Synthetic organic photochemistry 2005 dekker

620 183 0
Synthetic organic photochemistry 2005   dekker

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

... Chiral Photochemistry, edited by Yoshihisa Inoue and V Ramamurthy 12 Synthetic Organic Photochemistry, edited by Axel G Griesbeck and Jochen Mattay Copyright © 2005 by Marcel Dekker Synthetic Organic. .. Gainesville, Florida Organic Photochemistry, edited by V Ramamurthy and Kirk S Schanze Organic and Inorganic Photochemistry, edited by V Ramamurthy and Kirk S Schanze Organic Molecular Photochemistry, ... INTRODUCTION This book is on synthetic organic photochemistry With emphasis on ‘ synthetic. ’’ Considering only the electronically excited states of organic molecules relevant for photochemistry, essentially

Ngày đăng: 10/07/2018, 09:59

Từ khóa liên quan

Mục lục

  • dk1195fm

    • Synthetic Organic Photochemistry

      • Preface

      • Contents

      • Contributors

  • DK1195ch1

    • Table of Contents

    • Chapter 1: Synthetic Organic Photochemistry

      • 1.1. INTRODUCTION

      • REFERENCES

  • DK1195ch2

    • Table of Contents

    • Chapter 2: Abstraction of gamma-Hydrogens by Excited Carbonyls

      • 2.1. HISTORICAL BACKGROUND

        • 2.1.1. General Summary

        • 2.1.2. 1,4-Biradical Formation from Simple Ketones

        • 2.1.3. Normal Behavior of 1,4-Biradicals

        • 2.1.4. beta-Cleavage of Radicals from 1,4-Biradicals

        • 2.1.5. Photoenolization of omicron-Alkylphenyl Ketones

      • 2.2. STATE OF THE ART MECHANISTIC MODEL

        • 2.2.1. Acyclic Ketones

        • 2.2.2. alpha-Ketoesters

        • 2.2.3. alpha-Diketones

        • 2.2.4. beta-Cleavage of Radicals from 1,4-Biradicals

        • 2.2.5. omicron-Alkylphenyl Ketones

        • 2.2.6. Benzoate Esters: Electron Transfer

      • 2.3. SCOPE AND LIMITATIONS

        • 2.3.1. Factors of General Importance

        • 2.3.2. Aliphatic Ketones

        • 2.3.3. Aryl Alkyl Ketones

        • 2.3.4. alpha-Diketones

        • 2.3.5. omicron-Alkylphenyl Ketones

        • 2.3.6. Pyruvate Esters

      • 2.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERNS

        • 2.4.1. Selectivity of Hydrogen Abstraction

        • 2.4.2. Chemoselectivity of 1,4-Biradical Reactions

          • Acyclic ketones

          • Cyclic Compounds

        • 2.4.3. Stereoselectivity of 1,4-Biradical Reactions

          • Acyclic Ketones

          • Cyclic Compounds

        • 2.4.4. alpha-Diketones

        • 2.4.5. omicron-Alkylphenyl Ketones

        • 2.4.6. Biradical Rearrangements

        • 2.4.7. Summary of Synthetic Potential

      • 2.5. REPRESENTATIVE PROCEDURES

      • 2.6. TARGET MOLECULES: NATURAL AND NONNATURAL PRODUCT STRUCTURES

      • REFERENCES

  • DK1195ch3

    • Table of Contents

    • Chapter 3: Abstraction of (gamma ± n)-Hydrogen by Excited Carbonyls

      • 3.1. INTRODUCTION AND HISTORICAL BACKGROUND

      • 3.2. STATE OF THE ART MECHANISTIC MODELS

      • 3.3. SCOPE AND LIMITATIONS

        • 3.3.1. Suitable Reactants

          • 3.3.1.1. Ketones

            • 3.3.1.1.1. Aliphatic Ketones

            • 3.3.1.1.2. Aromatic Ketones

            • 3.3.1.1.3. 1,2-Dicarbonyl Compounds

          • 3.3.1.2. Imides

            • 3.3.1.2.1 Alicyclic Imides

            • 3.3.1.2.2 Phthalimides

        • 3.3.2. Interaction with Functional Groups

          • 3.3.2.1. Photoinduced Single-Electron-Transfer (PET)

          • 3.3.2.2. CT-Quenching

          • 3.3.2.3. Substituent Effects

            • 3.3.2.3.1. Ring Substituents

            • 3.3.2.3.2. Substituents in alpha-Position

      • 3.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERN

        • 3.4.1. Cyclopropanes

          • 3.4.1.1. By beta-Hydrogen Abstraction

          • 3.4.1.2. By gamma-Hydrogen Abstraction and Subsequent Spin Center Shift

        • 3.4.2. Five-Membered Rings

          • 3.4.2.1. By delta-Hydrogen Abstraction

          • 3.4.2.2. By gamma-Hydrogen Abstraction and Subsequent Spin Center Shift

        • 3.4.3. Six-Membered Rings

          • 3.4.3.1. By epsilon-Hydrogen Abstraction

          • 3.4.3.2. By delta-Hydrogen Abstraction and Subsequent Spin Center Shift

        • 3.4.4. Bi- and Tricyclic Compounds

        • 3.4.5. Macrocycles

        • 3.4.6. Photochemistry of Imides

      • 3.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

        • 3.5.1. trans-1-Benzoyl-2-methyl-cyclopropane (12b)

        • 3.5.2. (2R,4aS,5aS,8R,9aR,9bR)-Perhydro-1-[(2R,3R)-3-hydroxy-3-phenyl-N-tosylprolyl]-2,8-diphenyl-2H,5H,8H-bis[1,3]dioxino[5,4-b:4',5'-d]pyrroline (24)

        • 3.5.3. 1,2,3,6,7,8,9,10,11,12,13,14,15,21b-Tetradecahydro-21b-hydroxy-17H-[1,5]diazacyclo-heptadecino[2,1-a]isoindole-4,17(5H)-dione (96b)

      • 3.6. TARGET MOLECULES: NATURAL AND NONNATURAL PRODUCT STRUCTURES

      • REFERENCES

  • DK1195ch4

    • Table of Contents

    • Chapter 4: Photocycloadditions of Alkenes to Excited Carbonyls

      • 4.1. HISTORICAL BACKGROUND

      • 4.2. STATE OF THE ART MECHANISTIC MODELS

      • 4.3. SCOPE AND LIMITATIONS

        • 4.3.1. Aromatic Aldehydes and Ketones

        • 4.3.2. Carboxylic Acid Derivatives and Nitriles

        • 4.3.3. alpha-Ketocarbonyl Compounds, Acyl Cyanides

        • 4.3.4. Enones and Ynones

        • 4.3.5. Quinones

        • 4.3.6. Alkenes, Alkyl-, and Aryl-Substituted

        • 4.3.7. Alkenes, Electron Donor-Substituted

        • 4.3.8. Alkynes

        • 4.3.9. Allenes and Ketenimines

        • 4.3.10. Dienes and Enynes

        • 4.3.11. Furans

        • 4.3.12. Other Heteroaromatic Substrates

        • 4.3.13. Strained Hydrocarbons

        • 4.3.14. Alkenes, Electron Acceptor-Substituted

        • 4.3.15. Exocyclic Olefins

      • 4.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERN

        • 4.4.1. Prostereogenic Carbonyl Groups: Product Stereoselectivity

          • 4.4.1.1. Simple Diastereoselectivity

          • 4.4.1.2. Induced Diastereoselectivity

        • 4.4.2. Effect of Temperature on Diastereoselectivity

        • 4.4.3. Effect of Hydrogen Bonding on Diastereoselectivity of Paterno-Buchi Reaction

        • 4.4.4. Asymmetric Induction via Chiral Carbonyl Compounds

        • 4.4.5. Asymmetric Induction via Chiral Alkenes

        • 4.4.6. Intramolecular Paterno-Buchi Reactions

      • 4.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

        • 4.5.1. Photocycloaddition of Benzaldehyde to 2,3-Dihydrofuran [308nm XeCl Excimer Photolysis on the 1 mol Scale]

        • 4.5.2. Photocycloaddition of Benzaldehyde to 2,4-Dimethyl-5-methoxyoxazole with Subsequent Ring Opening

      • 4.6. TARGET MOLECULES: NATURAL AND NONNATURAL PRODUCT STRUCTURES

      • REFERENCES

  • DK1195ch5

    • Table of Contents

    • Chapter 5: Photocycloaddition of Alkenes to Excited Alkenes

      • 5.1. INTRODUCTION

      • 5.2. MECHANISTIC DETAILS

      • 5.3. EXAMPLES OF ALKENE + ALKENE PHOTOCYCLOADDITION

        • A. Nontethered Examples

        • B. Tethered Photocycloaddition

      • 5.4. REGIO- AND STEREOSELECTIVITY

        • A. Nontethered Alkenes

        • B. Tethered Alkenes

      • 5.5. EXPERIMENTAL PROCEDURES

        • A. Photocycloaddition of Silyl-Tethered Alkenes

        • B. Photocycloaddition of Copper-Tethered Alkenes

      • 5.6. TARGET MOLECULES

        • A. Cubane

        • B. Cubane-like Structures

        • C. High Energy Compounds

        • D. Cage Structures

        • E. Terpenoids

        • F. Insect Pheromone

      • REFERENCES

  • DK1195ch6

    • Table of Contents

    • Chapter 6: Di-pi-Methane Rearrangement

      • 6.1. HISTORICAL BACKGROUND

      • 6.2. MECHANISTIC MODELS

      • 6.3. SCOPE AND LIMITATIONS

      • 6.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERN

        • 6.4.1. The Reaction Regioselectivity

        • 6.4.2. The Excited State Involved in the Rearrangement

      • 6.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

        • 6.5.1. DPM Rearrangements

          • 6.5.1.1. 6,6-Diphenyl-2-diphenylmethylenebicyclo[3.1.0]hex-3-ene (53) (Sch. 18)

          • 6.5.1.2. 3-(2,2-Dicyanovinyl)-1,1,2,2-tetraphenylcyclopropane (55) (Sch. 19)

      • 6.5.2. 1-ADPM Rearrangements

        • 6.5.2.1. endo-5-Methyl-3-phenylbicyclo[3.1.0]hexane-6-carbonitrile (58) (Sch. 20)

        • 6.5.2.2. (Ecyclo, EC–N)-2,2-Dimethyl-3-phenylcyclopropanecarbaldehyde oxime acetate (23) (Sch. 21)

      • 6.6. TARGET MOLECULES: NATURAL AND NONNATURAL PRODUCTS

      • REFERENCES

  • DK1195ch7

    • Table of Contents

    • Chapter 7: Oxa-Di-pi-Methane Rearrangements

      • 7.1. HISTORICAL BACKGROUND

      • 7.2. STATE OF THE ART OF MECHANISTIC MODELS

      • 7.3. SCOPE AND LIMITATIONS

      • 7.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERN

      • 7.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

        • 7.5.1. Synthesis of Tricyclo[3.3.0.0.0]octane-3-one

        • 7.5.2. Synthesis of 4,4,9,9-Tetramethyltetracyclo[6.4.0.0.0]dodecane-7,12-dione

      • 7.6. TARGET MOLECULES: NATURAL AND NONNATURAL PRODUCT STRUCTURES

      • REFERENCES

  • DK1195ch8

    • Table of Contents

    • Chapter 8: Photocycloaddition of Cycloalk-2-enones to Alkenes

      • 8.1. HISTORICAL BACKGROUND

      • 8.2. STATE OF THE ART, MECHANISTIC MODELS

      • 8.3. SCOPE AND LIMITATIONS

      • 8.4. SYNTHETIC POTENTIAL, REACTIVITY, AND SELECTIVITY PATTERNS

        • Representative Experimental Procedures

          • 1. Photocyclization of an Enone to an Alkene: 6-Methylbicyclo[4.2.0]octan-2-one

          • 2. Irradiation of 2,2-Dimethyl-2H-furo[3,4-b]pyran-4,7(3H,5H)-dione (73) in the Absence and Presence of 2-Methylpropene

          • 3. Photocycloaddition of 5,5-Dimethylcyclohex-2-enone (75) to 2,3-Dimethylbut-2-ene

      • 8.5. NATURAL- AND NONNATURAL TARGET MOLECULES

      • REFERENCES

  • DK1195ch9

    • Table of Contents

    • Chapter 9: Photocycloaddition of Alkenes (Dienes) to Dienes ([4+2]/[4+4])

      • 9.1. HISTORICAL BACKGROUND

      • 9.2. STATE OF THE ART MECHANISTIC MODELS

      • 9.3. SCOPE AND LIMITATIONS

      • 9.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERNS

        • Intermolecular [4+2] Cycloaddition

        • Intramolecular [4+2] Cycloaddition of Dienes

        • Photo-[4+2] Cycloadditions of Enones

        • Additional [4+2] Cycloaddition Examples

        • Intermolecular [4+4] Cycloaddition

        • Intramolecular [4+4] Cycloaddition

      • 9.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

        • Photo-[4+2]-cycloaddition of 59 and 60

        • CuOTf-Catalyzed Irradiation of 86

        • Photo-[4+2]-cycloaddition of Enone 102 and Furan

        • Photodemerization of 1-Methyl-2-pyridone 139

        • Photocycloaddition of Tetraene 168

      • 9.6. TARGET MOLECULES: NATURAL AND NON-NATURAL PRODUCT STRUCTURES

        • (a) Polyquinane Natural Products

        • (b) Monocarbocyclic Cyclo-octanoid Natural Products

        • (c) Bicarbocyclic Cyclo-octanoid Natural Products

        • (d) Tricarbocyclic Cyclo-octanoid Natural Products: dicyclopenta[a,d]cyclo-octanes

        • (e) Tetracarbocyclic Cyclo-octanoid Natural Products

        • (f) Fused Cyclohexyl–Cyclo-octanoid Natural Products

      • REFERENCES

  • DK1195ch10

    • Table of Contents

    • Chapter 10: Photoinduced Electron Transfer Cyclizations via Radical Ions

      • 10.1. HISTORICAL BACKGROUND

      • 10.2. STATE OF THE ART MECHANISTIC MODELS

      • 10.3. SCOPE AND LIMITATIONS

        • 10.3.1. Photocyclizations of Donor-Bridge-Acceptor Molecules

          • 10.3.1.1. PET Cyclization of Aromatic Oxoesters

          • 10.3.1.2. PET Cyclizations of Phthalimides

        • 10.3.2. Photocyclizations Initiated via Oxidative PET

        • 10.3.3. Photocyclizations Initiated via Reductive PET

      • 10.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERN

        • 10.4.1. Regioselectivity

        • 10.4.2. Diastereoselectivity

        • 10.4.3. Enantioselectivity

      • 10.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

        • 10.5.1. General Remarks

        • 10.5.2. Radical Cationic Photocyclization of the Oligopeptide (23) [>345nm Photolysis on a 0.1 mmol Scale]

        • 10.5.3. Radical Anionic Photocyclization of the alpha-Cyclopropyl Ketone (79) [300 ± 20nm Photolysis on a 0.9 mmol Scale]

        • 10.5.4. Photodecarboxylative Cyclization of the N-Phthaloylanthranilic Acid Amide of L-Leucine (81) [308nm XeCl Excimer Photolysis on a 32 mmol Scale]

      • 10.6. TARGET MOLECULES: NATURAL AND NONNATURAL PRODUCT STRUCTURES

      • REFERENCES

  • DK1195ch11

    • Table of Contents

    • Chapter 11: Photo-oxygenation of the [4+2] and [2+2] Type

      • 11.1. HISTORICAL BACKGROUND

      • 11.2. [4+2] PHOTO-OXYGENATION

        • 11.2.1. State of Art Mechanistic Models

        • 11.2.2. Chemoselectivity

        • 11.2.3. Stereochemistry

        • 11.2.4. Scope and Limitations

          • 11.2.4.1. Cyclic Dienes

          • 11.2.4.2. Acyclic Dienes

          • 11.2.4.3. Aromatic Compounds

          • 11.2.4.4. Vinylarenes

          • 11.2.4.5. Heterocyclic Systems

            • 11.2.4.5.1. Furans

            • 11.2.4.5.2. Pyrroles

            • 11.2.4.5.3. Thiophenes

            • 11.2.4.5.4. Heterocycles with More than One Heteroatom

        • 11.2.5. Synthetic Potential

          • 11.2.5.1. Reduction (a,b,c)

          • 11.2.5.2. Thermolysis (d,e)

          • 11.2.5.3. Metal-Promoted Decompositions (d)

          • 11.2.5.4. Deoxygenation by Trivalent Phosphorus Compounds or Dialkyl Sulfides (f)

          • 11.2.5.5. Acid- and Base-Catalyzed (g) Reactions

        • 11.2.6. Target Molecules

        • 11.2.7. Synthetic Procedures: An Example

      • 11.3. [2+2] PHOTO-OXYGENATION

        • 11.3.1. Scope and Limitations

        • 11.3.2. State of Art Mechanistic Models

        • 11.3.3. Chemoselectivity and Diastereoselectivity

        • 11.3.4. Synthetic Potential

          • 11.3.4.1. Fragmentation

          • 11.3.4.2. Nucleophilic Transformations

          • 11.3.4.3. Rearrangements

        • 11.3.5. Chemiluminescence

      • 11.4. CONCLUSION

      • REFERENCES

  • DK1195ch12

    • Table of Contents

    • Chapter 12: Photo-oxygenation of the Ene-Type

      • 12.1. HISTORICAL BACKGROUND

      • 12.2. STATE OF THE ART MECHANISTIC MODELS

      • 12.3. SCOPE AND LIMITATIONS

      • 12.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERN

      • 12.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

      • 12.6. TARGET MOLECULES: NATURAL AND NONNATURAL PRODUCT STRUCTURES

      • ACKNOWLEDGMENT

      • REFERENCES

  • DK1195ch13

    • Table of Contents

    • Chapter 13: Photogenerated Nitrene Addition to pi-Bonds

      • 13.1. HISTORICAL REMARKS

      • 13.2. MECHANISTIC MODELS

        • 13.2.1. Generation of Nitrenes

        • 13.2.2. Properties of Nitrenes

      • 13.3. SCOPE AND LIMITATIONS

        • 13.3.1. Alkyl Nitrenes

        • 13.3.2. 1-Alkenyl Nitrenes

        • 13.3.3. Aryl Nitrenes

        • 13.3.4. Heteroaryl Nitrenes

        • 13.3.5. Acyl Nitrenes

      • 13.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERNS

        • 13.4.1. Alkoxycarbonyl Nitrenes

        • 13.4.2. Alkoxyimidoyl Nitrenes

        • 13.4.3. Alkylcarbonyl Nitrenes

        • 13.4.4. Addition of Aroyl Nitrenes to Nonpolar and Electron Deficient pi-Bonds

        • 13.4.5. Formation of Five-Membered Rings

        • 13.4.6. Stereochemistry

          • 13.4.6.1. Chiral Acylazides

          • 13.4.6.2. Chiral Alkenes

      • 13.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

        • 13.5.1. 5-Methoxy-2-phenyl-3a,6,7,7a-tetrahydro-5H-pyrano[3,2-d]oxazole (105a)

          • Procedure A

          • Procedure B

        • 13.5.2. Phenyl-1,4-dioxa-2-aza-spiro[4.5]dec-2-ene (89, R1,R2=(CH2)5)

      • REFERENCES

  • DK1195ch14

    • Table of Contents

    • Chapter 14: C=C Photoinduced Isomerization Reactions

      • 14.1. INTRODUCTION

      • 14.2. PHOTOCHEMISTRY OF ACYCLIC ALKENES

        • 14.2.1. Direct Irradiation

        • 14.2.2. Sensitized Isomerization

      • 14.3. DIRECT IRRADIATION OF CYCLOALKENES

      • 14.4. PHOTOSENSITIZED ISOMERIZATION OF CYCLOALKENES

        • 14.4.1. Cyclohexenes and Cycloheptenes

        • 14.4.2. Cyclo-octenes

        • 14.4.3. Miscellaneous Cycloalkenes

      • 14.5. ASYMMETRIC PHOTOISOMERIZATION OF CYCLOALKENES

        • 14.5.1. Cyclo-octene

        • 14.5.2. Cyclo-octene Derivatives

        • 14.5.3. Cyclohexene and Cycloheptene

      • 14.6. PHOTOISOMERIZATION OF STILBENES AND STYRENES

        • 14.6.1. Stilbenes

        • 14.6.2. Stilbene and Styrene Derivatives

      • 14.7. REPRESENTATIVE SYNTHETIC PROCEDURES

        • 14.7.1. (E)-Cyclo-octene

        • 14.7.2. Optically Active (E )-Cyclo-octene

        • 14.7.3. (Z )-Stilbene

      • 14.8. CONCLUSION

      • REFERENCES

  • DK1195ch15

    • Table of Contents

    • Chapter 15: Photoinduced CX Cleavage of Benzylic Substrates

      • 15.1. HISTORICAL REMARKS

      • 15.2. STATE OF THE ART MECHANISTIC MODELS

        • 15.2.1. Fragmentation of an Excited State

        • 15.2.2. Fragmentation via Photoinduced Atom Abstraction

        • 15.2.3. Fragmentation via a Radical Ion

      • 15.3. SCOPE AND LIMITATION

      • 15.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERNS

        • 15.4.1. Substitution at the Benzylic Position

          • 15.4.1.1. H/D Exchange

          • 15.4.1.2. Substitution of Halides

          • 15.4.1.3. Substitution of Alcohols and Ethers

          • 15.4.1.4. Substitution of Other Oxygen-Linked Groups

          • 15.4.1.5. Substitution of Nitrogen-Linked Groups

          • 15.4.1.6. Substitution of Other Groups

        • 15.4.2. Formation of a Carbon–Carbon Bond at a Benzylic Position

          • 15.4.2.1. Benzylation of Arenes

          • 15.4.2.2. Benzylation of Alkenes

          • 15.4.2.3. Benzylation of Carbonyl, Carboxamide, and Iminium Groups

        • 15.4.3. Benzylic Oxidation or Functionalization

        • 15.4.4. Reactions of Arylated Three- and Four-Membered Cyclic Compounds

        • 15.4.5. Further Applications of Benzylic Photocleavage

      • 15.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

        • Historically Important Procedures

        • Modern Procedures

      • 15.6. TARGET MOLECULES: NATURAL AND NONNATURAL PRODUCT STRUCTURES

      • REFERENCES

  • DK1195ch16

    • Table of Contents

    • Chapter 16: Photoinduced Aromatic Nucleophilic Substitution Reactions

      • 16.1. HISTORICAL REMARKS

      • 16.2. STATE OF THE ART MECHANISTIC MODELS

      • 16.3. SCOPE AND LIMITATIONS

        • 16.3.1. Substrates

        • 16.3.2. Nucleophiles: Carbanions

        • 16.3.3. Other Nucleophiles

        • 16.3.4. Solvents

      • 16.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERN

        • 16.4.1. Ketone Enolate Ions

        • 16.4.2. Carbanions Derived from Esters, Acids, and N,N-Disubstituted Amides

        • 16.4.3. Indole Syntheses

        • 16.4.4. Tandem Ring Closure—SRN1 Reactions

        • 16.4.5. Reactions with Me3Sn– Ions and Ensuing Processes

      • 16.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

        • 16.5.1. Reactions in Liquid Ammonia

        • 16.5.2. Synthesis of 2,4-Dimethyl-2-(2-pyridyl)-3-pentanone

        • 17.5.3. Synthesis of 5,6,7-Trimethoxy-3-methyl-1(2H)-isoquinolone

        • 16.5.4. Synthesis of 2,3-dimethoxy-6-oxa-benzo[c]phenanthren-5-one

        • 16.5.5. Photostimulated Reactions with Me3Sn- Ions

        • 16.5.6. Synthesis of 5,10-Dihydro-indeno[1,2-b]indole

      • 16.6. TARGET MOLECULES: NATURAL AND NONNATURAL PRODUCT STRUCTURES

        • 16.6.1. Fluorobiprophen

        • 16.6.2. 3-Methyl-2H-isoquinolin-1-one Derivatives

        • 16.6.3. Benzo[c]chromen-6-one Derivatives

        • 16.6.4. 3-Alkylideneoxindoles

        • 16.6.5. Cephalotaxinone

        • 16.6.6. Eupoulauramine

        • 16.6.7. (±)Tortuosamine

      • REFERENCES

  • DK1195ch17

    • Table of Contents

    • Chapter 17: Ortho-, Meta-, and Para-Photocycloaddition of Arenes

      • 17.1. HISTORICAL BACKGROUND

      • 17.2. STATE OF THE ART MECHANISTIC MODELS

      • 17.3. SCOPE AND LIMITATIONS

        • 17.3.1. meta-Photocycloaddition

        • 17.3.2. ortho-Photocycloaddition

        • 17.3.3. para-Photocycloaddition

      • 17.4. SYNTHETIC POTENTIAL: REACTIVITY AND SELECTIVITY PATTERN

        • 17.4.1. Meta Photocycloaddition

        • 17.4.2. Ortho Photocycloaddition

        • 17.4.3. para-Photocycloaddition

      • 17.5. REPRESENTATIVE EXPERIMENTAL PROCEDURES

        • 17.5.1. meta-Photocycloaddition

        • 17.5.2. Ortho Photocycloaddition

        • 17.5.3. Para Photocycloaddition

        • 17.5.4. Photocycloaddition in Acidic Media

      • 17.6. TARGET MOLECULES: NATURAL AND NONNATURAL PRODUCT STRUCTURES

      • REFERENCES

  • DK1195ch18

    • Table of Contents

    • Chapter 18: Medium Effects on Photochemical Processes: Organized and Confined Media

      • 18.1 INTRODUCTION

      • 18.2. PHOTOCHEMISTRY OF VISION–PROTEIN AS A CONFINING MEDIUM

      • 18.3. A COMPARISON OF PROTEIN MATRIX AND ISOTROPIC SOLUTION AS REACTION MEDIA

      • 18.4. ORGANIZED MEDIA MIMIC A PROTEIN: SELECTED EXAMPLES

      • 18.5. REACTION CAVITY CONCEPT

        • 18.5.1. Characteristics of a Reaction Cavity Illustrated with Examples: Boundary

        • 18.5.2. Characteristics of a Reaction Cavity: Interface

        • 18.5.3. Characteristics of a Reaction Cavity: Free Volume

        • 18.5.4. Characteristics of a Reaction Cavity: Presence of Weak Forces

      • 18.6. CAUTION IN EMPLOYING ORGANIZED MEDIA

        • 18.6.1. Microheterogeneity in Organized Media

        • 18.6.2. Failure of Rule of Homology

        • 18.6.3. New Mechanisms may Emerge in a Confined/Organized Media

      • 18.7. POWER OF ORGANIZED MEDIA ILLUSTRATED WITH THEIR INFLUENCE ON ASYMMETRIC PHOTOREACTIONS

        • 18.7.1. Crystalline Media

          • 18.7.1.1. Achiral Molecules as Chiral Crystals

          • 18.7.1.2. The Ionic Chiral Auxiliary Approach

        • 18.7.2. Achiral Molecules within Chiral Hosts

        • 18.7.3. Enantioselective Photoreactions within Zeolites

      • 18.8. SUMMARY

      • ACKNOWLEDGMENTS

      • REFERENCES

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan