ĐỒ ÁN TỐT NGHIỆP NGÀNH XÂY DỰNG ( TIẾNG ANH ) part 1

32 181 0
ĐỒ ÁN TỐT NGHIỆP NGÀNH XÂY DỰNG ( TIẾNG ANH ) part 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Đồ án tốt nghiệp ngành kỹ thuật xây dựng dân dụng, được tính toán và trình bày bằng ngôn ngữ: tiếng Anh, có file Auto Cad, Etab, Sap2000 đính kèm. Dành cho sinh viên ngành xây dựng có đề tài tham khảo và hỗ trợ đồ án. chia làm 5 part

GRUADUATION THESIS PAGE INSTRUCTOR TABLE OF CONTENTS DOCUMENTATIONS I STANDARD DESIGN [1] “Bộ Xây dựng (2012), TCXDVN 5574: 2012 Kết cấu bê tông bê tông cốt thép – Tiêu chuẩn thiết kế, NXB Xây dựng, Hà Nội.” [2] “Bộ Xây dựng (2007), TCVN 2737: 1995 Tải trọng tác động – Tiêu chuẩn thiết kế, NXB Xây dựng, Hà Nội.” [3] “Bộ Xây dựng (2007), TCVN 229: 1999 Chỉ dẫn tính tốn thành phần động tải trọng gió, NXB Xây dựng, Hà Nội.” [4] “Bộ Xây dựng (2007), TCXD 198: 1997 Nhà cao tầng – Thiết kế bê tơng cốt thép tồn khối.” PROJECT: GOODS INSPECTION CENTER STUDENT: XXX GRUADUATION THESIS PAGE INSTRUCTOR [5] “Bộ Xây dựng (2014), TCVN 10304: 2014 Móng cọc – Tiêu chuẩn thiết kế.” [6] “Bộ Xây dựng (1998), TCXD 205: 1998 Móng cọc – Tiêu chuẩn thiết kế.” [7] “Bộ Xây dựng (1995), TCVN 4453: 1995 Kết cấu bê tông bê tơng cốt thép tồn khối - Quy phạm nghiệm thu thi công.”” II REFERENCE BOOKS [8] “Bộ Xây dựng (2008), Cấu tạo bê tông cốt thép, NXB Xây dựng.” [9] “Nguyễn Trung Hòa (2008), Kết Cấu Bê Tơng Cốt Thép theo Quy phạm Hoa Kỳ, NXB Xây dựng.” [10] “Nguyễn Đình Cống (2008), Tính tốn thực hành cấu kiện bê tông cốt thép theo TCXDVN 356 -2005 (tập tập 2), NXB Xây dựng Hà Nội” [11] “Vũ Mạnh Hùng (2008), Sổ tay thực hành Kết cấu Cơng trình, NXB Xây dựng.” [12] “Nguyễn Văn Quảng (2007), Nền móng Nhà cao tầng, NXB Khoa học Kỹ thuật.” [13] “Châu Ngọc Ẩn (2005), Nền móng, NXB Đại học Quốc gia TP Hồ Chí Minh.” [14] “Võ Bá Tầm (2011), Kết cấu bê tông cốt thép, tập 1, Cấu kiện theo TCXDVN 356-2005,NXB Đại học Quốc gia TP.Hồ Chí Minh.” [15] “Võ Bá Tầm (2011), Kết cấu bê tông cốt thép, tập 2, Các cấu kiện nhà cửa theo TCXDVN 356-2005,NXB Đại học quốc gia TP.Hồ Chí Minh.” [16] “Võ Bá Tầm (2011), Kết cấu bê tông cốt thép, tập 3, Các cấu kiện đặc biệt theo TCXDVN 356-2005,NXB Đại học Quốc gia TP.Hồ Chí Minh.” III [17] [18] [19] SOFTWARE “SAP 2000 version 14.2.” “ETABS version 9.7.4” Autocad 2014 IV WEBSITE [20] “hDEADp://dangiaohcm.com/cay-chong-tang-4m-31779.LLml” PROJECT: GOODS INSPECTION CENTER STUDENT: XXX GRUADUATION THESIS PAGE PROJECT: GOODS INSPECTION CENTER INSTRUCTOR STUDENT: XXX GRUADUATION THESIS CHAPTER PAGE INSTRUCTOR ARCHITECTURE OVERVIEW 1.1 PURPOSE OF DESINGING CONSTRUCTION The project of the Goods Inspection Center of Hồ Chí Minh City was established according to the current development trend of the city, located in the central area to match the function and working efficiency of the building and to answer adapting the city's economic growth rate as well as checking and inspecting export and import of goods from neighboring ports into export processing zones and industrial parks This is level I construction (100-year sustainability, fire-resistant level is II) Building height is 60.5 m (calculated from natural ground) Including 15 floors with a total area of 429m² 1.2 LOCATION AND FEATURES 1.2.1 Location of construction - Scale : the building is located in District 3, Hồ Chí Minh city - Construction scale: Level I - Floors: 15 floors - Land area: 684.61 m² - Construction area: 429 m² 1.2.2 Natural condition 1.2.2.1 Climate The climate of Hồ Chí Minh city is equatorial, so the temperature is high and quite stable during the year The average monthly sunshine hours reach from 160 to 270 hours, the average air humidity is 79.5% 1.3 ARCHITECTURE OVERVIEW 1.3.1 Construction scale 1.3.1.1 Construction type Civil construction level according to “thông tư số 03/2016/DEAD-BXD phụ lục 2” Height of each floor is shown in Table 1.1: PROJECT: GOODS INSPECTION CENTER STUDENT: XXX GRUADUATION THESIS PAGE INSTRUCTOR Floor Height Floor Height Basement -1.000m Floor +34.700m Ground floor +2.500m Floor 10 +38.100m Floor +7.500m Floor 11 +41.500m Floor +10.900m Floor 12 +44.900m Floor +14.300m Floor 13 +48.300m Floor +17.700m Floor 14 +51.700m Floor +21.100m Floor 15 +55.100m Floor +24.500m Roof +58.500m Floor +27.900m Water tank +60.500m Floor +31.300m Table 1.1 Floors height 1.3.1.2 Construction height The building is high 60.5m (calculated from natural ground: +0.000m) 1.3.2 Functional area • Basement : parking area and technical room • Floor 1: laboratory • Floor to floor 15: Offices • Roof : water tank roof 1.3.3 Internal traffic solution Horizontal traffic in the building (each floor) is a combination of the corridor and lobby system in the top-down smooth construction Standing traffic system is stair and elevator The ground has a 3-ladder ladder to the task as well as the main way to escape Elevators arranged ladders are placed in a position to ensure the longest distance to the staircase < 25m to solve PROJECT: GOODS INSPECTION CENTER STUDENT: XXX GRUADUATION THESIS PAGE INSTRUCTOR daily travel for everyone and a safe distance to escape quickly when the incident occurs 1.4 ENGINEERING SYSTEM 1.4.1 Power system The power supply system is going in the technical box Each floor has a table that controls individual interference with the power supply for each section or area Automatic CB break areas to isolate the local power source when a problem occurs There is an emergency power supply for the area: emergency exit, emergency light, fire pump, fire alarm and communication 1.4.2 Water supply system Water from the main water supply system of the city is put into the tank located at the technical floor (basement) and the water is pumped directly to the tank to the top floor, the control of the pumping process is carried out automatically through automatic float valve system Water pipes are in the genome box 1.4.3 Fire resistance system Because of the concentration of people and high-rise buildings, fire prevention is very important, arranged according to national standards Automatic smoke and heat alarms are arranged logically in each area 1.5 STRUCTURE SOLUTION FOR BUILDING Based on architectural requirements, column mesh, function of the project, students choose the solution of the whole floor system, arranged orthogonal beams PROJECT: GOODS INSPECTION CENTER STUDENT: XXX GRUADUATION THESIS PAGE INSTRUCTOR 1.6 FOUNDATION SOLUTION For high-rise buildings, the effect on the big foundation next to it is also the soil load applied to the foundation Deep foundation: bored pile foundation, Barret pile foundation, pre-cast reinforced concrete pile foundation, prestressed centrifugal pile foundation With the facilities of the project as above students choose the solution of driven pile foundation for the foundation solution of the project 1.7 STRUCTURAL DESIGN BASIC 1.7.1 Materials solution 1.7.1.1 Concrete and steel We have concrete and steel feature of concrete is shown in Table 1.2 and Table 1.3 Num Durable level Performance Concrete B25: Rb = 14.5 MPa Ground floor, staircase, Rbt = 1.05 MPa ; Eb = 30x103 Mpa cylinder, wall, foundation, Concrete B30: Rb = 17 MPa column, beam, floor, water Rbt = 1.2 MPa ; Eb = 32.5x103 Mpa tank, staircase Plaster , mortar Cement mortar, plastering walls Table 1.2 Concrete features Nu Steel type m Steel AI (d 10): Rs = Rsc = 225MPa Rsw = 175 MPa ; Es = 2.1x105 MPa Steel AIII (d 10): Rs = Rsc = 365 PROJECT: GOODS INSPECTION CENTER Performance d 10 mm d 10mm STUDENT: XXX GRUADUATION THESIS PAGE INSTRUCTOR MPa Rsw = 290 MPa ; Es = 20x105 MPa Table 1.3 Steel features PROJECT: GOODS INSPECTION CENTER STUDENT: XXX GRUADUATION THESIS PAGE CHAPTER INSTRUCTOR DESIGN FLOOR 2-15 2.1 PLAN VIEW OF FLOORS 2-15: We have Beams arrangement floors plan 2-15 is in Table 2.1 Table 2.2 Structural plan of floors - 15 2.2 DETERMINATION OF SECTIONAL DIMENSIONS : 2.2.1 Slab’s thickness: Primarily determination of the slab’s thickness ( Vietnamese experience): Select the biggest slab that has size : PROJECT: GOODS INSPECTION CENTER (S15) STUDENT: XXX GRUADUATION THESIS In that: PAGE 10 INSTRUCTOR m = 30 35 for one-way slab (L2 ≥ 2L1) m = 40 45 for two-way slab (L2 < 2L1) : Length of the shorter dimension of the slab D = 0.8 1.4 depend on loading magnitude All the slabs are shown in Table 2.2 by using the formula: Num Slabs Thickness Slabs in typical flkoor (floor to floor 15) 120 Toilet’s slabs 120 Table 2.3 Determination of the slabs’s thickness 2.2.2 Beam sections: Primarily determination by this experienced formulas: Main beam : Beam’s heigLL: Choose hmb = 700 mm Beam’s width: Choose bmb = 300 mm Secondary beam : Beam’s heigLL: Choose hsb= 600 mm Beam’s width: Choose bsb = 200 mm PROJECT: GOODS INSPECTION CENTER STUDENT: XXX GRUADUATION THESIS PAGE 18 INSTRUCTOR => Eligible At the mid-span Working heigLL of section : Reinforcement section: Choose , Checking steel ratio : Eligible • Calculating reinforcement in long dimension L2 At the supporters Working heigLL of section : Reinforcement section: Choose , PROJECT: GOODS INSPECTION CENTER STUDENT: XXX GRUADUATION THESIS PAGE 19 INSTRUCTOR Checking steel ratio : Eligible At the mid-span Working heigLL of section : Reinforcement section: Choose , Checking steel ratio : Eligible Use the same method for other slabs, we have Table 2.9 : Slab Moments (kN.m/m) S1 M1 2.5 M2 MI 1.8 5.7 Caculalte reinforcement Ads αm ζ (mm2/m) 0.01 0.01 0.04 0.019 111 0.016 0.045 87 258 PROJECT: GOODS INSPECTION CENTER φ Arrange reinforcement a As Ratio (mm) (mm) 200 200 190 (mm2/m) (%) 141 0.141 141 265 0.141 0.265 STUDENT: XXX GRUADUATION THESIS Slab Moments (kN.m/m) S2 S3 S4 S5 MII 4.2 M1 2.6 M2 1.8 MI 6.1 MII 4.1 M1 2.1 M2 1.9 MI 4.8 MII 4.4 M1 2.1 M2 1.9 MI 4.8 MII 4.4 M1 2.0 M2 1.6 MI 4.7 MII 3.7 M1 M2 2.0 1.6 S6 PAGE 20 Caculalte reinforcement Ads αm ζ (mm2/m) 0.03 0.02 0.01 0.04 0.03 0.01 0.01 0.03 0.03 0.01 0.01 0.03 0.03 0.01 0.01 0.03 0.02 0.01 0.01 0.033 190 0.020 119 0.015 84 0.048 277 0.032 183 0.016 92 0.016 90 0.037 216 0.034 198 0.016 92 0.016 90 0.037 216 0.034 198 0.016 91 0.014 77 0.037 212 0.029 168 0.016 0.014 91 77 PROJECT: GOODS INSPECTION CENTER INSTRUCTOR φ Arrange reinforcement a As Ratio (mm) (mm) 200 200 200 180 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 (mm2/m) (%) 250 0.250 141 0.141 141 0.141 279 0.279 250 0.250 141 0.141 141 0.141 250 0.250 250 0.250 141 0.141 141 0.141 250 0.250 250 0.250 141 0.141 141 0.141 250 0.250 250 0.250 141 141 0.141 0.141 STUDENT: XXX GRUADUATION THESIS Slab Moments (kN.m/m) S7 MI 4.7 MII 3.7 M1 2.7 M2 1.4 MI 6.0 MII M1 3.1 1.5 M2 1.5 MI 3.4 MII 3.4 M1 2.9 M2 2.5 MI 6.7 MII 5.9 M1 2.9 M2 2.8 MI 6.7 MII 6.6 S8 S9 S10 PAGE 21 Caculalte reinforcement Ads αm ζ (mm2/m) 0.03 0.02 0.02 0.01 0.04 0.02 0.011 0.01 0.02 0.02 0.02 0.02 0.05 0.04 0.02 0.02 0.05 0.05 0.037 212 0.029 168 0.021 120 0.012 66 0.047 275 0.024 0.011 141 66 0.013 71 0.026 155 0.026 155 0.022 130 0.022 122 0.051 305 0.045 269 0.022 130 0.025 136 0.052 308 0.050 300 PROJECT: GOODS INSPECTION CENTER INSTRUCTOR φ Arrange reinforcement a As Ratio (mm) (mm) 200 200 200 200 180 200 200 200 200 200 200 200 160 190 200 200 160 160 (mm2/m) (%) 250 0.250 250 0.250 141 0.141 141 0.141 279 0.279 250 141 0.250 0.141 141 0.141 250 0.250 250 0.250 141 0.141 141 0.141 314 0.314 265 0.265 141 0.141 141 0.141 314 0.314 314 0.314 STUDENT: XXX GRUADUATION THESIS Slab Moments (kN.m/m) S11 S12 S13 S14 M1 2.4 M2 1.7 MI 5.6 MII 3.9 M1 2.4 M2 1.7 MI 5.6 MII 3.9 M1 2.5 M2 2.0 MI 5.8 MII 4.7 M1 2.5 M2 2.0 MI 5.8 MII 4.7 M1 3.1 M2 MI 2.5 7.2 S15 PAGE 22 Caculalte reinforcement Ads αm ζ (mm2/m) 0.01 0.01 0.04 0.03 0.01 0.01 0.04 0.03 0.01 0.01 0.04 0.03 0.01 0.01 0.04 0.03 0.02 0.02 0.05 0.018 108 0.015 82 0.043 252 0.030 178 0.018 108 0.015 82 0.043 252 0.030 178 0.019 112 0.018 97 0.044 262 0.036 213 0.019 112 0.018 97 0.044 262 0.036 213 0.024 140 0.021 0.055 118 329 PROJECT: GOODS INSPECTION CENTER INSTRUCTOR φ Arrange reinforcement a As Ratio (mm) (mm) 200 200 190 200 200 200 190 200 200 200 190 200 200 200 190 200 200 200 150 (mm2/m) (%) 141 0.141 141 0.141 265 0.265 250 0.250 141 0.141 141 0.141 265 0.265 250 0.250 141 0.141 141 0.141 265 0.250 250 0.250 141 0.141 141 0.141 265 0.250 250 0.250 141 0.141 141 335 0.141 0.335 STUDENT: XXX GRUADUATION THESIS Slab Moments (kN.m/m) S16 S17 S18 S19 S20 MII 5.7 M1 2.1 M2 1.4 MI 4.8 MII 3.1 M1 2.6 M2 2.6 MI 6.0 MII 6.0 M1 2.8 M2 2.6 MI 6.5 MII 5.9 M1 2.5 M2 2.0 MI 5.8 MII M1 4.7 2.5 PAGE 23 Caculalte reinforcement Ads αm ζ (mm2/m) 0.04 0.01 0.01 0.03 0.02 0.02 0.02 0.04 0.04 0.02 0.02 0.05 0.04 0.01 0.01 0.04 0.03 0.01 0.044 260 0.016 94 0.012 65 0.037 219 0.024 142 0.020 115 0.022 123 0.046 271 0.046 271 0.022 127 0.022 122 0.050 299 0.045 269 0.019 113 0.018 97 0.045 264 0.036 0.019 212 113 PROJECT: GOODS INSPECTION CENTER INSTRUCTOR φ Arrange reinforcement a As Ratio (mm) (mm) 190 6 8 6 8 6 8 6 8 (mm2/m) (%) 265 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 180 279 0.279 180 279 0.279 200 141 0.141 200 141 0.141 160 314 0.314 180 279 0.279 200 141 0.141 200 141 0.141 190 265 0.265 200 200 250 141 0.250 0.141 STUDENT: XXX GRUADUATION THESIS Slab Moments (kN.m/m) S21 S22 S23 M2 2.0 MI 5.8 MII 4.7 M1 2.6 M2 2.4 MI 5.9 MII 5.5 M1 2.6 M2 2.4 MI 5.9 MII 5.5 M1 3.0 M2 2.1 MI 6.9 MII 4.9 M1 2.2 M2 1.6 MI MII 5.0 3.7 S24 PAGE 24 Caculalte reinforcement Ads αm ζ (mm2/m) 0.01 0.04 0.03 0.02 0.02 0.04 0.04 0.02 0.02 0.04 0.04 0.02 0.01 0.05 0.03 0.01 0.01 0.03 0.02 0.018 97 0.045 264 0.036 212 0.020 115 0.020 113 0.045 270 0.042 249 0.020 115 0.020 113 0.045 270 0.042 249 0.023 136 0.018 101 0.053 317 0.037 221 0.016 96 0.014 76 0.038 0.028 225 165 PROJECT: GOODS INSPECTION CENTER INSTRUCTOR φ (mm) 8 6 8 6 8 6 8 6 8 Arrange reinforcement a As Ratio (mm) (mm2/m) 200 141 0.141 190 265 0.265 200 250 0.250 200 141 0.141 200 141 0.141 180 279 0.279 200 250 0.250 200 141 0.141 200 141 0.141 180 279 0.279 200 250 0.250 200 141 0.141 200 141 0.141 150 335 0.335 200 250 0.250 200 141 0.141 200 141 0.141 200 200 250 250 0.250 0.250 (%) STUDENT: XXX GRUADUATION THESIS Slab Moments (kN.m/m) S25 S26 S27 S28 M1 2.6 M2 2.6 MI 6.0 MII 6.0 M1 2.8 M2 2.6 MI 6.5 MII 5.9 M1 2.6 M2 2.1 MI 5.9 MII 4.8 M1 2.6 M2 2.1 MI 5.9 MII 4.8 M1 M2 2.6 2.4 S29 PAGE 25 Caculalte reinforcement Ads αm ζ (mm2/m) 0.02 0.02 0.04 0.04 0.02 0.02 0.05 0.04 0.01 0.01 0.04 0.03 0.01 0.01 0.04 0.03 0.02 0.02 0.020 115 0.022 123 0.046 271 0.046 271 0.022 127 0.022 122 0.050 299 0.045 269 0.019 113 0.018 97 0.045 264 0.036 212 0.019 113 0.018 97 0.045 264 0.036 212 0.020 0.020 115 113 PROJECT: GOODS INSPECTION CENTER INSTRUCTOR φ (mm) 6 8 6 8 6 8 6 8 6 Arrange reinforcement a As Ratio (mm) (mm2/m) 200 141 0.141 200 141 0.141 180 279 0.279 180 279 0.279 200 141 0.141 200 141 0.141 160 314 0.314 180 279 0.279 200 141 0.141 200 141 0.141 180 279 0.279 200 250 0.250 200 141 0.141 200 141 0.141 180 279 0.279 200 250 0.250 200 200 141 141 0.141 0.141 (%) STUDENT: XXX GRUADUATION THESIS Slab Moments (kN.m/m) S30 S31 S32 S33 S34 MI 6.0 MII 5.6 M1 2.6 M2 2.4 MI 6.0 MII 5.6 M1 3.1 M2 2.2 MI 7.1 MII 5.0 M1 2.2 M2 1.6 MI 5.1 MII 3.7 M1 2.1 M2 1.8 MI 4.9 MII M1 4.1 2.3 PAGE 26 Caculalte reinforcement Ads αm ζ (mm2/m) 0.04 0.04 0.02 0.02 0.04 0.04 0.02 0.01 0.05 0.03 0.01 0.01 0.03 0.02 0.01 0.01 0.03 0.03 0.01 0.045 270 0.042 249 0.020 115 0.020 113 0.045 270 0.042 249 0.023 136 0.018 101 0.053 317 0.037 221 0.016 96 0.014 76 0.038 225 0.028 165 0.016 93 0.015 82 0.037 218 0.031 0.017 180 101 PROJECT: GOODS INSPECTION CENTER INSTRUCTOR φ (mm) 8 6 8 6 8 6 8 6 8 Arrange reinforcement a As Ratio (mm) (mm2/m) 180 279 0.279 200 250 0.250 200 141 0.141 200 141 0.141 180 279 0.279 200 250 0.250 200 141 0.141 200 141 0.141 160 314 0.314 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 200 250 141 0.250 0.141 (%) STUDENT: XXX GRUADUATION THESIS Slab Moments (kN.m/m) S35 S36 S37 M2 1.7 MI 5.3 MII 4.0 M1 2.2 M2 2.1 MI 5.0 MII 4.9 M1 2.2 M2 2.1 MI 5.0 MII 4.9 M1 2.4 M2 2.2 MI 5.6 MII 5.0 M1 2.4 M2 MI 2.2 5.6 S38 PAGE 27 Caculalte reinforcement Ads αm ζ (mm2/m) 0.01 0.04 0.03 0.01 0.01 0.03 0.03 0.01 0.01 0.03 0.03 0.01 0.01 0.04 0.03 0.01 0.01 0.04 0.015 81 0.040 236 0.030 176 0.016 95 0.018 98 0.038 223 0.037 217 0.016 95 0.018 98 0.038 223 0.037 217 0.018 106 0.018 101 0.042 248 0.038 222 0.018 106 0.018 0.042 101 248 PROJECT: GOODS INSPECTION CENTER INSTRUCTOR φ (mm) 8 6 8 6 8 6 8 6 Arrange reinforcement a As Ratio (mm) (mm2/m) 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 200 141 250 0.141 0.250 (%) STUDENT: XXX GRUADUATION THESIS Slab Moments (kN.m/m) S39 S40 S41 S42 MII 5.0 M1 2.9 M2 1.7 MI 6.6 MII 3.8 M1 1.9 M2 1.7 MI 4.4 MII 3.9 M1 2.1 M2 1.6 MI 4.9 MII 3.8 M1 2.3 M2 1.6 MI 5.2 MII 3.7 M1 M2 1.3 0.2 S43 PAGE 28 Caculalte reinforcement Ads αm ζ (mm2/m) 0.03 0.02 0.01 0.04 0.02 0.01 0.01 0.03 0.02 0.01 0.01 0.03 0.02 0.01 0.01 0.03 0.02 0.00 0.00 0.038 222 0.022 127 0.014 78 0.049 293 0.029 169 0.014 82 0.014 78 0.033 193 0.029 172 0.016 92 0.014 77 0.036 216 0.029 168 0.017 100 0.014 75 0.039 232 0.028 163 0.005 0.002 31 11 PROJECT: GOODS INSPECTION CENTER INSTRUCTOR φ (mm) 6 8 6 8 6 8 6 8 6 Arrange reinforcement a As Ratio (mm) (mm2/m) 200 250 0.250 200 141 0.141 200 141 0.141 160 314 0.314 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 200 141 141 0.141 0.141 (%) STUDENT: XXX GRUADUATION THESIS Slab Moments (kN.m/m) S44 S45 S46 S47 MI 1.6 MII 0.5 M1 1.9 M2 1.8 MI 4.5 MII 4.3 M1 1.9 M2 1.6 MI 4.4 MII 3.8 M1 2.1 M2 1.8 MI 4.8 MII 4.1 M1 2.8 M2 1.5 MI 6.4 MII 3.5 PAGE 29 Caculalte reinforcement Ads αm ζ (mm2/m) 0.01 0.00 0.01 0.01 0.03 0.03 0.01 0.01 0.03 0.02 0.01 0.01 0.03 0.03 0.02 0.01 0.04 0.02 0.012 68 0.004 22 0.014 85 0.015 85 0.034 198 0.032 187 0.014 82 0.013 74 0.033 192 0.028 162 0.016 91 0.015 82 0.036 214 0.031 181 0.021 124 0.013 72 0.048 284 0.026 155 PROJECT: GOODS INSPECTION CENTER INSTRUCTOR φ (mm) 8 6 8 6 8 6 8 6 8 Arrange reinforcement a As Ratio (mm) (mm2/m) 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 200 250 0.250 200 250 0.250 200 141 0.141 200 141 0.141 170 296 0.296 200 250 0.250 (%) STUDENT: XXX GRUADUATION THESIS PAGE 30 INSTRUCTOR Table 2.9 Reinforcement calculation 2.5 CHECKING DEFLECTION AND CRACK BY USING “SAFE” (DEADGH2): We have deflection and cracking values by using “ SAFE” to calculate in Table 2.10: Table 2.10 Model for calculation deflection and cracking in floor We have calculation chart of deflection’s value is in Table 2.11: PROJECT: GOODS INSPECTION CENTER STUDENT: XXX GRUADUATION THESIS PAGE 31 INSTRUCTOR Table 2.11 Calculation chart of deflection The highest deflection is in axis frame (1-2 + A-B) slab with the maximum deflection value is -1.1 (mm) Checking deflection ratio: Also we have calculation chart of cracking’s values in Table 2.12: Table 2.12 Calculation chart of deflection The highest cracking is in axis frame (1-2 + A-B) slab with the maximum cracking value is 0.130 (mm) Checking deflection ratio: PROJECT: GOODS INSPECTION CENTER STUDENT: XXX ... 0.250 14 1 0 .14 1 14 1 0 .14 1 279 0.279 250 0.250 14 1 0 .14 1 14 1 0 .14 1 250 0.250 250 0.250 14 1 0 .14 1 14 1 0 .14 1 250 0.250 250 0.250 14 1 0 .14 1 14 1 0 .14 1 250 0.250 250 0.250 14 1 14 1 0 .14 1 0 .14 1 STUDENT:... 200 16 0 19 0 200 200 16 0 16 0 (mm2/m) (% ) 250 0.250 250 0.250 14 1 0 .14 1 14 1 0 .14 1 279 0.279 250 14 1 0.250 0 .14 1 14 1 0 .14 1 250 0.250 250 0.250 14 1 0 .14 1 14 1 0 .14 1 314 0. 314 265 0.265 14 1 0 .14 1 14 1... (mm) (mm) 200 200 19 0 200 200 200 19 0 200 200 200 19 0 200 200 200 19 0 200 200 200 15 0 (mm2/m) (% ) 14 1 0 .14 1 14 1 0 .14 1 265 0.265 250 0.250 14 1 0 .14 1 14 1 0 .14 1 265 0.265 250 0.250 14 1 0 .14 1 14 1

Ngày đăng: 04/11/2019, 16:27

Từ khóa liên quan

Mục lục

  • CHAPTER 1 ARCHITECTURE OVERVIEW

    • 1.1. PURPOSE OF DESINGING CONSTRUCTION

    • 1.2. LOCATION AND FEATURES

      • 1.2.1. Location of construction

      • 1.2.2. Natural condition

        • 1.2.2.1. Climate

        • The climate of Hồ Chí Minh city is equatorial, so the temperature is high and quite stable during the year. The average monthly sunshine hours reach from 160 to 270 hours, the average air humidity is 79.5%.

        • 1.3. ARCHITECTURE OVERVIEW

          • 1.3.1. Construction scale

            • 1.3.1.1. Construction type

            • 1.3.1.2. Construction height

            • 1.3.2. Functional area

            • 1.3.3. Internal traffic solution

            • 1.4. ENGINEERING SYSTEM

              • 1.4.1. Power system

              • 1.4.2. Water supply system

              • 1.4.3. Fire resistance system

              • 1.5. STRUCTURE SOLUTION FOR BUILDING

              • 1.6. FOUNDATION SOLUTION

              • 1.7. STRUCTURAL DESIGN BASIC

                • 1.7.1. Materials solution

                  • 1.7.1.1. Concrete and steel

                  • CHAPTER 2 DESIGN FLOOR 2-15

                    • 2.1. PLAN VIEW OF FLOORS 2-15:

                    • 2.2. DETERMINATION OF SECTIONAL DIMENSIONS :

                      • 2.2.1. Slab’s thickness:

                      • 2.2.2. Beam sections:

                      • 2.3. TYPES OF LOADS

                        • 2.3.1. Dead load of slab’s layers

                        • 2.3.2. Live load

                        • 2.4. SLAB’S STEEL CALCULATION

                          • 2.4.1. Steel calculation of two-way slab

                            • 2.4.1.1. Determination of slab’s distributed load

Tài liệu cùng người dùng

Tài liệu liên quan