Advances in agronomy volume 34

501 133 0
Advances in agronomy volume 34

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ADVANCES IN AGRONOMY VOLUME 34 CONTRIBUTORS TO THIS VOLUME M J AMBROSE R B BEVERLY W C GREGORY UMESHC GUPTA Hu HAN C L HEDLEY W M JARRELL PREMP JAUHAR THOMASA LARUE JOHN LIPSETT THOMAS G PATTERSON SHAOQIQUAN JOSE G SALINAS PEDROA SANCHEZ H K SRIVASTAVA J C WYNNE ADVANCES IN AGRONOMY Prepared in cooperution with the AMERICAN SOCIETY OF AGRONOMY VOLUME 34 Edited by N C BRADY Science and Technology Bureau Agency for International Development Department of State Washington, D C ADVISORY BOARD H J GORZ,CHAIRMAN E J KAMPRATH T M STARLING J B POWELL J W BIGGAR M A TABATABAI M STELLY, EX OFFICIO, ASA Headquarters 1981 ACADEMIC PRESS A Subsidiary of Harcourr Bruce Jovanovich, Publishers New York London Toronto Sydney San Francisco COPYRIGHT @ 1981, BY ACADEMIC PRESS, 1NC ALL RIGHTS RESERVED NO PART O F THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM T H E PUBLISHER ACADEMIC PRESS,INC 111 Fifth Avenue, New York New York 10003 United Kirigdom Edition published b y ACADEMIC PRESS, INC ( L O N D O N ) LTD 24/28 Oval Road, London NWI 7DX LIBRARY O F CONGRESS CATALOG CARD NUMBER:50-5598 ISBN 0-12-000734-7 PRINTED IN THE UNITED STATES O F AMERICA 81 82 83 84 CONTENTS CONTRIBUTORSTO VOLUME 34 PREFACE ix xi ADVANCES IN PLANT CELL AND TISSUE CULTURE IN CHINA Hu Han and Shao Qiquan I I1 111 IV V VI Introduction Anther Culture and Crop Improvement Some Fundamental Problems Protoplast Isolation, Culture and Genetic Manipulation Selection of Mutants Miscellaneous: In Vi'itroPropagation through Plant Tissue Culture References 10 11 HOW MUCH NITROGEN DO LEGUMES FIX? Thomas A LaRue and Thomas G Patterson I II I11 IV Introduction Methods of Estimating Fixation by Crops Estimates for Major Crops summary References 15 19 27 34 36 PEANUT BREEDING J C Wynne and W C Gregory I Introduction II Germ Plasm Resources III Economic Importance and Breeding Objectives IV Breeding and Quantitative Genetics V Breeding Methods VI Interspecific Hybridization VII Conclusions References V 39 40 44 49 63 65 68 68 vi CONTENTS MOLYBDENUM IN SOILS PLANTS AND ANIMALS Umesh C Gupta and John Lipsett I Introduction I1 Molybdenum Fertilizers Their Rates and Methods of Application 13 and Industrial Uses of Molybdenum 75 78 81 85 Responses to Molybdenum on Crops Factors Affecting the Molybdenum Uptake by Plants 89 Deficiency and Sufficiency Levels of Molybdenum in Plants 99 Molybdenum Deficiency and Toxicity Symptoms in Plants 100 Molybdenum Toxicity and Molybdenum-Copper-Sulfur Interrelationships in Animals 105 Summary and Conclusions 107 109 References 111 Physiological Role of Molybdenum in Plants IV Determination of Molybdenum in Soils and Plants V VI VII VIII IX X INTERGENOMIC INTERACTION HETEROSIS AND IMPROVEMENT OF CROP YIELD H K Srivastava I Introduction 118 I1 Genetics of Mitochondria and Chloroplasts 119 111 IV V VI VII Organelle Involvement in Genetic Phenomena Genetic Implications of Intergenomic Interactions Molecular-Genetic Aspects of Heterosis Improvement of Crop Yield Summary and Conclusions References 130 147 164 174 182 185 THE DILUTION EFFECT IN PLANT NUTRITION STUDIES W M Jarrell and R B Beverly I Introduction I1 System for Expressing Results 111 Mechanisms IV V VI VII Treatments Dilution Effects Concentration Effects Practical Implications 197 199 200 202 204 216 219 CONTENTS VIII Summary and Future Research Needs References vii 221 222 DESIGNING “LEAFLESS” PLANTS FOR IMPROVING YIELDS OF THE DRIED PEA CROP C L Hedley and M J Ambrose I I1 I11 IV V VI VII General Introduction Comparative Responses of Peas to the Crop Environment Attaining Maximum Biological Yield per Unit Area Attaining the Maximum Economic Yield per Unit Area Improving the Efficiency of the Pea Fruit A Plant Ideotype for Improving Yields of Dried Peas Conclusions References 225 229 239 252 265 272 274 275 LOW-INPUT TECHNOLOGY FOR MANAGING OXISOLS AND ULTISOLS IN TROPICAL AMERICA Pedro A Sanchez and Jose G Salinas I1 I11 IV V VI VII VIII IX Introduction Site Selection Selection of Acid-Tolerant Germplasm Development and Maintenance of Ground Cover Management of Soil Acidity Phosphorus Management Management of Low Native Soil Fertility Discussion Summary References 280 293 295 308 334 354 380 390 397 398 CYTOGENETICS OF PEARL MILLET Prem P Jauhar I I1 I11 IV V Introduction Karyotypic Analysis Meiosis Abnormal Meiosis and Its Genetics Haploidy 408 410 415 417 424 viii CONTENTS VI Polyploidy Aneuploids Structural Changes in Chromosomes B Chromosomes Floral Biology and Hybridization Hybridization and Chromosome Relationships Conclusion References VII VIII IX X XI XI1 428 434 441 446 451 456 472 473 INDEX 481 CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin M J AMBROSE (225), Department of Applied Genetics, John Innes Institute, Norwich NR4 7UH, England R B BEVERLY (197), Department of Soil and Environmental Sciences, University of California-Riverside, Riverside, California 92521 W C GREGORY (39), Crop Science Department, North Carolina State University, Box / 5 , Raleigh, North Carolina 27650 UMESH C GUPTA (73), Research Branch, Agriculture Canada, P Box 1210, Charlottetown, Prince Edward Island, Canada CIA 7M8 HU HAN ( I ) , Institute of Genetics, Academia Sinica, Beijing, People’s Republic of China C L HEDLEY (225), Department of Applied Genetics, John Innes Institute, Norwich NR4 