Chế tạo và nghiên cứu tính chất quang – từ của vật liệu spinel cofe2o4 cấu trúc nano

100 365 1
Chế tạo và nghiên cứu tính chất quang – từ của vật liệu spinel cofe2o4 cấu trúc nano

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGÔ THỊ PHƯỢNG CHẾ TẠO VÀ NGHIÊN CỨU TÍNH CHẤT QUANG – TỪ CỦA VẬT LIỆU SPINEL CoFe2O4 CẤU TRÚC NANO LUẬN VĂN THẠC SĨ QUANG HỌC THÁI NGUYÊN - 2018 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGÔ THỊ PHƯỢNG CHẾ TẠO VÀ NGHIÊN CỨU TÍNH CHẤT QUANG – TỪ CỦA VẬT LIỆU SPINEL CoFe2O4 CẤU TRÚC NANO Chuyên ngành: Quang học Mã số: 8.44.01.10 LUẬN VĂN THẠC SĨ QUANG HỌC Người hướng dẫn khoa học: PGS.TS ĐỖ HÙNG MẠNH THÁI NGUYÊN - 2018 i LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu tơi nhóm nghiên cứu, tất kết nghiên cứu trung thực Thái Nguyên, tháng năm 2018 Học viên Ngô Thị Phượng ii LỜI CẢM ƠN Lời đầu tiên, tơi xin bày tỏ lòng biết ơn sâu sắc tới PGS.TS Đỗ Hùng Mạnh - người Thầy tận tình hướng dẫn, động viên giúp đỡ tơi suốt q trình thực luận văn Nghiên cứu tài trợ Quỹ Phát triển khoa học công nghệ Quốc gia (NAFOSTED) đề tài mã số 103.02-2015.74 Tôi xin cảm ơn nghiên cứu sinh Phạm Hồng Nam tận tình dẫn, góp ý cụ thểcho nghiên cứu khoa học Tôi xin trân trọng cảm ơn giúp đỡ, tạo điều kiện thuận lợi cán thuộc Phòng Vật lý vật liệu từ siêu dẫn, Viện Khoa học vật liệu– Viện Hàn lâm khoa học công nghệ Việt Nam q trình tơi thực hồn thành luận văn Cuối cùng, hỗ trợ, động viên từ gia đình bè bạn động lực to lớn giúp tơi hồn thành luận văn Tác giả luận văn Ngô Thị Phượng MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii MỤC LỤC iii DANH MỤC CÁC KÝ HIỆU v DANH MỤC CÁC CHỮ VIẾT TẮT viii DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ x DANH MỤC CÁC BẢNG xiii MƠ ĐẦU Chương 1: TỔNG QUAN 1.1 Các phương pháp tổng hợp vật liệu kích thước nano mét 1.1.1 Phương pháp đồng kết tủa 1.1.2 Phương pháp thủy nhiệt 1.1.3 Phương pháp phân hủy nhiệt 1.2 Ứng dụng vật liệu nano 1.3 Cấu trúc tinh thể vật liệu ferit spinel 11 1.4 Tính chất từ 13 1.4.1 Trật tự từ tương tác 13 1.4.2 Dị hướng từ 15 1.4.3 Trạng thái đơn đômen siêu thuận từ 17 1.5 Mơ hình lõi - vỏ 20 1.6 Cơ chế vật lý hiệu ứng đốt nóng cảm ứng từ 20 1.6.1 Tổn hao từ trễ 20 1.6.2 Tổn hao hồi phục Neel Brown 21 Chương KỸ THUẬT THỰC NGHIỆM 24 2.1 Tổng hợp hệ hạt nano CoFe2O4 chất lỏng từ 24 2.2 Các phép phân tích cấu trúc, nhiệt, quang 28 2.2.1 Nhiễu xạ tia X 28 2.2.2 Hiển vi điện tử truyền qua 29 2.2.3 Phân tích nhiệt (TGA) 30 2.2.4 Phổ hồng ngoại 31 2.2.5 Phổ tán xạ laser động 32 2.3 Các phép đo từ 32 2.3.1 Từ kế mẫu rung 32 2.3.2 Đường từ trễ xoay chiều 33 2.3.3 Đốt nóng cảm ứng từ 34 Chương KẾT QUẢ VÀ THẢO LUẬN 36 3.1 Các kết phân tích cấu trúc, kích thước hạt, nhiệt 36 3.1.1 Các kết phân tích cấu trúc kích thước hạt 36 3.1.2 Phép phân tích nhiệt 39 3.2 Các kết liên quan tính chất quang học 40 3.2.1 Phổ tán xạ laser động độ ổn định chất lỏng từ 40 3.2.2 Phổ hồng ngoại biến đổi Fourier (FT-IR) 42 3.3 Các kết tính chất từ 42 3.3.1 Tính chất từ từ trường chiều 42 3.3 Tính chất từ từ trường xoay chiều cho mẫu chất lỏng từ CF3 46 KẾT LUẬN VÀ ĐỀ NGHỊ 51 TÀI LIỆU THAM KHẢO 52 DANH MỤC CÁC KÝ HIỆU a : Hằng số mạng A : Phân mạng tứ diện A1 : Độ lớn tương tác trao đổi A2 : Nội hệ hạt nano A3 : Năng lượng chu trình từ hóa B : Phân mạng bát diện C : Nhiệt dung riêng c : Nồng độ hạt từ E : Năng lượng dị hướng dx : Mật độ khối lượng D : Kích thước hạt Dc : Kích thước tới hạn đơn đơmen DTEM : Kích thước tử ảnh TEM dSP : Kích thước siêu thuận từ DXRD Kích thước từ giản đồ XRD f Tần số fo : Tần số tiêu chuẩn H : Cường độ từ trường HA : Trường dị hướng Hc : Lực kháng từ : : Hmax : Từ trường lớn Hmin : Từ trường nhỏ K : Hằng số dị hướng từ tinh thể Keff : Hằng số dị hướng hiệu dụng KV : Hằng số dị hướng từ khối KS : Hằng số dị hướng bề mặt kB : Hằng số Boltzmann L : Hàm Langevin m : Khối lượng M : Từ độ M(0) : Từ độ 0K Me2+ : Các kim loại hóa trị 2+ Mr : Từ độ dư Ms : Từ độ bão hòa Ms(∞) : Từ độ vật liệu khối n : Số hạt đơn vị thể tích P : Cơng suất Phys : Công suất tổn hao từ trễ Q : Nhiệt lượng thu vào rc : bán kính đơn đơmen tới hạn hạt đơn đơmen hình cầu T : Nhiệt độ vii TB : Nhiệt độ khóa Tb : Nhiệt độ bão hòa TC : Nhiệt độ Curie To : Nhiệt độ hiệu dụng ΔT : Độ biến thiên nhiệt độ t : Thời gian V : Thể tích hạt Vopt : Thể tích tối ưu hạt W : Năng lượng từ hóa zv  ζ  : Độ dài tương quan : Độ nhớt chất lỏng từ : Độ lớn tương tác trao đổi : Khối lượng riêng 0 : Độ từ thẩm chân không χ’ : Phần thực độ cảm từ xoay chiều χ’’ : Phần ảo độ cảm từ xoay chiều τ��� : Thời gian hồi phục hiệu dụng τB : Thời gian hồi phục Brown τN : Thời gian hồi phục Neél τo : Thời gian hồi phục đặc trưng ω0 : Tần số Larmor DANH MỤC CÁC CHỮ VIẾT TẮT EDX : Phổ tán xạ lượng tia X EHT : Đốt nóng ngồi FC : Làm lạnh có từ trường FT-IR : Phổ hồng ngoại phân giải Fourier ILP : Công suất tổn hao nội ISPM : Siêu thuận từ tương tác LRT : Lý thuyết đáp ứng tuyến tính NA : Định luật Neél Arrhenius OA : Oleic acid OLA : Oleylamine PMAO : Poly(maleic anhydride-alt-1-octadecene) PPMS : Hệ đo tính chất vật lý SPM : Siêu thuận từ SLP : Công suất tổn hao riêng SLPHC : Công suất tổn hao sau hiệu chỉnh SLPLRT : Công suất tổn hao theo lý thuyết đáp ứng tuyến tính SLPmax : Cơng suất tổn hao cực đại SLPTN : Công suất tổn hao thực nghiệm SW : Stoner-Wohlfarth TEM : Hiển vi điện tử truyền qua với DSP = nm kích thước tới hạn siêu thuận từ hệ hạt nano CoFe2O4, p = 0,65 (0,634  p  0,659 cho hạt hình cầu có dị hướng ngẫu nhiên) Với cách tính mẫu CF4 có Keff 5,3x105 erg.cm-3 Các giá trị so sánh với số dịhướng mẫu CoFe2O4 dạng khối ((1,83,0)x106 erg.cm-3) [23] Giá trị Keff thu Keff K eff(10 erg/cm ) giảm kích thước hạt thường thấy hệ hạt nano từ khác K = 6.3 X 10 erg/cm K = 1.31 x 10 erg/cm3 đóng góp đáng kể dị hướng bề mặt (KS) [13] Ngoài dị hướng từ tinh thể (KV), KS thêm vào để giải thích Keff phụ thuộc vào s v 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 -1 1/d (nm ) Hình 3.10 Sự phụ thuộc số dị hướng vào tỷ lệ nghịch kích thước hạt (DTEM) kích thước hạt Trong trường hợp hạt hình cầu với đường kính DTEM, Keff biểu diễn tổng KV KS viết dạng công thức sau [17]: Keff = KV + (6/DTEM)KS (3.2) Sử dụng giá trị Keff Bảng 3.2, phụ thuộc Keff với nghịch đảo kích thước hạt biểu diễn Hình 3.10 Các kết thu từ thực nghiệm làm khớp hàm theo công thức (3.2) ta thu giá trị dị hướng tinh thể (KV) dị hướng bề mặt (KS) tương ứng 1,3x106 erg.cm-3 6,3x106 erg.cm-2 Như vậy, giá trị KV nhận gần với giá trị số dị hướng mẫu khối nêu 3.3 Tính chất từ từ trường xoay chiều cho mẫu chất lỏng từ CF3  Đường trễ 30 200 CF3 20 CF3 450 kHz SLPhys (W/g) M (emu/g) 150 10 -10 100 50 -20 -30 -400 -200 H (Oe) 200 0 400 100 200 H (Oe) 300 400 Hình 3.11 Các đường từ trễ Hình 3.12 SLPhys phụ thuộc mẫu chất lỏng từ CF3 H, tần số 450 kHz Trong phần này, chọn mẫu chất lỏng từ tiêu biểu (chứa hạt từ CF3 với nồng độ mg/ml, sau gọi tắt CF3) để khảo sát khả sinh nhiệt chất lỏng từ từ trường cường độ (0-400 Oe), tần số 450 kHz Hình 3.11 đường từ trễ mẫu chất lỏng CF3, cho thấy phát triển vòng trễ theo độ tăng cường độ từ trường Giá trị SLPhys xác định theo công thức: ���� � ℎ�= � ∮ � � �(��)�� (3.3) Ơ đây, f tần số, mn khối lượng hạt từ Theo cách tiếp cận này, SLP tỷ lệ cường độ từ trường theo dạng hàm bậc biểu diễn Hình 3.12 Thực chất phép đo này, SLP tính riêng phần thực từ trường xoay chiều loại bỏ ảnh hưởng tổn hao Neel Brown  Đốt nóng cảm ứng từ a) Khả sinh nhiệt máy phát từ trường xoay chiều Các thực nghiệm đốt nóng cảm ứng từ thực giá trị H khác (100 – 300 Oe), tần số f = 450 kHz Hình 3.13 cho thấy nhiệt độ T tăng 70 theo từ trường H Giá trị SLP tính 65 tốn thơng qua tốc độ tăng nhiệt ban đầu 55 60 o T ( C) theo công thức sau [30]: ��� =� � � �� �� �� 300 Oe 250 Oe 200 Oe 150 Oe 100 Oe 50 45 40 (3.4) Trong C nhiệt dung riêng, ms khối lượng toàn chất lỏng, mn khối lượng hệ hạt nano từ, dT/dt tốc độ 35 30 300 600 900 1200 1500 t (s) Hình 3.13 Nhiệt độ đốt cực đại phụ thuộc cường độ từ trường tăng nhiệt ban đầu xác định từ độ dốc đường cong sinh nhiệt theo thời gian Sự phụ thuộc H SLP tóm tắt Bảng 3.3 Bảng 3.3 Giá trị SLP mẫu CF3 H khác f = 450 kHz H S L ( W 1 5 2 8 Từ Bảng 3.3 thấy cácgiá trị SLP cao giá trị từ trường 100 Oe, 150 Oe, 200 Oe, 250 Oe 300 Oe (cố định tần số, 450 kHz) Giá trị SLP lớn đạt 297,4 (W/g) cường độ từ trường 300 Oe so sánh với cơng bố nhóm tác giả [9] hệ vật liệu CoFe2O4 bọc PAA (polyacrylic acid) với kích thước khác nm, 10 nm 14 nm Ơ nồng độ 1,25 mg/ml mẫu kích thước 10 nm cho giá trị SLP lớn 251 (W/g) điều kiện cường độ từ trường tần số tương ứng (196 Oe, 275 kHz) b) Cơ chế đóng góp cơng suất tổn hao từ trễ, Neel Brown Như trình bày chương 1, khả sinh nhiệt chất lỏng từ từ trường xoay chiều chế tổn hao: chế từ trễ (SLPhys), chế hồi Brown (SLPB) Sự đóng góp khác tùy thuộc vào kích Keff D Do đó, việc đánh giá đóng góp chế điều phức tạp, khó 50 40 30 khăn Để loại bỏ đóng góp tổn CF3 o T ( C) chế vào SLP tổng cộng 300 Oe 250 Oe 200 Oe 150 Oe 100 Oe 60 phục Neél (SLPN) chế hồi phục 300 600 900 t (s) 1200 1500 Hình 3.14 Đường đốt từ mẫu hao Brown, thí nghiệm tiến CF3 với nồng độ hạt từ mg/ml hành sau, pha 1mg hạt từ agar 2%, 300 Oe, 450 kHz mẫu CF3 bọc PMAO vào dung dịch (nước + agar 2%) gọi tắt mơi trường agar 2%, dung dịch thu có dạng keo để hạn chế chuyển động hạt nano Lý tưởng chuyển động Brown nhỏ tốt, mặt ứng dụng hạt nano từ đưa vào tế bào ung thư hạt nano chuyển động nước [18] Trong thực nghiệm này, điều kiện từ trường tương tự trên: cường độ từ 100 Oe đến 300 Oe, tần số 450 kHz Hình 3.14 đường đốt nóng cảm ứng từ mẫu CF3 với nồng độ mg/ml phân tán dung dịch agar 2% Cũng giống trường hợp môi trường nước, nhiệt độ tăng tăng cường độ từ trường So sánh đường đốt nóng cảm ứng từ mơi trường agar 2% môi trường nước ta thấy độ dốc tốc độ tăng nhiệt thấp Như vậy, giả thiết giá trị SLPB gần đóng góp khơng đáng kể vào giá trị SLP tổng hay tổn hao Brown loại bỏ Lúc này, cơng suất tổn hao bao gồm SLPN có SLPhys Như nêu SLP tổng giá trị SLPhys, SLPB, SLPN Từ số liệu thực nghiệm đường đốt nóng cảm ứng từ agar 2% (Hình 3.14) đường từ trễ (Hình 3.11), 300 chế biểu diễn 250 SLPhys dạng biểu đồ hình cột Hình 3.15 200 SLP Với mẫu CF3, SLPhys có đóng góp nhỏ vào giá trị SLP tổng cộng SLP (W/g) xác định giá trị công suất tổn hao SLPB N SLP 150 100 vùng từ trường thấp (< 100 Oe), 50 đóng góp tăng lên tăng từ trường Điều hợp lý CF3 100 150 200 H (Oe) 250 300 mẫu có lực kháng từ cỡ 40 Oe Hình 3.15 SLPhys, SLPB, SLPNvà SLP cần từ trường lớn vài bậc để phụ thuộc vào từ trường mẫu chất từ hóa bão hòa Đóng góp tổn lỏng từ CF3 hao Brown tăng lên theo từ trường Kết giả thiết sau: nhiệt độ tăng làm thay đổi độ nhớt chất lỏng làm tăng độ linh động hạt dẫn tới đóng góp tổn hao Brown tăng theo từ trường Kết luận chương Bằng phương pháp phân hủy nhiệt chế tạo thành công hệ hạt nano CoFe2O4 với cấu trúc spinel, hình dạng hạt hình cầu đơn phân tán Các mẫu sau tổng hợp chuyển pha PMAO vào nước thành chất lỏng từ Kết đo Zeta cho thấy mẫu thu có độ bền cao Các phép đo từ cho thấy mẫu CF1 CF2 có kích thước hạt nằm vùng kích thước siêu thuận từ, CF3 CF4 biểu trạng sắt từ với Hc ≥ 40 Oe Các thí nghiệm đốt nóng cảm ứng từ khảo sát từ trường khác nhau100 Oe đến 300 Oe, tần số 450 kHz Kết cho thấy SLP tăng theoH Với mẫu CF3 cho SLP cao đạt 297,4 (W/g) H = 300 Oe Bên cạnh chế vật lý đóng góp lên SLP tổng mẫu chất lỏng CF3 phân tích thảo luận KẾT LUẬN CHUNG VÀ ĐỀ NGHỊ Chế tạo thành công hệ hạt nano CoFe2O4 phương pháp phân hủy nhiệt chất lỏng tương ứng dùng PMAO chất chuyển pha Từ phân tích cấu trúc, hình thái, nhiệt, quang từ đưa kết luận tiêu biểu sau: Có thể chủ động điều khiển kích thước phân bố kích thước hạt cách thay đổi điều kiện chế tạo thích hợp Kích thước tinh thể kích thước hạt trung bình mẫu nằm khoảng từ 7-20 nm với độ phân bố hẹp độ tinh thể tốt Hai thông số từ độ bão hòa lực kháng từ tăng theo kích thước hạt Ngược lại lượng dị hướng hiệu dụng có giá trị giảm dần Phổ hồng ngoại cung cấp chứng bổ sung khả bọc hạt từ nano CoFe2O4 thành cấu trúc từ vỏ-lõi Chất lỏng từ bọc PMAO có độ bền cao môi trường nước Giá trị công suất tổn hao tăng theo giá trị từ trường đạt giá trị cao 297,4 (W/g) 300 Oe, 450 kHz Trong vùng từ trường nhỏ tổn hao Neel chiếm ưu thế, ngược lại đóng góp tổn hao từ trễ tăng theo từ trường Cần có nghiên cứu bổ sung để mẫu chất lỏng từ CF3 với chất lượng tốt ứng dụng thực tế nhiệt từ trị tăng cường độ tương phản ảnh cộng hưởng từ TÀI LIỆU THAM KHẢO Tiếng việt Nguyễn Hữu Đức (2008), Vật liệu từ cấu trúc nano điện tử spin, Nhà xuất Đại học Quốc gia Hà Nội: pp 49-53 Hồ Thanh Huy (2009) Nghiên cứu cấu trúc tinh thể, tính chất điện từ hợp chất TmCoIn5 YbCoIn5 sử dụng phương pháp đặc trưng micro nano, Luận văn thạc sĩ chuyên nghành vật liệu linh kiện nano Đại học Quốc gia TP Hồ Chí Minh Phạm Hoài Linh, Nguyễn Thanh Ngọc, Trần Đăng Thành, Đỗ Hùng Mạnh, Nguyễn Chí Thuần, Lê Văn Hồng Nguyễn Xuân Phúc (2007), Chế tạo vật liệu spinel Mn1-xZnxFe2O4 (0≤x ≤0,8) kích thước nanomet nghiên cứu số tính chất từ chúng, Hội nghị VLCRTQ lần thứ 5, Vũng Tàu: pp 116-120 Phạm Hoài Linh (2014), Nghiên cứu chế tao chất lỏng từ hạt nano Fe3O4 ứng dụng diệt tế bào ung thư Luận án Tiến sĩ Khoa học vật liệu, Viện Khoa học vật liệu, Hà Nội Trương Thị Mai (2017), Chuyên đề cấu trúc tinh thể Khoa hóa học, Đại học Quy Nhơn Đỗ Hùng Mạnh (2011), Nghiên cứu tính chất điện từ vật liệu perovskite ABO3 kích thước nanomét (A = La, Sr, Ca B = Mn) tổng hợp phương pháp nghiền phản ứng, Luận án Tiến sĩ Khoa học vật liệu, Viện Khoa học vật liệu, Hà Nội Phạm Hồng Nam (2013) "Chế tạo, nghiên cứu tính chất từ đốt nóng cảm ứng từ hệ hạt ferit spinel Mn1-xZnxFe2O4 có kích thước nano mét." Luận văn Thạc sĩ Khoa học vật liệu, Viện Khoa học vật liệu, Hà Nội Nguyễn Phú Thùy (2003), Vật lý tượng từ, Nhà xuất Đại học Quốc gia Hà Nội: pp 143–146, 161 Nguyễn Anh Tiến, Dương Thu Đông, Phạm Quỳnh Lan Phương, Nguyễn Thị Minh Thúy (2013) Nghiên cứu tổng hợp vật liệu YFeO3 kích thước nano mate phương pháp đồng kết tủa, Tạp chí Khoa học ĐHSP TPHCM (47) 10 Phan Văn Tường (2007), Vật liệu vô cơ, Nhà xuất Đại học Quốc gia Hà Nội: pp 52–54 Tiếng Anh 11 Amyn S., Teja Pei., Yoong Koh (2009), Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Progress in Crystal Growth and Characterization of Materials, 55, pp 22–45 12 Aslibeiki B., Kameli P., Salamati H., Eshraghi M., and Tahmasebi T (2010), Superspin glass state in MnFe2O4 nanoparticles, Journal of Magnetism and Magnetic Materials, 322, pp 2929-2934 13 Chen D.G., Tang X.G., Wu J.B., Zhang W., Liu Q.X., Jiang Y.P ( 2011), Effect of grain size on the magnetic properties of superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles by co-precipitation proces, Journal of Magnetism and Magnetic Materials, 323, pp 1717–1721 14 Chen J.P., Sorensen C.M., Klabunde K.J., and Hadjipanayis G.C (1994), Magnetic properties of nanophase cobalt particles synthesized in inversed micelles, Journal of Applied Physics, 76, pp 6316-6318 15 Chen J.P, Sorensen C.M, Klabunde K.J, Hadjipanayis G.C., Devlin E and Kostikas A (1996), Size - dependent magnetic propreties of MnFe2O4 fineparticles synthesized by coprecipitation, Physical Review B, 54, pp 9288(9) 16 Christy Riann Vestal (2004), Magnetic Coupling and Superparamagnetic Properties Of Spinel ferrite nanoparticles, Doctor thesis, Georgia Institite Technology 17 Goldman Alex (2006), Modern ferrite Technology 2nd, Pittsburgh, PA, USA, Springer 18 Hergt R., Andra W., d'Ambly C.G., Hilger I, Kaiser W.A., Richter U., and Schmidt H.G (1998), Physical limits of hyperthermia usingmagnetite fine particles, IEEE Trans Magn, 34, pp 3745 - 3754 19 Hergt R., Dutz S., Muller R., and Zeisberger M (2006), Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, J Phys : Condens Matter, 18, pp 2919 – 2934 20 Hua Li., Hua-zhong Wu., Guo-xian Xiao (2010), Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4, Powder Technology 198, pp 157–166 21 Jun Wang., Chuan Zeng., Zhenmeng Peng., Qianwang Chen (2004), Synthesis and magnetic properties of Zn1-xMnxFe2O4nanoparticles, Physica B 349, pp 124–128 22 Lu Xiao., Tao Zhou., Jia Meng (2009), Hydrothermal synthesis of Mn–Zn ferrites from spent alkaline Zn–Mn batteries, Particuology 7, pp 491–495 23 N Poudyal, C Rong, Y Zhang, D Wang, M J Kramer, R J Hebertc, J P Liu: J Alloys Compd 521 (2012) 55 24 Thi Kim Oanh Vuong, Dai Lam Tran, Trong Lu Le, Duy Viet Pham, Hong Nam Pham, Thi Hong Le Ngo, Hung Manh Do, Xuan Phuc Nguyen (2015), Synthesis of high-magnetization and monodisperse Fe3O4 nanoparticles via thermal decomposition, Materials Chemistry and Physics, 163: pp 537-544 25 Pradhan S.K., Bid S., Gateshki M., Petkov V (2005), Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling, Materials Chemistry and Physics, 93, pp 224–230 26 Rath C., Sahu K.K., Anand S., Date S.K., Mishra N.C., Das R.P ( 1999), Preparation and characterization of nanosize Mn-Zn ferrite, Journal of Magnetism and Magnetic Materials, 202, pp 77-84 27 S J Lee, J H Cho, C Lee, J Cho, Y R Kim, and J K Park: Nanotechnology 22 (2011) 375603 28 Thanh N.T.K (2012), Magneic Nanoparticles From Fabrication to Clinical Applications, CRC Press Taylor & Francis Group, pp 16-19 29 Xavier Batlle., Labarta Amílcar (2002), Finite-size effects in fine particles: magnetic and transport properties, Journal of Physics D Applied Physics, 35, pp pp R15-R42 30 Y X Gong, L Zhen, J T Jiang, C Y Xu, W Z Shao: J Magn Magn Mater 321 (2009) 3702 ... cách thức chế tạo, cấu trúc, tính chất hệ hạt nano CoFe2O4 chất lỏng từ tương lựa chọn tên đề tài cho Luận văn: Chế tạo nghiên cứu tính chất quang – từ vật liệu spinel CoFe2O4 cấu trúc nano Mục... ứng từ định hướng ứng dụng y sinh Đối tượng nghiên cứu Vật liệu spinel CoFe2O4 cấu trúc nano Phạm vi nghiên cứu Cấu trúc, hình thái, kích thước, tính chất quang, nhiệt, từ hệ hạt nano CoFe2O4 chất. .. KHOA HỌC NGÔ THỊ PHƯỢNG CHẾ TẠO VÀ NGHIÊN CỨU TÍNH CHẤT QUANG – TỪ CỦA VẬT LIỆU SPINEL CoFe2O4 CẤU TRÚC NANO Chuyên ngành: Quang học Mã số: 8.44.01.10 LUẬN VĂN THẠC SĨ QUANG HỌC Người hướng dẫn

Ngày đăng: 16/11/2018, 13:28

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan