Về bất đẳng thức loại gruss và một số bài toán liên quan

45 51 0
Về bất đẳng thức loại gruss và một số bài toán liên quan

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC  - PHẠM THÀNH CÔNG VỀ BẤT ĐẲNG THỨC LOẠI GRUSS VÀ MỘT SỐ BÀI TOÁN LIÊN QUAN LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2019 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC  - PHẠM THÀNH CÔNG VỀ BẤT ĐẲNG THỨC LOẠI GRUSS VÀ MỘT SỐ BÀI TOÁN LIÊN QUAN Chuyên ngành: Phương pháp Toán sơ cấp Mã số: 46 01 13 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS Trần Xuân Quý THÁI NGUYÊN - 2019 Mục lục Mở đầu Chương Về bất đẳng thức Gră uss 1.1 Mt s kin thc chun b 1.1.1 Hàm số, biến phân biến 1.1.2 Bt ng thc Hăolder 1.2 V bt ng thc Gră uss 1.3 Một số bất đẳng thức liên quan 1.3.1 Bất đẳng thức Karamata 1.3.2 Bất đẳng thức Steffensen 1.3.3 Bất đẳng thức Young phân toàn phần Chng V bt ng thc loi Gră uss số kết liên quan 2.1 Bất đẳng thc Gră uss-Chebyshev 2.2 Bt ng thc loi Gră uss i vi tớch phân Stieltjes 2.2.1 Bất ng thc loi Gră uss i vi tớch phõn Stieltjes có hàm lấy tích phân bị chặn 2.2.2 Bt ng thc loi Gră uss tích phân Stieltjes có hàm lấy tích phân hàm Lipschitz 2.3 Bt ng thc loi Gră uss tích phân Riemann-Stieltjes 3 10 10 13 15 17 17 19 19 27 37 Kết luận 40 Tài liệu tham khảo 41 Mở đầu Chủ để “bất đẳng thức” chủ đề khai thác kỳ thi chọn học sinh giỏi, lớp, cấp phổ thông, khơng phải tính trực quan tốn “so sánh” mà vấn đề thực có nhiều ứng dụng toán học đại Bài toán bất đẳng thức nghiên cứu nhiều khía cạnh tốn học, từ toán học lý thuyết túy đến toán học ứng dụng Cùng với phát triển công nghệ thơng tin, tốn giải gần quan tâm nhiều nhà toán học ứng dụng, mà bên cạnh khơng thể thiếu tốn “so sánh” Cùng với vai trò bất đẳng thức bất đẳng thức AM – GM, Cauchy – Bunyakovsky – Schwarz ., năm 1935 nh toỏn hc ngi c G Gră uss ó chng minh bất đẳng thức tích phân cho liên hệ tích phân tích hai hàm số tích phân hàm số mang tờn ụng ú l bt ng thc Gră uss ng dụng áp dụng nhiều lĩnh vực khác Tốn học Vì lý chúng tơi chọn đề tài luận văn “Bất đẳng thức loại Gră uss v mt s bi toỏn liờn quan Ni dung luận văn chia thành hai chương tham khảo từ tài liệu [2] tài liệu liên quan trình bày danh mục tài liệu tham khảo Nội dung luận văn, phần Mở đầu, Kết luận Tài liệu tham khảo, chia làm hai chng: Chng V bt ng thc Gră uss Chương trình bày lại kiến thức liên quan đến luận văn như: Trình bày lại số khái niệm hàm số biến phân, biến phõn ton phõn v tớnh cht Bt ng thc Hăolder Bt ng thc Gră uss, ch iu kin yu hn gi thit Gră uss Mt s bt ng thc liên quan Karamta, Steffensen, Young Chương Về bất ng thc loi Gră uss v mt s kt qu liên quan Chương trình bày biến th ca bt ng thc Gră uss, chng hn nh: Bt ng thc Gră uss-Chebyshev Bt ng thc kiu Gră uss tích phân Stieltjes có hàm lấy tích phõn b chn Bt ng thc kiu Gră uss i với tích phân Stieltjes có hàm lấy tích phân hm Lipschitz Bt ng thc kiu Gră uss i vi tích phân Riemann-Stieltjes Trong q trình học tập nghiên cứu trường Đại học khoa học Thái Nguyên, em nhận quan tâm giúp đỡ động viên thầy Ban Giám hiệu, phòng Đào tạo, Khoa Toán – Tin Tác giả xin chân thành cám ơn Ban giám hiệu trường THCS Tân Liên, Vĩnh Bảo, Hải Phòng tồn thể anh chị em đồng nghiệp tạo nhiều điều kiện tốt cho tác giả thời gian học cao học; cám ơn anh chị em học viên lớp cao học Toán K11 bạn bè đồng nghiệp trao đổi, động viên khích lệ tác giả q trình học tập làm luận văn trường Đại học Khoa học – Đại học Thái Nguyên Đặc biệt em xin lòng biết ơn sâu sắc tới thầy giáo hướng dẫn, TS Trần Xuân Quý quan tâm ân cần bảo, động viên khích lệ, giúp đỡ tận tình góp ý sâu sắc cho em suốt trình học tập thực đề tài Chặng đường vừa qua kỉ niệm đáng nhớ đầy ý nghĩa anh chị em học viên lớp cao học Tốn K11 nói chung với thân em nói riêng Dấu ấn hiển nhiên thiếu hỗ trợ, sẻ chia đầy yêu thương cha mẹ, anh chị em gia đình Xin chân thành cám ơn tất người thân yêu giúp đỡ, đồng hành em chặng đường vừa qua Một lần nữa, em xin trân trọng cảm ơn! Thái Nguyên, ngày 25 tháng 12 năm 2019 Học viên Phạm Thành Công Chng V bt ng thc Gră uss Trong chương này, chúng tơi, trình bày số kiến thức khái niệm tính chất hàm số liên tục tuyệt đối, biến phân biến phân toàn phần hm s Bt ng thc Hăolder dng i s v dng gii tớch, Bt ng thc Gră uss Cỏc kt sử dụng cho chứng minh Chương 1.1 1.1.1 Một số kiến thức chuẩn bị Hàm số, biến phân biến phân toàn phần Định nghĩa 1.1.1 (a) Hàm số f : [a, b] → R gọi liên tục tuyệt đối [a, b] với ε > tồn số dương δ thỏa mãn n |f (xi ) − f (yi )| < ε, i=1 với họ hữu hạn khoảng rời {[xi , yi ] : i = 1, 2, , n} [a, b] với ni=1 |xi − yi | < δ (b) Hàm số f : [a, b] → R gọi có biến phân bị chặn [a, b] tồn số M > thỏa mãn n |f (xi ) − f (xi−1 )| M, i=1 với phân hoạch P = {x0 , x1 , · · · , xn } [a, b] (c) Nếu hàm số f : [a, b] → R có biến phân bị chặn [a, b], biến phân tồn phần f [a, b] xác định sau   n b (f ) = a sup P={x0 ,x1 ,··· ,xn } phân hoạch của[a,b]  i=1   |f (xi ) − f (xi−1 ) | Nhận xét 1.1.2 Một hàm liên tục tuyệt đối [a, b] liên tục có biến phân bị chặn [a, b] Ví dụ 1.1.3 Nếu f : [a, b] → R hàm đơn điệu tăng với phân hoạch P = {x0 , x1 , · · · , xn } [a, b] ta có n n |f (xi ) − f (xi−1 )| = i=1 {f (xi ) − f (xi−1 )} i=1 = f (xn ) − f (x0 ) = f (b) − f (a) b (f ) = f (b) − f (a) Vì vậy, hàm f có biến phân bị chặn a Ví dụ 1.1.4 Nếu hàm f : [a, b] → R liên tục [a, b] khả vi (a, b) với sup |f (x)| M , với phân hoạch P = {x0 , x1 , · · · , xn } [a, b] a ta có bất đẳng thức sau 1 + = =⇒ uv p q p q u + v p q (1.2) Bất đẳng thức gọi bất đẳng thức Young Kết õy c gi l bt ng thc Hăolder nh lý 1.1.7 (Bt ng thc Hăolder) Cho hai b s a1 , a2 , , an 1 b1 , b2 , , bn hai n số thực dương p > 1, thỏa mãn + = p q Khi ta có bất đẳng thức sau n b i i=1 1  n p p  i=1 i=1  n  1 q bqi  Dấu xảy api = kbqi với i ∈ {1, 2, , , n} (1.3) Kết bất đẳng thc Hăolder dng gii tớch, chỳng tụi ch trỡnh bày kết mà không chứng minh Định lý 1.1.8 (Bt ng thc Hăolder dng gii tớch) Gi s p, q > thỏa 1 mãn + = 1, f g hai hàm số liên tục đoạn [a, b], p q b a b |f (x)g(x)| dx a p |f (x)| dx p b a q |g(x)| dx q (1.4) Dấu “=” xảy tồn hai số thực A B không đồng thời không cho A |f (x)|p = B |g(x)|q 1.2 ∀x ∈ [a, b] V bt ng thc Gră uss Gi s f, g p hàm khả tích [a, b] Ta có ký hiệu sau P (x) = x a b A(f ; p) = P (x) = P (b) − P (x), p(t)dt, a p(x)f (x)dx b a A(f ) = A(f ; 1), , p(x)dx T (f, g; p) = A(f g; p) − A(f ; p)A(g; p), A(f ; p) R(f, g; p) = , A(f ; p)A(g; p) T (f, g) = T (f, g; 1), R(f, g) = R(f, g; 1), Giả sử f g hai hàm số xác định khả tích [a, b], thỏa mãn điều kiện ϕ f (x) φ, γ g(x) Γ (1.5) với x ∈ [a, b], ϕ, φ, γ, Γ l cỏc s thc cho trc Nm 1935 G Gră uss đưa khẳng định sau: |T (f, g)| (φ − ϕ)(Γ − γ), (1.6) bỏo cụng b nm 1935 Gră uss ó chng minh bất đẳng thức ˇ 1/4 xấp xỉ tốt Hàm T (f, g) gọi hàm Cebyˇ sev Định lý 1.2.1 Chvới số L = 1, g hàm hàm liên tục, u có biến phân bị chặn Nếu ta giả sử bất đẳng thức (2.34) thõa mãn với số C > 0, tức là, |T (f, g; u)| CL(b − a) g − u(b) − u(a) b a u(b) − u(a) b a b (u), g(s)du(s) (2.36) ∞ a f (t)g(t)du(t) = b2 + a2 , b b 1 b+a f (t)du(t) = g(t)du(t) = , u(b) − u(a) a u(b) − u(a) a b a+b b−a g− g(s)du(s) = sup t − = u(b) − u(a) a 2 t∈[a,b] ∞ b (u) = 2, từ bất đẳng thức (2.36), ta có a b + a2 a+b − 2 suy C C (b − a) b − a · 2, 2 Kết liên quan tới hàm đơn điệu u : [a, b] → R sau: Định lý 2.2.6 Cho hàm f, g : [a, b] → R với f hàm loại r-H-Hăolder trờn [a, b] Nu u : [a, b] R hàm đơn điệu không giảm [a, b] với u(b) > u(a), ta có bất đẳng thức sau |T (f, g; u)| H u(b) − u(a) b a a+b t− r (2.37) ...  - PHẠM THÀNH CÔNG VỀ BẤT ĐẲNG THỨC LOẠI GRUSS VÀ MỘT SỐ BÀI TOÁN LIÊN QUAN Chuyên ngành: Phương pháp Toán sơ cấp Mã số: 46 01 13 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC... Chương Về bất đẳng thc Gră uss 1.1 Mt s kin thc chun b 1.1.1 Hàm số, biến phân bin 1.1.2 Bt ng thc Hăolder 1.2 V bt ng thc Gră uss 1.3 Một số bất đẳng thức liên quan 1.3.1 Bất đẳng thức. .. g(s)du(s) du(t) ước lượng tốt bất đẳng thức thứ hai Chứng minh Bất đẳng thức (2.39) trường hợp đặc biệt bất đẳng thức (2.37) với r = H ≡ L Giả sử bất đẳng thức (2.39) với số dương D, E > 0, |T (f,

Ngày đăng: 29/05/2020, 22:18

Mục lục

  • Mở đầu

  • Chương Về bất đẳng thức Grüss

    • Một số kiến thức chuẩn bị

      • Hàm số, biến phân và biến phân toàn phần

      • Bất đẳng thức Hölder

      • Về bất đẳng thức Grüss

      • Một số bất đẳng thức liên quan

        • Bất đẳng thức Karamata

        • Bất đẳng thức Steffensen

        • Bất đẳng thức Young

        • Chương Về bất đẳng thức loại Grüss và một số kết quả liên quan

          • Bất đẳng thức Grüss-Chebyshev

          • Bất đẳng thức loại Grüss đối với tích phân Stieltjes

            • Bất đẳng thức loại Grüss đối với tích phân Stieltjes có hàm lấy tích phân bị chặn

            • Bất đẳng thức loại Grüss đối với tích phân Stieltjes có hàm lấy tích phân là hàm Lipschitz

            • Bất đẳng thức loại Grüss đối với tích phân Riemann-Stieltjes

            • Kết luận

            • Tài lịu tham khao

            • Bia L.V Khoa hoc.doc

              • ĐẠI HỌC THÁI NGUYÊN

              • LUẬN VĂN THẠC SĨ TOÁN HỌC

              • THÁI NGUYÊN - 2019

              • ĐẠI HỌC THÁI NGUYÊN

              • LUẬN VĂN THẠC SĨ TOÁN HỌC

              • NGƯỜI HƯỚNG DẪN KHOA HỌC

              • THÁI NGUYÊN - 2019

Tài liệu cùng người dùng

Tài liệu liên quan