7UH, England W M JARRELL (197), Department of Soil and Environmental Sciences, University of California-Riverside, Riverside, California 92521 PREM P JAUHAR* (407), Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521 THOMAS A LaRUE (15), Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 JOHN LIPSETT (73), Division of Plant Industry, CSIRO, P Box 1600, Canberra City, A C S 2601, Australia THOMAS G PATTERSON (15 ) , Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 SHAO QIQUAN ( I ) , Institute of Genetics, Academia Sinica, Beijing, People’s Republic of China JOSE G SALINAS (279), Tropical Pastures Program, Centro lnternacional de Agricultura Tropical, Apartado Aereo 67-13, Cali, Colombia PEDRO A SANCHEZ (279), Soil Science Department, North Carolina State University, Raleigh, North Carolina 27650 H K SRIVASTAVAT (1 I7), Department of Biology, University of Valle, Cali, Colombia J C WYNNE (39), Crop Science Department, North Carolina State University, Box 5155, Raleigh, North Carolina 27650 *Present address: Division of Cytogenetics and Cytology, City of Hope National Medical Center, Duarte, California 91010 thesent address: National Agricultural Research Project, Gujarat Agricultural University, Anand 388 10 (Gujarat), India ix 472 PREM P JAUHAR produced one F, hybrid Morphologically, the hybrid resembled the polyploid male parent, C ciliaris This hybrid, in a way, is an intergeneric hybrid, although until recently C ciliaris has been considered as a species of Pennisetum In the somatic cells of the hybrid, Read and Bashaw (1974) observed n = 25 chromosomes (7 large ones from pearl millet and 18 small ones from buffelgrass) However, chromosome pairing relationships could not be studied The hybrid was completely sterile and did not produce any seed after pollinations with pollen of either parent It appeared to have inherited the aposporous mechanism from the apomictic parent ( P ciliaris), but did not produce any seed even by apomixis It is nevertheless interesting from the breeder’s standpoint that apomixis can be transferred from the apomictic parent to its hybrid X I I CONCLUSION Meeting the ever-expanding demand for food for the ever-increasing world population is the biggest challenge confronting agricultural scientists One way to meet this demand is to bring additional areas-for example, the dry and relatively infertile lands in the tropical and subtropical regions of the worldunder cultivation Pearl millet has a remarkable ability to grow in some of the driest agricultural conditions It already provides food for millions of poor people in Africa and Asia In terms of annual production, it is the sixth most important cereal crop in the world Because of its ability to provide feed for cattle, pearl millet acquires added importance Therefore the need for the genetic improvement of this crop cannot be overstated Fortunately, pearl millet is favorable for both basic studies as well as applied work Pearl millet is a favorable organism for basic research in cytogenetics Because of its small number but large size of chromosomes, it provides a suitable tool for studying chromosome pairing and chiasma frequencies and for understanding the factors controlling these intriguing phenomena Some of the pairing variantsdesynaptics and partial desynaptics-can facilitate these studies Pearl millet also lends itself for aneuploid analyses that should elucidate its cytogenetic architecture Although considerable progress has been made in producing a set of trisomics, the establishment of linkage groups awaits completion Basic studies on chromosomal rearrangements and induced mutagenesis can also be done in this crop Pearl millet has an efficient photosynthetic ( C , ) pathway and responds very well to fertilizers It also responds very well to heterosis breeding Dwarf hybrids should therefore be evolved for maximum grain yields The development of cytoplasmic male-sterile (cms) lines by Burton (1958, 1965) in the United States and later by Athwal(l965, 1966) in India has greatly facilitated the production of commercial CYTOGENETICS OF PEARL MILLET 413 hybrids The speed with which the Indian breeders accomplished the development of high-yielding grain hybrids using cms lines, particularly Burton's Tift 23A, is considered to be one of the most remarkable plant breeding success stories of all time This should serve as a model for emulation by other Asian and African plant breeders Although several commercial hybrids in India yield nearly twice as much as the best standard varieties, undoubtedly there is scope for further improvement Genetic enrichment of their nutritional status-particularly the protein content and amino acid balance-also deserves greater attention, so that pearl millet can better feed the underprivileged man Superior, high-yielding forage hybrids of pearl millet, pearl millet x napier grass, and pearl millet X other species should also be evolved to better feed our cattle Cytogenetic studies could help stabilize the interspecific hybrids Because of its distinctly protogynous nature, pearl millet is well suited for hybridization work Distinct size differences between the chromosomes of pearl millet and other species permit a study of inter- and intragenomal pairing relationships and should help in elucidating phylogenetic trends in the polybasic, fascinating genus Pennisetum Several heterotic hybrids combining the desirable characters of pearl millet and other forage species should be produced Another area that merits special attention is the development of a perennial pearl millet that can yield some grain as well as forage for several years (see Section XI,B,2,f) A perennial strain of pearl millet should be very useful in arid and semiarid regions of Africa and Asia A knowledge of different aspects of cytogenetics of pearl millet and related species should also help formulate further rational breeding programs Evidently, pearl millet provides excellent opportunities for both fundamental and applied research Such studies have already produced enough dividends to encourage further work With more concerted research, pearl millet should emerge as a leading, economically viable crop that will play an ever-increasing role in the welfare of man REFERENCES Aastveit, K (1968) Hereditas 60, 294-315 Aken'Ova, M E., and Chheda, H R (1973) Niger Agric J 10, 82-90 Aken'Ova, M E , Crowder, L V , and Chheda, H R (1974) Agron Abstr p 49 Madison, Wisconsin Aman, M A , , and Sarkar, K R (1978) Indian J Genet Plant Breed 38, 452-457 Anonymous (1947) Forage crops In Biennial Rep Univ Hawaii Agric Exp Sta for the Biennium ending June 30, 1947 Athwal, D S (1965) lndian Farming 15(5), 6-7 Athwal, D S (1966) Indian J Genet Plant Breed Symp Suppl 26A, 73-85 Avdulov, N P (1931) Bull Appl Eot Genet Plant Breed Suppl 43 [Russian] 474 PREM P JAUHAR Bailey, R J., Rees H., and Adena, M A (1978) Heredity 41, 1-12 Bashaw, E C (1962) Crop Sci 2, 412-415 Bennett, M D., and Rees, H (1970) Gener Res 16, 325-331 Bilquez, A,-F., and Lecomte, J (1969) Agron Trop 24, 249-257 [French] Bosemark, N (1956) Heredifas 42, 189-210 Brar, D S., Minocha, J L.,and Gill, B S (1973) Curr Sci 42, 653-654 Brunken, J N (1977) Am J Bot 64, 161-176 Brunken, J N., de Wet, J M J., and Harlan, J R (1977) Econ Eot 31, 163-174 Burnham, C R (1934) Generics 19, 430-447 Burnham, C R (1956) Bot Rev 22, 419-552 Burnham, C R (1962) “Discussions in Cytogenetics ” Burgess, Minneapolis, Minnesota Burton, G W (1942) Am J Bor 29, 355-359 Burton, G W (1944) J Hered 35, 227-232 Burton, G W (1958) Agron J 50, 230-231 Burton, G W (1965) Crops Soils 17(5), 19 Burton, G W (1968) Crop Sci 8, 229-230 Burton, G W (1974) Crop Sci 14, 802-805 Burton, G W., and Hanna, W W (1977) Mutar Breed Newsleft 9, Bunon, G W., and Powell, J (1966) Crop Sci , 180-182 Burton, G W., and Powell, J (1968) Adv Agron 20, 49-89 Carlson, W R (1977) In “Corn and Corn Improvement” (G F Sprague, ed.), pp 223-274 Amer SOC.Agron., Madison, Wisconsin Carlson, W R (1978) Annu Rev Genet 16, 5-23 Chase, S S (1974) In “Haploids in Higher Plants: Advances and Potential’’ (K J Kasha, ed.), pp 211-230 Univ of Guelph, Canada Clayton, W D (1972) Gramineae In “Flora of West Tropical Africa” (F N Hepper, ed.), 2nd Ed., Vol 3, Pt 2., pp 349-512 Crown, London Coe, E H (1959) Am Nut 93, 381-382 Constance, L (1957) Am J Bot 44, 88-92 Cooper, R B., and Burton, G W (1965) Crop Sci , 18-20 Crowley, J G , and Rees, H (1968) Chromosoma 24, 300-308 Darlington, C D (1956) Proc R SOC Ser B 145, 350-364 Darlington, C D (1958) “Evolution of Genetic Systems.’’ Oliver & Boyd, Edinburgh Darlington, C D (1963) “Chromosome Botany and the Origin of Cultivated Plants,’’ rev 2nd Ed Allen & Unwin, London Darlington, C D., and Mather, K (1952) “The Elements of Genetics.” Allen & Unwin, London de Wet, J M J (1980) If1 “Polyploidy: Biological Relevance” (W H Lewis, ed.), pp 3-15 Plenum, New York de Wet, J M J., and Harlan, J R (1972) Taxon 21, 67-70 Dhanapala, S B., Siriwardene, J A de S., and Pathirana, K K (1972) Ceylon Vet J 20, 77 Dhesi, J S., Gill, S., and Sharma, H.L (1973) Cytofogia 38, 311-316 Dhesi, J S., Minocha, J L., and Sidhu, J S (1975) Curr Sci 44, 862-863 Doggett, H (1964) Heredify 19, 543-558 Einset, J (1943) Genetics 28, 349-364 Evans, G M.,and Macefield, A J (1972) Nature (London), New Biof 236, 110-ill Evans, H J , and Bigger, T R L (1961) Genetics 46, 277-289 Fedak, G (1973) Can J Gener Cytol 15, 647-649 Filion, W G., and Blakey, D H (1979) Can J Genet Cyfol.21, 373-378 Flavell, R B., and Rimpau, J (1975) Heredity 35, 127-131 Gadella, T W.J., and Kliphuis, E (1964) Acta Bot Neerl 13, 432-433 Gildenhuys, P J (1950) Farming S Afr 15, 189-191 CYTOGENETICS OF PEARL MILLET 475 Gildenhuys, P J , and Brix K (1958) Heredity 12, 441-452 Gildenhuys, P J., and Brix, K (1961) Heredity 16, 358-363 Gildenhuys P J , and Brix, K (1964) Heredity 19, 533-542 Gildenhuys, P J., and Brix, K (1965) Ann Bor 29, 709-715 Gildenhuys P J , and Brix, K (1969) Agroplantae 1, 77-83 Gill, B S , and Minocha, J L (1971) J Cytol Genet Congr Suppl pp 33-36 Gill, B S , Sraon, H., and Minocha, J L (1966) J Res Punjab Agric Univ 3, 260-263 Gill, B S., Minocha, J L., Gupta, D , and Kumar, D (1969) Indian J Genet Plant Breed 29, 462-467 Gill, B S., Minocha, J L., George, M K., and Brar, D S (l970a) J Res Punjab Agric Univ , 41 7-422 Gill, B S., Virmani, S S., and Minocha J L (1970b) Experientia 26, 1021 Gill, B S., Virmani, S S., and Minocha, J L (1970~).Can J Genet Cyrol 12, 474-483 Gill, B S , Sharma, H L., and Dhesi, J S (1973) Cytologia 38, 411-416 Gillies C B (1974) Chromosoma 48, 441-453 Golovin V P (1979) Sel Semenovod 3, 13-14 [Russian] Golubovskaya, I N (1979) Int Rev Cytol 58, 247-290 Gottschalk, W (1976) In “Induced Mutations in Cross-Breeding,’’ pp 37-53 IAEA, Vienna Gottschalk, W., and Klein, H D (1976) Theor Appl Genet 48, 23-34 Grant, V (1963) “The Origin of Adaptations.” Columbia Univ Press, New York Gupta, V P (1974) In “Breeding Researches in Asia and Oceania” (S Rumanujam and R D Iyer, eds.) pp 162-172 Indian SOC.Genet & Plant Breeding, New Delhi Hanna, W W (1979) J Hered 70, 425-427 Hanna, W W , Powell, J B and Burton, G W (1976) Can J Genet Cytol 18, 529-536 Harinarayana, G., and Mufly, B R (1971) Cytologia 36, 435-448 Harlan, J R , and de Wet, J M J (1975) Dot Rev 41, 361-390 Hazarika, M H., and Rees, H (1967) Herediry 22, 317-332 Hilpen, G (1957) Hereditas 43, 318-321 Hossain, M G (1978) Cytologia 43, 21-34 Hunter, A W S (1934) Can J Res Ser C 11, 213-241 Hussain, A , , Ullah, M., and Ahmad, B (1968) W Pak J Agric Res 6(2), 69-72 James, S H (1965) Heredity 20, 341-353 James, S H (1970) Heredity 25, 53-77 Jauhar, P P (1968) Generica 39, 360-370 Jauhar, P P (1969) Natunvissenschafren 56, 571-572 Jauhar, P P (1970a) Generica 41, 407-424 Jauhar, P P (1970b) Genetica 41, 532-540 Jauhar, P P (1972) Experientia 28, 710 Jauhar, P P (1973) Proc Inr Congr Genet., 13th, Gal$ (in Genetics 74, 126-127.) Jauhar, P P (1974) Theor Appl Genet 44, 58-62 Jauhar, P P (1975a) Nature (London) 254, 595-597 Jauhar, P P (1975b) Chromosoma 52, 103-121 Jauhar, P P ( ~ )Chromosoma 52, 363-382 Jauhar, P P (1976) In “Chromosomes Today,” Vol (P L Pearson and K.R.Lewis, eds.), pp 165-177 Wiley, New York Jauhar, P P (1977a) Proc Int Congr SABRAO 3rd, (SOC.for the Adv of Breed Res in Asia and Oceania) Canberra 14(b), 34-39 Jauhar, P P (1977b) Theor Appl Genet 49, 287-295 Jauhar, P P (1978) J Hered 69, 217-223 Jauhar, P P (1980) Genetics 94 (Suppl.), 49 (Abstr.) Jauhar, P P (1981a) Indian J Bot 4, 1-4 476 PREM P JAUHAR Jauhar, P P (1981b) (in press) Jauhar, P P., and Singh, U (1969a) Theor Appl Genet 39, 315-319 Jauhar, P P., and Singh, U (1969b) Curr Sci 38, 420-421 Jauhar, P P., Singh, U.,and Alice, C J (1976) Genet Iber 28, 15-20 Jones, R N (1975) f n t Rev Cytol 40, 1-100 Jones, R N., and Rees, H (1967) Heredity 22, 333-347 Karper, R E., and Chisholm, A T (1936) Am J Bot 23, 369-374 Kasperbauer, M J., Buckner, R C., and Springer, W D (1980) Crop Sci 20, 103-107 Kempanna, C., and Riley, R (1964) Herediry 19, 289-299 Khan, M.-D., and Rahman, H (1963) W Pa& J Agric Res 1, 61-65 Khush, G S (1973) “Cytogenetics of Aneuploids.” Academic Press, New York Kishikawa, H (1970) Jpn J Breed 20, 269-274 Knobloch, I W (1972) Taxon 21, 97-103 Koduru, P R K (1979) Genet Res 34, 69-76 Koduru, P R K., and Rao, M K (1978) Cytologia 43, 445-452 Koduru, P R K., Murthy, T G K., and Lakshmi, K V (1980) Chromosoma 78, 365-370 Krishnaswamy, N (1951) fndian J Genet Plant Breed 11, 67-74 Krishnaswamy, N (1962) “Bajra, Pennisetum typhoides S Kt H.” Indian Council Agricultural Research, New Delhi Krishnaswamy, N., and Ayyangar, G N R (1941a) J fndian Bot SOC.20, I 1-1 17 Krishnaswamy, N., and Ayyangar, G N R (1941b) Proc fndian Acad Sci Ser B 13, 9-23 Krishnaswamy, N., and Raman, V S (1948) Curr Sci 17, 153-154 Krishnaswamy, N., and Raman, V S (1949) Curr Sci 18, 15-16 Krishnaswamy, N., and Raman, V S (1953a) Proc Sci Workers Conf, f s t Agric Coll Res Inst., Coimbatore pp 43-71 Krishnaswamy, N., and Raman, V S (1953b) Cytologia 18, 305-321 Krishnaswamy, N., and Raman, V S (1954) Genetica 27, 253-272 Krishnaswamy, N., and Raman, V S (1956) Genetica 28, 345-360 Krishnaswamy, N., Raman, V S., and Madhavamenon, P (1949) Proc fndian Acad Sci Ser B 30, 195-206 Krishnaswamy, N., Raman, V S , and Nair, N H (1950) Curr Sci 19, 252-253 Lakshmi, K V , Murthy, T G K., and Koduru, P R K (1979) Theor Appl Genet 55, 189-190 Lakshmi, N., and Yacob, Z (1978) Microbios Lett 7, 75-82 Lal, J , and Srinivasachar, D (1979) Theor Appl Genet 54, 27-32 Lee, W J (1966) Korean J Eot 9(3-4), 1-6 Leuck, ,D B., and Burton, G W (1966) J Econ Entomol 59, 1308-1309 Levitskii, G A (1931) Bull Appl Bot Genet Plant Breed 27, 220-240 Li, C H., and Li, H W (1943) Chin J Sci Agric 1, 139-141 Li, H W , Pao, W.K., and Li, C H (1945) Am J Bot 32, 92-101 Lobana, K S., and Gill, B S (1973) Cytologia 38, 713-717 Mahadevappa, M., and Ponnaiya, B W X (1967) Madras Agric J 54, 85-88 McCoUum, G D (1958) Chromosoma 9, 571-605 Manga, V (1976) Can J Genet Cytol 18, 11-15 Manga, V (1977) Experientia 33, 1581-1582 Manga, V , and Pantulu, J V (1971) Genetica 42, 319-328 Manga, V , and Pantulu, J V (1974) Proc fndian Acad Sci Ser B 80, 105-120 Mehra, P N., Khosla, P K., Kohli, B L., and Koonar, J S (1968) Res Bull Punjab Univ 19, 157-230 Menon, P M., and Devasahayam, P (1964) Madras Agric J 51, 70 (Abstr.) Minocha, L., and Brar, D S (1976) Indian J Genet Plant Breed 36 153-155 CYTOGENETICS OF PEARL MILLET 477 Minocha, J L., and Gill, B S (1974) In “Advancing Frontiers in Cytogenetics” (P Kachroo, ed.), pp 51-53 Hindustan Publ., Delhi Minocha, J L., and Singh, A (1971a) Sci Cult 37, 198-199 Minocha, J L., and Singh, kl (1971b) J Cvtol Genet Congr Suppl pp 270-273 Minocha, J L , Gill, B S., and Singh, S (1968) J Res Punjab Agric Univ 5, 32-36 Minocha, J L., Sharma, H L., and Gill, B S (1972) Indian J Genet Plant Breed 32,211-214 Minocha, J L , Brar, D S , and Gill, B S (1974) Experientia 30, 623-624 Minocha, J L , Dhesi, J S., and Sidhu, J S (1975) Indian J Genet Plant Breed 35, 470-471 Minocha, J L , Sharma, H L., Sidhu, J S , and Gill, B S (1976) Indian J Genet Plant Breed 36, 38-43 Muldoon, D K , and Pearson, C J (1977) Aust J Exp Agric Anim Husb 17, 277-283 Muldoon, D K , and Pearson, C J (1979) Herb Absrr 49, 189-199 Miintzing, A (1951) Hereditas 27, 273-308 Miintzing, A (1954) Proc Indian Acad Sci Ser E 34, 227-241 Miintzing, A (1958) Trans Bose Res Inst (Calcuttu) 22, 1-15 Miintzing, A (1974) Annu Rev Genet 8, 243-266 Murthy, J V V S N., Sukhadev, P.,Rao, M V S., and Manga, V (1979) Indian J Eot 2, 70-72 Nair, M K., Raman, V S , and Ponnaiya, B W X (1964) Madras Agric J 51, 356-357 Nishiyama, I , and Kondo, N (1942) Seiken Ziho 1, 26-28 [Japanese] Olorode, (1974) Cytologia 39, 429-435 Olorode, (1975) Brirtonia 27, 63-68 Pantulu, J V (1958) Curr Sci 27, 497-498 Pantulu, J V (1960) Curr Sci 29, 28-29 Pantulu, J V (1967a) Nature (London) 213, 101-102 Pantulu, J V (1967b) C.vtologia 32, 532-541 Pantulu, J V (1968) Curyologia 21, 11-15 Pantulu, J V., and Manga, V (1969) Curr Sci 38, 143-144 Pantulu, J V., and Manga, V (1972) Theor Appl Genet 42, 68-74 Pantulu, J V., and Manga, V (1975) Genetica 45, 237-251 Pantulu, J V., and Rao, M V S (1976) Curr Sci 45, 418-420 Pantulu, J V., and Rao, G J N (1977a) Curr Sci 46, 390-392 Pantulu, J V., and Rao, G J N (1977b) Proc Indian Acad Sci Ser E 86, 15-22 Pantulu, J V., and Venkateswarlu, J (1968) Genetica 39, 41-44 Pantulu, J V., Manga, V , and Rao, M V S (1976) Theor Appl Genet 47, 85-86 Patil, B D (1963) Indian Farming 12(11), 20, 23 Patil, B D., and Singh, A (1964) Curr Sci 33, 255 Patil, B D., and Vohra, S K (1962) Curr Sci 31, 345-346 Patil, B D., Hardas, M W., and Joshi, A B (1961) Nature (London) 189, 419-420 Person, C (1955) Can J Eot 33, 11-30 Pilger, R (1954) Eor Jahrb 76, 281-384 Powell, J B., and Burton, G W (1966a) Crop Sci 6, 131-134 Powell, J B., and Burton, G W (1966b) Crop Sci 6, 378-379 Powell, J B., and Burton, G W (1968) Crop Sci 8, 771-773 Powell, J B , and Burton, G W (1969) Crop Sci 9, 252-253 Powell, J B., Hanna, W W., and Burton, G W (1975) Crop Sci 15, 389-392 Pritchard, A J (1971) Trop Grassl 6, 35-39 Punyasingh, K (1947) Genetics 32, 541-554 Rajhathy, T., and Fedak, C (1970) Can J Genet Cytol 12, 358-360 Ramage, R T (1964) Int Barley Genet Symp., Ist, Wageningen, pp 99-115 478 PREM P JAUHAR Ramage, R T (1970) Proc Inr Barley Genet Symp 2nd Pullman, Wash pp 89-93 Ramage R T , and Wiebe, G A (1969) Proc IAEA F A S v r p , Pullman, Wash pp 655-659 Raman, V S (1965) I n “Advances in Agricultural Sciences and Their Applications” (S Krishnamurthi, ed.), pp 122-143 Agric Coll Res Inst., Coimbatore, India Raman, V S., and Krishnaswami, D (1960) J Indian Bot Soc 39, 382-385 Raman, V S , and Krishnaswami, D (1961) J Indian Bot Soc 40, 61-65 Raman, V S., and Nair, M K (1964) J Indian Bor SOC 63, 508-514 Raman, V S., Krishnaswami, D and Nair, M K (1962) J Indian Bor SOC 41, 268-270 Raman, V S , Nair, M K , and Krishnaswami, D (1963) J Indian Bor SOC 62, 469-473 Ramulu, K S (1968) Caryologia 21, 147-156 Ramulu, K S (1971) Cytologia 36, 652-668 Ramulu, K S , and Ponnaiya, B W X (1967) Madras Agric J 54, 503-51 I Rangaswamy, K (1935) J Indian Bar Soc 14, 125-131 Rangaswamy, S R S (1972) Generica 43, 257-273 Rangaswamy, S R S., and Ponnaiya, B W X (1963) Madras Agric J 50, 239-241 Rao, M K., and Koduru, P R K (1978a) Theor Appl Genet 53, 1-7 Rao, M K., and Koduru, P R K (1978b) Proc Indian Arad Sci Ser B 87, 29-35 Rao, M K., Pantulu, J V., and Jayalakshmi, K (1979) Experierzria 35, 1154 Rao, M V S (1978) Proc Indian Acad Sci Ser B 87, 17-22 Rao, M V S (1980) Theor Appl Genet 56, 85-89 Rao, M V S , and Pantulu, J V (1978) Chromosoma 69, 121-130 Rao, P K., Nambiar, A K., and Munhy, V G K (1949) Madras Agric J 36, 526-529 Rao, P S R L N (1977) Curr Sci 46, 464 Rao, P S R L N., and Rao, I N (1977) Curr Sci 46, 314-315 Rao, P S R L N., Rao, M V S and Rao, N (1977) Experientia 33, 308-309 Rau, N S (1929) J Indian Bor SOC 8, 126-128 Read, J C , and Bashaw, E C (1974) Crop Sci 14, 401-403 Rees, H (1961a) Bor Rev 27, 288-318 Rees, H (1961b) Evolurion 15, 145-152 Rees H and Jones, R N (1977) “Chromosome Genetics.” Univ Park Press, Baltimore, Maryland Rhoades, M M., and Dempsey, E (1972) Generics 71, 73-96 Rick, C M., and Barton, D W (1954) Generics 39, 640-666 Riley, R (1960) Nature (London) 185, 751-752 Riley, R., and Chapman, V (1957) Heredify 11, 195-207 Riley, R., and Law, C N (1965) Adv Genet 13, 57-1 14 Sadasivaiah, R S , and Kasha, K J (1971) Chromosorna 35, 247-263 Sethi G S , Kalia, H R., and Ghai, B S (1970) Cyrologia 35, 96-101 Singh, R B., Singh, B D., Laxmi, V., and Singh, R M (1977a) Cyrologia 42, 41-47 Singh, R B Singh, B D., Singh, R M., and Laxmi, V (1977b) Cyrologia 42, 633-637 Srivastava, H K., and Balyan, H S (1977) J Hered 68, 338-340 Stapf O., and Hubbard, C E (1933) Kew Bull pp 269-302 Stapf, O., and Hubbard, C E (1934) I n “Flora of Tropical Africa” (D Prain, ed.), Vol 9, Part 6, pp 954-1070, Reeve, Ashford, Kent, England Stebbins, G L (1956a) Brookhaven Symp Biol 9, 27-52 Stebbins, G L (1956b) Am J Bot 43, 890-905 Stebbins, G L (1958) Cold Spring Harbor Symp Quant Biol 23, 365-378 Stebbins, G L (1969) Taxon 18, 26-35 Stebbins, G L (1974) “Flowering Plants: Evolution above the Species Level.” The Belknap Press of Harvard Univ Press, Cambridge, Massachusetts CYTOGENETICS OF PEARL MILLET 479 Sun, S., and Rees, H (1967) Heredity 22, 249-254 Taliaferro, C M., and Bashaw, E C (1966) Crop Sci 6, 473-476 Thevenin L (1952) Ann C R A Bambey (Senegal) 8, 102-105 [French] Thompson, J B (1956) Heredity 10, 99-108 Ting Y C (1971) Genetics 68, Suppl., 67 (Abstr.) Ting, Y C (1973) Cytologia 38, 497-500 Tyagi, B R ( I 975a) Proc Indian Natl Sci Acad Ser B 41, 462-465 Tyagi, 9.R (1975b) Proc Indian Natl Sci Acad Ser B 41, 545-549 Tyagi, 9.R (1976a) Nucleus 19, 58-63 Tyagi, B R (1976b) Proc Indian Natl Sci Acad Ser B 42, 117-121 Tyagi, 9.R (1976~).Nucleus 19, 112-114 Tyagi, B R (1977) Proc Indian Natl Sci Acad Ser B 43, 66-69 Tyagi, 9.R., and Singh, R B (1974) Proc Indian Natl Sci Acad Ser B 40, 359-362 Venkateswarlu, J and Mani, J N R (1978) Genetica 48, 145-149 Venkateswarlu, J., and Pantulu, J V (1968) J Hered 59, 69-70 Venkateswarlu, J., and Pantulu, J V (1970) Cytologia 35, 444-448 Veyret, Y (1957) Agron Trop 12, 595-598 [French] Virmani, S S., and Gill, B S (1971) Caryologia 24, 427-433 Virmani, S S., and Gill, B S (1972) Cytologia 37, 257-260 Vosa, C G (1970) Chromosoma, 30, 366-372 Vosa, C G (1973) Chromosoma, 43, 269-278 Vosa, C G (1975) Curr Adv Plant Sci 6, 495-510 Vosa, C G., and Marchi, P (1972) Nature (London), New Biol 237, 191-192 Weber, D F (1970) Maize Genet Coop Newslett 44, 203 Weber, D F (1973) Theor Appl Genet 43, 167-173 Whyte, R (1957) "The Grassland and Fodder Resources of India." Scientific Monograph No 22, Indian Council of Agricultural Research, New Delhi Zeller, F J., Kimber, G., and Gill, 9.S (1977) Chromosoma 62, 279-289 This Page Intentionally Left Blank Index A Betulu 205 Blight, sclerotina, 48 Blotch, Webb, 48 Bluegrass, Kentucky, 27 Borer, lesser cornstalk, 49 Bruchiuria decumbens, 302-307.3 18.322-325, 341, 350, 360, 365-366, 377, 378, 385, 387, 395 Bruchiarim humidicola, 305, 307, 333, 350, 385 Brassicu chinesis, Brassica juncea, 97 Bmssica nupobrussica 98 Brassicu oleracea var Botrytis, 98, 102 var cupitatu, 102 var gemmiferu, 77, 98, 102 var itulicu 98, 102 Brassicu pekinesis, Brazil nut, 301 Broccoli, 98, 102 Brussels sprout, 77, 97, 98, 102 Buffelgrass, 47 I Acidity management, 334-354 Aegilops squurrosu 146 Aflatoxin, 47 Agropyron gluucum Alfalfa, 3, 27, 28 97 98, 102, 205, 208 Aluminum management, 334-35 I tolerance, 7-96-304 Anunus comosus, 300 Andropogon gayunus, 303-307,323, 341, 350, 358, 377 378, 385 395 Anther culture, 2-7 Aphis craccivoru, 47 Arachis cardenusii, 46, 47 Arachis chacoense 46-47 Arachis correntina, 46 Arachis duranensis 46 Arachis hypogea, I , 33-34, 46 47, 297 Armyworm, fall, 49 Artocarpus heteroplyllus, 300 Ash, nutrient, 308-310 Asparagus, 132 Aspergillus glavus 47 Aspergillus niger, 85 Avena sativa, 86, 205 Averrhou carumbolu 300 C Cabbage, 102 Chinese, Cujanus cajan, 298, 33 I Calcium, 338-346 B Calopogonium mucunoides, 305 Canary grass, reed, 30 Banana, 300 Barley, 95, 102, 104, 134 136, 140, 205 Bean, 76, 102, 324, 375 fava, 33 field, 226 h a , 298 mung, 298 navy, 263 winged, 298 Beet, 102 sugar, 3, 103, 134, 205 Berseem, 97 Bertholletiu excelsu 30 I Beta vulguris 3, 102 103, 134, 205 Capiscum unnun Carambola, 300 Curicu 101 Cashew, 300, 341 Cassava, 296, 310, 318, 324, 330-332, 336, 341, 378, 389 Cauliflower, 96, 98 Cenchrus ciliaris 302, 47 Centrosemu hybrid, 350 Centrosema plumier;, 303 Centrosemapubescens, 305 352-353,358,378 Cercosporu aruchidicola, 46-47 Cercosporidium personatum, 46-47 Chick-pea, 31 48 I 482 INDEX Chicorium intybus 29 Chicory, 29 Chloris gayunu 378 Citrus uuruntiifoliu 300 Citrus microcurpa, Cirrus purudisi 300 Citrus sinensis I , 300 Clover, 22 alsike, 28, 29 crimson, 28, 29 Egyptian, 28, 29 ladino, 28, 29 red, 27, 28, 29, 98, 102 subterranean, 16, 28, 29, 85, 86 white, 27, 28, 208 Cocoa 301, 389 Coconut, 300 Cocos nuciferu 300 Coffea urubica 301 Coffee, 300-301 Collectotrichum gloesporoides 306 Colocusiu esculentu 33 Copper, 105-107, 205-206 Cordiu uleodora, 333 Corn.4, 1 , 102,299,310,311,327-332,341, 356-358, 365, 370, 374-375 see also Maize Cotton, 136, 140 Cowpea, 17, 34, 297, 328, 331, 332, 341 382 Cucurbita maxima, 136 Cylindrocludium crotulariue, 47 Cytology, regenerated plants, 6-7 E Elueis quineensis 132, 136, 301 Elusmopalpus lignosellus 49 Empouscu fubae, 48 Eucalyptus grandiflora, 30 I F Flax, 3, 81, 214 Forest, clearing, 308-3 19 G Galuctiu striatu, 305 Genetics, chloroplast, 119-130, 139-142, 149-15 I intergenomic interaction, 17- 195 mitochondria, 119-1 39 peanut breeding, 39-72 pearl millet cytogenetics, 407-479 Glycine mux 3, 30, 136, 140, 299 Glycine wightii, 352, 378 Gmelina arboreu, 301, 333 Gossypium hirsutum, 136, 140 Granadilla, 300 Grapefruit, 300 Grass pasture, 103 Griselinia littoralis, I Guarani, 301, 332 Guava, 300 Guilielma gusipaes 301 D Dalbergia nigru, 301, 333 Deois incompleta 307 Desmodium gyroides, 305, 377 Desmodium heterophyllum, 305, 350 Desmodium ovulifolium, 303, 305, 322-326, 333, 341, 350, 377, 385 Desmodium scorpiurus 377 Desmodium uncinutum, 352 Diabrotica undecimpunctutu howurdi, 48 Digitariu decumbens, 303 Dioscorea, 33 Diplodia gossypina, 48 H Heterosis, 131-142, 164-174 Heveu brusiliensis, 3, 4, 301 Hordeurn vulgure, 95, 102, 136, 205 Hypurrheniu rufu, 302-305 I Intercropping, 330-333 lpomoeu bututus 299 INDEX J Jacaranda, 301 Jackfruit, 300 K Kudzu, 329 L Lac.tucu sutivu I03 Laurel, 333 Lead, 215 Leafhopper, potato 42, 48 Leafspot, cercospora, resistance, 42, 46-47 Legume, nitrogen fixation, 15-38 pasture, 103 Lentil, 31 Lespedeza, Korean, 27, 28 Lespedeza stipulaceu 21, 28 Lettuce, 103 Leuruenu Ieucocephulu 30 I, 350, 352, 378 Lime, 287-289 300 Liming, 95-96, 303, 334-346, 368, 372 Linum usitutissimum, 3, Lolium multiflorum, 205 Lolium perenne 85 Lotononis buinesii 352 Lupine, I , 34, 265 Lupinus ulbus 265 Lycopersicon c’scutentum 103, 140, 205 M Mucroptilium 350, 377 Macropriliurn utropurpureum 352-353 Macroptilium lurhvroides 352 Magnesium, 208-209, 338-346 Maize, 3, 76 80, 86, 132, 133, 136, 140 see also Corn Malanga, 331 Manganese tolerance, 351 -553 Mango, 300, 341 Manguiferu indita 300 Munihot esculentu 296 483 Manure, green, 329 Medicugo, 205 Medicugo donriculutcr Medicago sutivu, 27, 28, 98, 102, 352, 378 Melilotus ulbu 27, 28 Me/inis minutiflora 305, 327, 350, 378 Meloidogyne urenuriu, 48 Meloidogyne hapla 48 Millet, pearl, cytogenetics, 407-479 Mite, two-spotted, 49 Molybdeqosis, 105 Molybdenum, 206, 210 determination of, 1-85 soil, plant, and animal, 73-115 Mulch, 326-329 Muso purudisiacu 297 Musu supiensis, 300 Mutant selection, 9-1 Mycorrhizae, 10-2 13 376-379 N Napier grass 414, 417 Nematode, lesion, 48 root-knot, 48 Nicotiunu ulutu Nicotiunu rusricu Nicotiunu tubacum, 8, 9, 103 Nitrate reductase, 78-80 Nitrogen fertilizer, 382-383 fixation, 15-38, 380-382 Nutrient recycling, 386 Nutrition studies, dilution effect, 197-224 Oat, 86, 205 Orange, 300 sweet, Oryzu sutivcr 2, 80, 87, 298 Oxisol, management, 279-406 P Palm, oil, 132, 136, 300, 301, 332, 389 peach, 301 484 INDEX Panax notoginseng, I0 Poplar, Pangola grass, 304 Populus nigra Panicum maximum, 103, 302-304, 310, 318 Potassium, 208, 383-384 323-329, 341, 350, 358-359, 377, 378, Potato, I I , 136, 292, 297, 298 385-388 sweet, 299, 332 Papaya, 101 Pratylenrhus braehyurus, 48 Paspalum dilatutum 378 Protoplast fusion, 154- 157 Paspalum notatum, 305 isolation, 7-9 Passijora edulis 300 Psidium guajava 300 Pasture, grass, 103 Psophocarpus tetragonolobus, 298 legume, 103 Puccinia arachidis 45 46 savanna, 32 1-325 Pueraria phaseoloides, 303, 305, 322-323 tropical, 301-307 329, 333, 341, 377-379, 389 Paullinia cupana 301 Punica granutum 300 Pea, 17, 77, 136, 140 Pythium, 48 leafless plant, 225-277 pigeon, 298, 331 Peanut, 33-34, 297, 328, 332 341 R breeding, 39-72 Peat scours, 99, 105 Raya, 97 Pennisetum clandestinum 378 Rehmannia glutinosa, Pennisetum orientale, 426, 468-470 Rhizobium 85, 86 Pennisetum purpureum, 285, 305, 341, 350, Rice, 2-3, 9, 80, 87, 298, 310, 319, 328-332, 41 I , 414-417, 426, 459-467 341, 347, 348, 369, 373-374 Pennisetum ramosum, 10 Rootworm, southern corn, 48 Pennisetum setaceum, 47 I Rot, collar, 48 Pennisetum syuamulatum, 467 cylindrocladium black, 47-48 Pennisetum typhoides, 408-411, 426, 459 southern stem, 48 Pepper, Rubber, 300, 301 332-333 black, 301 Rubber tree, 3, 4-5 Phalaris aquatica, 87 Rust, peanut, 45 Phularis arundinacea, 30 Rutabaga, 98 Phalaris tuberosa 85, 87 Rye, 136, 140 Phaseolus, 17, 76 Ryegrass, 205 Phaseolus lunatus, 298 perennial, 29, 85 Phaseolus vulgaris 31, 34, 91, 102, 263, 265, 286, 297, 299, 325 Phleum pratense, I03 S Phoma arachidicola 48 Phosphorus 96, 208-210, 215, 304-305 Saccharum officinarum, 301 management, 354-380 Sclerotinia sclerotiorum, 48 Photosynthesis, efficiency, 140-142, 179-1 82 Sclerotium rovsii, 47 Pineapple, 300, 341 Secale cercale 136, 140 Pinus caribea, 301 Seopolia ocutagula, I0 Piper nigrum, 301 Slash-and-burn, 308-3 I7 Pisum sativum I , 34, 77 136, 140, 225, 265 Soil acidity, 209-210 Plantain, 297, 330-331, 341 tropical management, 279-406 P o a pratensis, 27 Solanum tuberosum 136, 298 Pod breakdown, 48 Sorghum, 207 Pomegranate, 300 grain, 299, 303 485 INDEX Sorghum hicolor, 299 Sorghum vulgurr Soybean, 3.9, 17,21,30-33,77,97, 132, 136 140, 263, 299, 310, 328-332, 338, 348-349, 382 Spodopteru frugiperdu 49 Sterility, cytoplasmic male, 142-145 Streptomyces scorhies, 298 Stylosunthes cupitutu 303-305, 341, 350 377 385 Stylosunthes guiunensis 305, 307, 324, 350, 353, 377 Stylosunthes humutu, 378 Stylosanthes humilis 352 378 Stylosunthes scuhru 305 Stylosunthes r~iscosu.305 Sugar cane, I I , 300, 301 Sulfur, 97, 208, 384-385 Sweetclover 27-29 U Ultisol, management, 279-406 V Verticillium wilt, 48 Vetch, 27, 28, 29 Vicia fubu 8, 31, 33, 226 Vicia villosa, 27, 28, 29 Vignu rudiuru, 298 Vignu unguiculutu Virus, rosette, 47 w Water use, 213-214 Wheat, 2, 3, 29, 86-87, 103, 104, 134, 136, 140, 145-147, 213, 299-300, 347, 375 Wheatgrass crested, 263 T Temperature, nutrient uptake, 214-215 Tetrunychus urticue 49 Theohromu cacao, 30 I Thrip, tobacco, 49 Timothy, 103 Tissue culture advances, - 13 Tobacco, 97, 103, 341 Tomato, 103, 140, 205, 263 Trifolium ulexundrinum, 28, 29, 97 Trifolium hyhridum 28, 29 Trifolium incurnarum, 29 Trifolium indicu 28 Trifolium prutense, 27, 28, 98, 102 Trifolium repens 27 28 Triticule 3, 146 Triticum uestivurn 3, 29, 86, 103 136, 140, 299 Triticum dicoccoides 146 Triticum machu, 146 X Xunthosomu, 331 Y Yam, 331 Yautia, 331 Yield, economic, 252-264 improvement, 74- I82 maximum biological, 239-251, 262 Zeu mays, 3, 76, 102 136, 238, 299 Zinc, 208 Zorniu lutifoliu 303-306, 341, 377, 385 This Page Intentionally Left Blank ... N C BRADY ADVANCES IN AGRONOMY VOLUME 34 This Page Intentionally Left Blank ADVANCES IN AGRONOMY, VOL 34 ADVANCES IN PLANT CELL AND TISSUE CULTURE IN CHINA Hu Han and Shao Qiquan Institute of... Much investment of effort has gone into anther culture investigations of corn inbred lines in China Different starting materials have been used, resulting in 25 inbred lines obtained by 14 institutes... Flax (Linum usitatissimum) Rehmannia glurinoso "Indicates the year the plants were obtained ing culture method-subjected pollen grains liberating continuously from dehiscing anthers-and obtained

