❤→♣ ✭✶✳✷✷✮ ❡rr xn+1 − xn < ❡rr n 10−6 9.81429e − 07 18 10−7 9.750563778e − 08 56 10−8 9.97665e − 09 174 P❤÷ì♥❣ ♣❤→♣ ✭✷✳✶✮ ❡rr xn+1 − xn n 10−6 8.10708e − 07 17 10−7 4.17743e − 08 41 10−8 9.28195e − 09 831 ❇↔♥❣ ✷✳✸✿ ❇↔♥❣ ❦➳t q✉↔ sè ❝❤♦ ❇➔✐ t♦→♥ ✭✷✳✶✼✮ ✸✾ ❉→♥❣ ✤✐➺✉ ❝õ❛ ♥❣❤✐➺♠ ①➜♣ ①➾ xn (t) ❝❤♦ tr÷í♥❣ ❤đ♣ xn+1 − xn < 10−6 tr♦♥❣ ❇↔♥❣ ✷✳✸ ✤÷đ❝ ♠ỉ t tr ữợ Algorithm (2.1) Algorithm (1.16) 2.5 1.5 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 ❍➻♥❤ ✷✳✸✿ ❉→♥❣ ✤✐➺✉ ❝õ❛ xn(t) ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ ❞ø♥❣ 0.7 0.8 0.9 xn+1 − xn < 10−6 ✹✵ ❑➳t ❧✉➟♥ ▲✉➟♥ ✈➠♥ ✤➣ tr➻♥❤ ❜➔② ❧↕✐ ♠ët ❝→❝❤ ❦❤→ ❝❤✐ t✐➳t ✈➔ ❤➺ t❤è♥❣ ✈➲ ❝→❝ ✈➜♥ ✤➲ s❛✉✿ • ▼ët sè t➼♥❤ ❝❤➜t ✤➦❝ tr÷♥❣ ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ♣❤↔♥ ①↕✱ ❦❤ỉ♥❣ ỗ pỗ ổ trỡ ✤➲✉✱ q ✲trì♥ ✤➲✉✱ →♥❤ ①↕ ✤è✐ ♥❣➝✉❀ • ❑❤♦↔♥❣ ❝→❝❤ ❇r❡❣♠❛♥✱ ♣❤➨♣ ❝❤✐➳✉ ❇r❡❣♠❛♥❀ • ❇➔✐ t♦→♥ ❝❤➜♣ ♥❤➟♥ t→❝❤✱ t♦→♥ tû ❇r❡❣♠❛♥ ❦❤ỉ♥❣ ❣✐➣♥ ♠↕♥❤ tr→✐❀ • ❈→❝ ❦➳t q✉↔ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ❚✉②❡♥ ❚✳▼✳ ✈➔ ❍❛ ◆✳❙✳ tr♦♥❣ t➔✐ ❧✐➺✉ ❬✶✼❪ ✈➲ ♣❤÷ì♥❣ ♣❤→♣ ❝❤✐➳✉ ❧❛✐ ❣❤➨♣ t➻♠ ♠ët ♥❣❤✐➺♠ ❝❤✉♥❣ ❝õ❛ ❜➔✐ t♦→♥ ❝❤➜♣ ♥❤➟♥ t→❝❤ ✈➔ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣ ❝❤✉♥❣ ❝❤♦ ❝→❝ t♦→♥ tû ❇r❡❣♠❛♥ ❦❤æ♥❣ ❣✐➣♥ ♠↕♥❤ tr→✐ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ✹✶ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❬✶❪ ❨✳■✳ ❆❧❜❡r✱ ▼❡tr✐❝ ❛♥❞ ❣❡♥❡r❛❧✐③❡❞ ♣r♦❥❡❝t✐♦♥s ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s✿ ♣r♦♣❡rt✐❡s ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥s✱ ✐♥ ❚❤❡♦r② ❛♥❞ ❆♣♣❧✐❝❛t✐♦♥s ♦❢ ◆♦♥❧✐♥❡❛r ❖♣❡r❛t♦rs ♦❢ ❆❝✲ ❝r❡t✐✈❡ ❛♥❞ ▼♦♥♦t♦♥❡ ❚②♣❡ ✈♦❧ ✶✼✽ ♦❢ ▲❡❝t✉r❡ ◆♦t❡s ✐♥ P✉r❡ ❛♥❞ ❆♣♣❧✐❡❞ ▼❛t❤❡♠❛t✐❝s✱❯❙❆✱ ❉❡❦❦❡r✱ ◆❡✇ ❨♦r❦✱ ◆❨✱ ♣♣✳ ✶✺✲✺✵ ✭✶✾✾✻✮ ❬✷❪ ❆❣❛r✇❛❧ ❘✳ P✳✱ ❖✬❘❡❣❛♥ ❉✳✱ ❙❛❤✉ ❉✳ ❘✳ ✭✷✵✵✾✮✱ ▲✐♣s❝❤✐t③✐❛♥✲t②♣❡ ▼❛♣♣✐♥❣s ✇✐t❤ ❆♣♣❧✐❝❛t✐♦♥s✱ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r② ❢♦r ❙♣r✐♥❣❡r✳ ❬✸❪ ❇②r♥❡ ❈✳ ✭✷✵✵✷✮✱ ✏■t❡r❛t✐✈❡ ♦❜❧✐q✉❡ ♣r♦❥❡❝t✐♦♥ ♦♥t♦ ❝♦♥✈❡① s❡ts ❛♥❞ t❤❡ s♣❧✐t ❢❡❛s✐❜✐❧✐t② ♣r♦❜❧❡♠✑✱ ■♥✈❡rs❡ Pr♦❜❧❡♠s✱ ✶✽ ✭✷✮✱ ♣♣✳ ✹✹✶✕✹✺✸✳ ❬✹❪ ❇②r♥❡ ❈✳ ✭✷✵✵✹✮✱ ✏❆ ✉♥✐❢✐❡❞ tr❡❛t♠❡♥t ♦❢ s♦♠❡ ✐t❡r❛t✐✈❡ ❛❧❣♦r✐t❤♠s ✐♥ s✐❣♥❛❧ ♣r♦❝❡ss✐♥❣ ❛♥❞ ✐♠❛❣❡ r❡❝♦♥str✉❝t✐♦♥✑✱ ■♥✈❡rs❡ Pr♦❜❧❡♠s✱ ✶✽ ✱ ♣♣✳ ✶✵✸✕✶✷✵✳ ❬✺❪ ❇✉t♥❛r✐✉ ❉✳✱ ❘❡s♠❡r✐t❛ ❊✳ ✭✷✵✵✻✮✱ ✏❇r❡❣♠❛♥ ❞✐st❛♥❝❡s✱ t♦t❛❧❧② ❝♦♥✈❡① ❢✉♥❝✲ t✐♦♥s ❛♥❞ ❛ ♠❡t❤♦❞ ❢♦r s♦❧✈✐♥❣ ♦♣❡r❛t♦r ❡q✉❛t✐♦♥s ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s✑✱ ❆♣♣❧✳ ❆♥❛❧✳✱ ✷✵✵✻ ❆❜str✳ ✱ ♣♣✳ ✶✕✸✾✳ ❬✻❪ ❈❡♥s♦r ❨✳✱ ❊❧❢✈✐♥❣ ❚✳ ✭✶✾✾✹✮✱ ✏❆ ♠✉❧t✐♣r♦❥❡❝t✐♦♥ ❛❧❣♦r✐t❤♠ ✉s✐♥❣ ❇r❡❣♠❛♥ ♣r♦❥❡❝t✐♦♥s ✐♥ ❛ ♣r♦❞✉❝t s♣❛❝❡✑✱ ◆✉♠❡r✳ ❆❧❣♦r✐t❤♠s✱ ✽ ✭✷✲✹✮✱ ♣♣✳ ✷✷✶✕✷✸✾✳ ❬✼❪ ❈❡♥s♦r ❨✳✱ ▲❡♥t ❆✳ ✭✶✾✽✶✮✱ ✑❆♥ ✐t❡r❛t✐✈❡ r♦✇✲❛❝t✐♦♥ ♠❡t❤♦❞ ❢♦r ✐♥t❡r✈❛❧ ❝♦♥✈❡① ♣r♦❣r❛♠♠✐♥❣✑✱ ❏✳ ❖♣t✐♠✳ ❚❤❡♦r② ❆♣♣❧✳✱ ✸✹ ✱ ♣♣✳ ✸✷✶✕✸✺✸✳ ❬✽❪ ❈❡♥s♦r ❨✳✱ ❘❡✐❝❤ ❙✳ ✭✶✾✾✻✮✱ ✏■t❡r❛t✐♦♥s ♦❢ ♣❛r❛❝♦♥tr❛❝t✐♦♥s ❛♥❞ ❢✐r♠❧② ♥♦♥✲ ❡①♣❛♥s✐✈❡ ♦♣❡r❛t♦rs ✇✐t❤ ❛♣♣❧✐❝❛t✐♦♥s t♦ ❢❡❛s✐❜✐❧✐t② ❛♥❞ ♦♣t✐♠✐③❛t✐♦♥✑✱ t✐♠✐③❛t✐♦♥✱ ✸✼ ❬✾❪ ■✳ ❈✐♦r❛♥❡s❝✉✱ Pr♦❜❧❡♠s✱ ✱ ♣♣✳ ✸✷✸✕✸✸✾✳ ●❡♦♠❡tr② ♦❢ ❇❛♥❛❝❤ ❙♣❛❝❡s✱ ❉✉❛❧✐t② ▼❛♣♣✐♥❣s ❛♥❞ ◆♦♥❧✐♥❡❛r ❑❧✉✇❡r✱ ❉♦r❞r❡❝❤t ✭✶✾✾✵✮✳ ❬✶✵❪ ❉✐❡st❡❧ ❏✳ ✭✶✾✼✵✮✱ ❱❡r❧❛❣✳ ❖♣✲ ●❡♦♠❡tr② ♦❢ ❇❛♥❛❝❤ ❙♣❛❝❡s✲❙❡❧❡❝t❡❞ ❚♦♣✐❝s✱ ❙♣r✐♥❣❡r✲ ✹✷ ❬✶✶❪ ❑✳ ●♦❡❜❡❧✱ ❲✳❆✳ ❑✐r❦✱ ❙t✉❞✳ ❆❞✈✳ ▼❛t❤✳✱ ✷✽ ❚♦♣✐❝s ✐♥ ▼❡tr✐❝ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r②✱ ✱ ❈❛♠❜r✐❞❣❡ ❯♥✐✈✳ Pr❡ss✱ ❈❛♠❜r✐❞❣❡✱ ❯❑✱ ✶✾✾✵✳ ❈❧❛ss✐❝❛❧ ❇❛♥❛❝❤ ❙♣❛❝❡s ■■✿ ❋✉♥❝t✐♦♥ ❬✶✷❪ ▲✐♥❞❡♥str❛✉ss ❏✳✱ ❚③❛❢r✐r✐ ▲✳ ✭✶✾✼✾✮✱ ❙♣❛❝❡s✱ ❈❛♠❜r✐❞❣❡ ❊r❣❡❜♥✐ss❡ ▼❛t❤✳ ●r❡♥③❣❡❜✐❡t❡ ❇❞✳ ✾✼✱ ❙♣r✐♥❣❡r✲❱❡r❧❛❣✳ ❬✶✸❪ ❘❡✐❝❤ ❙✳ ✭✶✾✾✻✮✱ ✏❆ ✇❡❛❦ ❝♦♥✈❡r❣❡♥❝❡ t❤❡♦r❡♠ ❢♦r t❤❡ ❛❧t❡r♥❛t✐♥❣ ♠❡t❤♦❞ ✇✐t❤ ❇r❡❣♠❛♥ ❞✐st❛♥❝❡s✑✱ ✐♥✿ ❚❤❡♦r② ❛♥❞ ❆♣♣❧✐❝❛t✐♦♥s ♦❢ ◆♦♥❧✐♥❡❛r ❖♣✲ ❡r❛t♦rs ♦❢ ❆❝❝r❡t✐✈❡ ❛♥❞ ▼♦♥♦t♦♥❡ ❚②♣❡✱ ▼❛r❝❡❧ ❉❡❦❦❡r✱ ◆❡✇ ❨♦r❦✱ ♣♣✳ ✸✶✸✲✸✶✽✳ ❬✶✹❪ ❘♦❝❦❛❢❡❧❧❛r ❘✳ ❚✳ ✭✶✾✼✵✮✱ ✏❖♥ t❤❡ ♠❛①✐♠❛❧ ♠♦♥♦t♦♥✐❝✐t② ♦❢ s✉❜❞✐❢❢❡r❡♥t✐❛❧ ♠❛♣♣✐♥❣s✑✱ P❛❝✐❢✐❝ ❏✳ ▼❛t❤✳✱ ❱♦❧✳ ✸✸ ✭✶✮✱ ♣♣✳ ✷✵✾✕✷✶✻✳ ❬✶✺❪ ❙❝❤♦♣❢❡r ❋✳✱ ❙❝❤✉st❡r ❚✳✱ ▲♦✉✐s ❆✳❑✳ ✭✷✵✵✽✮✱ ✏❆♥ ✐t❡r❛t✐✈❡ r❡❣✉❧❛r✐③❛t✐♦♥ ♠❡t❤♦❞ ❢♦r t❤❡ s♦❧✉t✐♦♥ ♦❢ t❤❡ s♣❧✐t ❢❡❛s✐❜✐❧✐t② ♣r♦❜❧❡♠ ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s✑✱ ✷✹ ■♥✈❡rs❡ Pr♦❜❧❡♠s✱ ✱ ✵✺✺✵✵✽✳ ❬✶✻❪ ❙❤❡❤✉ ❨✳✱ ■②✐♦❧❛ ❖✳ ❙✳✱ ❊♥②✐ ❈✳ ❉✳ ✭✷✵✶✻✮✱ ✏❆♥ ✐t❡r❛t✐✈❡ ❛❧❣♦r✐t❤♠ ❢♦r s♦❧✈✲ ✐♥❣ s♣❧✐t ❢❡❛s✐❜✐❧✐t② ♣r♦❜❧❡♠s ❛♥❞ ❢✐①❡❞ ♣♦✐♥t ♣r♦❜❧❡♠s ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s✑✱ ◆✉♠❡r✳ ❆❧❣♦r✐t❤♠s✱ ✼✷ ✱ ♣♣✳ ✽✸✺✕✽✻✹✳ ❬✶✼❪ ❚✉②❡♥ ❚✳▼✳✱ ❍❛ ◆✳❙✳ ✭✷✵✶✽✮✱ ✏❆ str♦♥❣ ❝♦♥✈❡r❣❡♥❝❡ t❤❡♦r❡♠ ❢♦r s♦❧✈✐♥❣ t❤❡ s♣❧✐t ❢❡❛s✐❜✐❧✐t② ❛♥❞ ❢✐①❡❞ ♣♦✐♥t ♣r♦❜❧❡♠s ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s✑✱ ❚❤❡♦r② ❆♣♣❧✳✱ ✷✵ ❏✳ ❋✐①❡❞ P♦✐♥t ✭✶✹✵✮✳ ❬✶✽❪ ❳✉ ❍✳❑✳ ✭✶✾✾✶✮✱ ✏■♥❡q✉❛❧✐t✐❡s ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s ✇✐t❤ ❛♣♣❧✐❝❛t✐♦♥s✑✱ ❆♥❛❧✳✱ ❬✶✾❪ ❳✉ ✶✻ ◆♦♥❧✐♥❡❛r ✱ ♣♣✳ ✶✶✷✼✕✶✶✸✽✳ ❍✳❑✳ ✭✷✵✵✻✮✱ ✏❆ ✈❛r✐❛❜❧❡ ❑r❛s♥♦s❡❧✬s❦✐✐✲▼❛♥♥ ♠✉❧t✐♣❧❡✲s❡t s♣❧✐t ❢❡❛s✐❜✐❧✐t② ♣r♦❜❧❡♠✑✱ ❛❧❣♦r✐t❤♠ ■♥✈❡rs❡ Pr♦❜❧❡♠s✱ ✷✷ ❛♥❞ t❤❡ ✱ ♣♣✳ ✷✵✷✶✕✷✵✸✹✳ ❬✷✵❪ ✭✷✵✶✵✮✱ ✏■t❡r❛t✐✈❡ ♠❡t❤♦❞s ❢♦r t❤❡ s♣❧✐t ❢❡❛s✐❜✐❧✐t② ♣r♦❜❧❡♠ ✐♥ ✐♥❢✐♥✐t❡ ❞✐♠❡♥✲ s✐♦♥❛❧ ❍✐❧❜❡rt s♣❛❝❡s✑✱ ■♥✈❡rs❡ Pr♦❜❧❡♠s✱ ✷✻ ✱ ✶✵✺✵✶✽✳ ❬✷✶❪ ❲❛♥❣ ❋✳ ✭✷✵✶✹✮✱ ✏❆ ♥❡✇ ❛❧❣♦r✐t❤♠ ❢♦r s♦❧✈✐♥❣ t❤❡ ♠✉❧t✐♣❧❡✲s❡ts s♣❧✐t ❢❡❛✲ s✐❜✐❧✐t② ♣r♦❜❧❡♠ ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s✑✱ ✾✾✕✶✶✵✳ ◆✉♠❡r✳ ❋✉♥❝t✳ ❆♥❛❧✳ ❖♣t✐♠✳✱ ✸✺ ✱ ♣♣✳

Ngày đăng: 08/08/2020, 16:21

Từ khóa liên quan

Mục lục

  • Bia L.V Khoa hoc.doc

    • ĐẠI HỌC THÁI NGUYÊN

    • MỘT ĐỊNH LÝ HỘI TỤ MẠNH GIẢI BÀI TOÁN

    • CHẤP NHẬN TÁCH VÀ BÀI TOÁN ĐIỂM BẤT ĐỘNG

    • TRONG KHÔNG GIAN BANACH

    • LUẬN VĂN THẠC SĨ TOÁN HỌC

    • THÁI NGUYÊN - 2019

    • ĐẠI HỌC THÁI NGUYÊN

    • MỘT ĐỊNH LÝ HỘI TỤ MẠNH GIẢI BÀI TOÁN

    • CHẤP NHẬN TÁCH VÀ BÀI TOÁN ĐIỂM BẤT ĐỘNG

    • TRONG KHÔNG GIAN BANACH

    • LUẬN VĂN THẠC SĨ TOÁN HỌC

    • NGƯỜI HƯỚNG DẪN KHOA HỌC

    • 1. TS. Trương Minh Tuyên

    • 2. TS. Li ZhenYang

    • THÁI NGUYÊN - 2019

Tài liệu cùng người dùng

Tài liệu liên quan