Ngày đăng: 08/05/2019, 15:12

Từ khóa liên quan

Mục lục

  • Front Cover

  • Advances in Agronomy, Volume 34

  • Copyright Page

  • Contents

  • Contributors to Volume 34

  • Preface

  • CHAPTER 1. ADVANCES IN PLANT CELL AND TISSUE CULTURE IN CHINA

    • I. Introduction

    • II. Anther Culture and Crop Improvement

    • III. Some Fundamental Problems

    • IV. Protoplast Isolation, Culture, and Genetic Manipulation

    • V. Selection of Mutants

    • VI. Miscellaneous: In Vitro Propagation through Plant Tissue Culture

    • References

  • CHAPTER 2. HOW MUCH NITROGEN DO LEGUMES FIX?

    • I. Introduction

    • II. Methods of Estimating Fixation by Crops

    • III. Estimates for Major Crops

    • IV. Summary

    • References

  • CHAPTER 3. PEANUT BREEDING

    • I. Introduction

    • II. Germ Plasm Resources

    • III. Economic Importance and Breeding Objectives

    • IV. Breeding and Quantitative Genetics

    • V. Breeding Methods

    • VI. Interspecific Hybridization

    • VII. Conclusions

    • References

  • CHAPTER 4. MOLYBDENUM IN SOILS, PLANTS, AND ANIMALS

    • I. Introduction

    • II. Molybdenum Fertilizers, Their Rates and Methods of Application, and Industrial Uses of Molybdenum

    • III. Physiological Role of Molybdenum in Plants

    • IV. Determination of Molybdenum in Soils and Plants

    • V. Responses to Molybdenum on Crops

    • VI. Factors Affecting the Molybdenum Uptake by Plants

    • VII. Deficiency and Sufficiency Levels of Molybdenum in Plants

    • VIII. Molybdenum Deficiency and Toxicity Symptoms in Plants

    • IX. Molybdenum Toxicity and Molybdenum-Copper-Sulfur Interrelationships in Animals

    • X. Summary and Conclusions

    • References

  • CHAPTER 5. INTERGENOMIC INTERACTION, HETEROSIS, AND IMPROVEMENT OF CROP YIELD

    • I. Introduction

    • II. Genetics of Mitochondria and Chloroplasts

    • III. Organelle Involvement in Genetic Phenomena

    • IV. Genetic Implications of Intergenomic Interactions

    • V. Molecular-Genetic Aspects of Heterosis

    • VI. Improvement of Crop Yield

    • VII. Summary and Conclusions

    • References

  • CHAPTER 6. THE DILUTION EFFECT IN PLANT NUTRITION STUDIES

    • I. Introduction

    • II. System for Expressing Results

    • III. Mechanisms

    • IV. Treatments

    • V. Dilution Effects

    • VI. Concentration Effects

    • VII. Practical Implications

    • VIII. Summary and Future Research Needs

    • References

  • CHAPTER 7. DESIGNING "LEAFLESS" PLANTS FOR IMPROVING YIELDS OF THE DRIED PEA CROP

    • I. General Introduction

    • II. Comparative Responses of Peas to the Crop Environment

    • III. Attaining Maximum Biological Yield per Unit Area

    • IV. Attaining the Maximum Economic Yield per Unit Area

    • V. Improving the Efficiency of the Pea Fruit

    • VI. A Plant Ideotype for Improving Yields of Dried Peas

    • VII. Conclusions

    • References

  • CHAPTER 8. LOW-INPUT TECHNOLOGY FOR MANAGING OXISOLS AND ULTISOLS IN TROPICAL AMERICA

    • I. Introduction

    • II. Site Selection

    • III. Selection of Acid-Tolerant Germplasm

    • IV. Development and Maintenance of Ground Cover

    • V. Management of Soil Acidity

    • VI. Phosphorus Management

    • VII. Management of Low Native Soil Fertility

    • VIII. Discussion

    • IX. Summary

    • References

  • CHAPTER 9. CYTOGENETICS OF PEARL MILLET

    • I. Introduction

    • II. Karyotypic Analysis

    • III. Meiosis

    • IV. Abnormal Meiosis and Its Genetics

    • V. Haploidy

    • VI. Polyploidy

    • VII. Aneuploids

    • VIII. Structural Changes in Chromosomes

    • IX. B Chromosomes

    • X. Floral Biology and Hybridization

    • XI. Hybridization and Chromosome Relationships

    • XII. Conclusion

    • References

  • Index

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan