Mathmatical method and algorithms for signal processing

13 123 0
Mathmatical method and algorithms for signal processing

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Mathematical Methods and Algorithms for Signal Processing Todd K Moon Utah State University Wynn С Stirling Brigham Young University PRENTICE HALL Upper Saddle River, NJ 07458 This previously included a CD The CD contents can now be accessed at www.prenhall.com/moon Thank You Contents 1 II Introduction and Foundations Introduction and Foundations 1.1 What is signal processing? 1.2 Mathematical topics embraced by signal processing 1.3 Mathematical models 1.4 Models for linear systems and signals 1.4.1 Linear discrete-time models 1.4.2 Stochastic MA and AR models 1.4.3 Continuous-time notation 1.4.4 Issues and applications 1.4.5 Identification of the modes 1.4.6 Control of the modes 1.5 Adaptive filtering 1.5.1 System identification 1.5.2 Inverse system identification 1.5.3 Adaptive predictors 1.5.4 Interference cancellation 1.6 Gaussian random variables and random processes 1.6.1 Conditional Gaussian densities 1.7 Markov and Hidden Markov Models 1.7.1 Markov models 1.7.2 Hidden Markov models 1.8 Some aspects of proofs 1.8.1 Proof by computation: direct proof 1.8.2 Proof by contradiction 1.8.3 Proof by induction 1.9 An application: LFSRs and Massey's algorithm 1.9.1 Issues and applications of LFSRs 1.9.2 Massey's algorithm 1.9.3 Characterization of LFSR length in Massey's algorithm 1.10 Exercises 1.11 References 3 7 12 20 21 26 28 28 29 29 29 30 31 36 37 37 39 41 43 45 46 48 50 52 53 58 67 Vector Spaces and Linear Algebra 69 Signal Spaces 2.1 Metric spaces 2.1.1 Some topological terms 2.1.2 Sequences, Cauchy sequences, and completeness 71 72 76 78 Contents 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.1.3 Technicalities associated with the Lp and L^ spaces Vector spaces 2.2.1 Linear combinations of vectors 2.2.2 Linear independence 2.2.3 Basis and dimension 2.2.4 Finite-dimensional vector spaces and matrix notation Norms and normed vector spaces 2.3.1 Finite-dimensional normed linear spaces Inner products and inner-product spaces 2.4.1 Weak convergence Induced norms The Cauchy-Schwarz inequality Direction of vectors: Orthogonality Weighted inner products 2.8.1 Expectation as an inner product Hilbert and Banach spaces Orthogonal subspaces Linear transformations: Range and nullspace Inner-sum and direct-sum spaces Projections and orthogonal projections 2.13.1 Projection matrices The projection theorem Orthogonalization of vectors Some final technicalities for infinite dimensional spaces Exercises References Representation and Approximation in Vector Spaces 3.1 The approximation problem in Hilbert space 3.1.1 The Grammian matrix 3.2 The orthogonality principle 3.2.1 Representations in infinite-dimensional space 3.3 Error minimization via gradients 3.4 Matrix representations of least-squares problems 3.4.1 Weighted least-squares 3.4.2 Statistical properties of the least-squares estimate 3.5 Minimum error in Hilbert-space approximations 82 84 87 88 90 93 93 97 97 99 99 100 101 103 105 106 107 108 110 113 115 116 118 121 121 129 130 130 133 135 136 137 138 140 140 141 Applications of the orthogonality theorem 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 Approximation by continuous polynomials Approximation by discrete polynomials Linear regression Least-squares filtering 3.9.1 Least-squares prediction and AR spectrum estimation Minimum mean-square estimation Minimum mean-squared error (MMSE) filtering Comparison of least squares and minimum mean squares Frequency-domain optimal filtering 3.13.1 Brief review of stochastic processes and Laplace transforms 143 145 147 149 154 156 157 161 162 162 vü Contents 3.13.2 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 Two-sided Laplace transforms and their decompositions 3.13.3 The Wiener-Hopf equation 3.13.4 Solution to the Wiener-Hopf equation 3.13.5 Examples of Wiener filtering 3.13.6 Mean-square error 3.13.7 Discrete-time Wiener filters A dual approximation problem Minimum-norm solution of underdetermined equations Iterative Reweighted LS (IRLS) for Lp optimization Signal transformation and generalized Fourier series Sets of complete orthogonal functions 3.18.1 Trigonometric functions 3.18.2 Orthogonal polynomials 3.18.3 Sine functions 3.18.4 Orthogonal wavelets Signals as points: Digital communications 3.19.1 The detection problem 3.19.2 Examples of basis functions used in digital communications 3.19.3 Detection in nonwhite noise Exercises References Linear Operators and Matrix Inverses 4.1 Linear operators 4.1.1 Linear functionals 4.2 Operator norms 4.2.1 Bounded operators 4.2.2 The Neumann expansion 4.2.3 Matrix norms 4.3 Adjoint operators and transposes 4.3.1 A dual optimization problem 4.4 Geometry of linear equations 4.5 Four fundamental subspaces of a linear operator 4.5.1 The four fundamental subspaces with non-closed range 4.6 Some properties of matrix inverses 4.6.1 Tests for invertibility of matrices 4.7 Some results on matrix rank 4.7.1 Numeric rank 4.8 Another look at least squares 4.9 Pseudoinverses 4.10 Matrix condition number 4.11 Inverse of a small-rank adjustment 4.11.1 An application: the RLS 4.11.2 Two RLS applications 4.12 Inverse of a block (partitioned) matrix 4.12.1 Application: Linear models 4.13 Exercises 4.14 References 165 169 171 174 176 176 179 182 183 186 190 190 190 193 194 208 210 212 213 215 228 229 230 231 232 233 235 235 237 239 239 242 filter 246 247 248 249 250 251 251 253 258 259 261 264 267 268 274 Contents viii Some Important Matrix Factorizations 5.1 The LU factorization 5.1.1 Computing the determinant using the LU factorization 5.1.2 Computing the LU factorization 5.2 The Cholesky factorization 5.2.1 Algorithms for computing the Cholesky factorization 5.3 Unitary matrices and the QR factorization 5.3.1 Unitary matrices 5.3.2 The QR factorization 5.3.3 QR factorization and least-squares filters 5.3.4 Computing the QR factorization 5.3.5 Householder transformations 5.3.6 Algorithms for Householder transformations 5.3.7 QR factorization using Givens rotations 5.3.8 Algorithms for QR factorization using Givens rotations 5.3.9 Solving least-squares problems using Givens rotations 5.3.10 Givens rotations via CORDIC rotations 5.3.11 Recursive updates to the QR factorization 5.4 Exercises 5.5 References 275 275 277 278 283 284 285 285 286 286 287 287 291 293 295 296 297 299 300 304 Eigenvalues and Eigenvectors 6.1 Eigenvalues and linear systems 6.2 Linear dependence of eigenvectors 6.3 Diagonalization of a matrix 6.3.1 The Jordan form 6.3.2 Diagonalization of self-adjoint matrices 6.4 Geometry of invariant subspaces 6.5 Geometry of quadratic forms and the minimax principle 6.6 Extremal quadratic forms subject to linear constraints 6.7 The Gershgorin circle theorem 305 305 308 309 311 312 316 318 324 324 Application of Eigendecomposition methods 6.8 6.9 6.10 6.11 6.12 6.13 6.14 Karhunen-Loeve low-rank approximations and principal methods — 6.8.1 Principal component methods Eigenfilters 6.9.1 Eigenfilters for random signals 6.9.2 Eigenfilter for designed spectral response 6.9.3 Constrained eigenfilters Signal subspace techniques 6.10.1 The signal model 6.10.2 The noise model 6.10.3 Pisarenko harmonic decomposition 6.10.4 MUSIC Generalized eigenvalues 6.11.1 An application: ESPRIT Characteristic and minimal polynomials 6.12.1 Matrix polynomials 6.12.2 Minimal polynomials Moving the eigenvalues around: Introduction to linear control Noiseless constrained channel capacity 327 329 330 330 332 334 336 336 337 338 339 340 341 342 342 344 344 347 ix 6.15 6.16 6.17 Computation of eigenvalues and eigenvectors 6.15.1 Computing the largest and smallest eigenvalues 6.15.2 Computing the eigenvalues of a symmetric matrix 6.15.3 The QR iteration Exercises References The Singular Value Decomposition 7.1 Theory of the SVD 7.2 Matrix structure from the SVD 7.3 Pseudoinverses and the SVD 7.4 Numerically sensitive problems 7.5 Rank-reducing approximations: Effective rank Applications of the SVD 7.6 System identification using the SVD 7.7 Total least-squares problems 7.7.1 Geometric interpretation of the TLS solution 7.8 Partial total least squares 7.9 Rotation of subspaces 7.10 Computation of the SVD 7.11 Exercises 7.12 References 350 350 351 352 355 368 369 369 372 373 375 377 378 381 385 386 389 390 392 395 Some Special Matrices and Their Applications 8.1 Modal matrices and parameter estimation 8.2 Permutation matrices 8.3 Toeplitz matrices and some applications 8.3.1 Durbin's algorithm 8.3.2 Predictors and lattice filters 8.3.3 Optimal predictors and Toeplitz inverses 8.3.4 Toeplitz equations with a general right-hand side 8.4 Vandermonde matrices 8.5 Circulant matrices 8.5.1 Relations among Vandermonde, circulant, and companion matrices 8.5.2 Asymptotic equivalence of the eigenvalues of Toeplitz and circulant matrices 8.6 Triangular matrices 8.7 Properties preserved in matrix products 8.8 Exercises 8.9 References 396 396 399 400 402 403 407 408 409 410 413 416 417 418 421 Kronecker Products and the Vec Operator 9.1 The Kronecker product and Kronecker sum 9.2 Some applications of Kronecker products 9.2.1 Fast Hadamard transforms 9.2.2 DFT computation using Kronecker products 9.3 The vec operator 9.4 Exercises 9.5 References 422 422 425 425 426 428 431 433 412 X III Detection, Estimation, and Optimal Filtering 435 10 Introduction to Detection and Estimation, and Mathematical Notation 10.1 Detection and estimation theory 10.1.1 Game theory and decision theory 10.1.2 Randomization 10.1.3 Special cases 10.2 Some notational conventions 10.2.1 Populations and statistics 10.3 Conditional expectation 10.4 Transformations of random variables 10.5 Sufficient statistics 10.5.1 Examples of sufficient statistics 10.5.2 Complete sufficient statistics 10.6 Exponential families 10.7 Exercises 10.8 References 437 437 438 440 441 442 443 444 445 446 450 451 453 456 459 11 Detection Theory 11.1 Introduction to hypothesis testing 11.2 Neyman-Pearson theory 11.2.1 Simple binary hypothesis testing 11.2.2 The Neyman-Pearson lemma 11.2.3 Application of the Neyman-Pearson lemma 11.2.4 The likelihood ratio and the receiver operating characteristic (ROC) 11.2.5 A Poisson example 11.2.6 Some Gaussian examples 11.2.7 Properties of the ROC 11.3 Neyman-Pearson testing with composite binary hypotheses 11.4 Bayes decision theory 11.4.1 The Bayes principle 11.4.2 The risk function 11.4.3 Bayes risk 11.4.4 Bayes tests of simple binary hypotheses 11.4.5 Posterior distributions 11.4.6 Detection and sufficiency 11.4.7 Summary of binary decision problems 11.5 Some M-ary problems 11.6 Maximum-likelihood detection 11.7 Approximations to detection performance: The union bound 11.8 Invariant Tests 11.8.1 Detection with random (nuisance) parameters 11.9 Detection in continuous time 11.9.1 Some extensions and precautions 11.10 Minimax Bayes decisions 11.10.1 Bayes envelope function 11.10.2 Minimax rules 11.10.3 Minimax Bayes in multiple-decision problems 460 460 462 462 463 466 467 468 469 480 483 485 486 487 489 490 494 498 498 499 503 503 504 507 512 516 520 520 523 524 xi 11.11 11.12 11.10.4 Determining the least favorable prior 11.10.5 A minimax example and the minimax theorem Exercises References 528 529 532 541 Estimation Theory 12.1 The maximum-likelihood principle 12.2 ML estimates and sufficiency 12.3 Estimation quality 12.3.1 The score function 12.3.2 The Cramer-Rao lower bound 12.3.3 Efficiency 12.3.4 Asymptotic properties of maximum-likelihood estimators 12.3.5 The multivariate normal case 12.3.6 Minimum-variance unbiased estimators 12.3.7 The linear statistical model 12.4 Applications of ML estimation 12.4.1 ARMA parameter estimation 12.4.2 Signal subspace identification 12.4.3 Phase estimation 12.5 Bayes estimation theory 12.6 Bayes risk 12.6.1 MAP estimates p 12.6.2 Summary 12.6.3 Conjugate prior distributions 12.6.4 Connections with minimum mean-squared estimation 12.6.5 Bayes estimation with the Gaussian distribution 12.7 Recursive estimation 12.7.1 An example of non-Gaussian recursive Bayes 12.8 Exercises 12.9 References 542 542 547 548 548 550 552 577 578 580 582 584 590 The Kaiman Filter 13.1 The state-space signal model 13.2 Kaiman filter I: The Bayes approach 13.3 Kaiman filter II: The innovations approach 13.3.1 Innovations for processes with linear observation models 13.3.2 Estimation using the innovations process , 13.3.3 Innovations for processes with state-space models 13.3.4 A recursion for P„ r _| 13.3.5 The discrete-time Kaiman filter 13.3.6 Perspective 13.3.7 Comparison with the RLS adaptive filter algorithm 13.4 Numerical considerations: Square-root filters 13.5 Application in continuous-time systems 13.5.1 Conversion from continuous time to discrete time 13.5.2 A simple kinematic example 13.6 Extensions of Kaiman filtering to nonlinear systems 591 591 592 595 596 597 598 599 601 602 603 604 606 606 606 607 553 556 559 561 561 561 565 566 568 569 573 574 574 xii Contents Smoothing 13.7.1 The Rauch-Tung-Streibel fixed-interval smoother 13.8 Another approach: Я«, smoothing 13.9 Exercises 13.10 References IV 14 15 13.7 613 613 616 617 620 Iterative and Recursive Methods in Signal Processing 621 Basic Concepts and Methods of Iterative Algorithms 14.1 Definitions and qualitative properties of iterated functions 14.1.1 Basic theorems of iterated functions 14.1.2 Illustration of the basic theorems 14.2 Contraction mappings 14.3 Rates of convergence for iterative algorithms 14.4 Newton's method 14.5 Steepest descent 14.5.1 Comparison and discussion: Other techniques Some Applications of Basic Iterative Methods 14.6 LMS adaptive Filtering 14.6.1 An example LMS application 14.6.2 Convergence of the LMS algorithm 14.7 Neural networks 14.7.1 The backpropagation training algorithm 14.7.2 The nonlinearity function 14.7.3 The forward-backward training algorithm 14.7.4 Adding a momentum term 14.7.5 Neural network code 14.7.6 How many neurons? 14.7.7 Pattern recognition: ML or NN? 14.8 Blind source separation 14.8.1 A bit of information theory 14.8.2 Applications to source separation 14.8.3 Implementation aspects 14.9 Exercises 14.10 References Iteration by Composition of Mappings 15.1 Introduction 15.2 Alternating projections 15.2.1 An applications: bandlimited reconstruction 15.3 Composite mappings 15.4 Closed mappings and the global convergence theorem 15.5 The composite mapping algorithm 15.5.1 Bandlimited reconstruction, revisited 15.5.2 An example: Positive sequence determination 15.5.3 Matrix property mappings 15.6 Projection on convex sets 15.7 Exercises 15.8 References 623 624 626 627 629 631 632 637 642 643 645 646 648 650 653 654 654 655 658 659 660 660 662 664 665 668 670 670 671 675 676 677 680 681 681 683 689 693 694 Contents xiii 16 Other Iterative Algorithms 16.1 Clustering 16.1.1 An example application: Vector quantization 16.1.2 An example application: Pattern recognition 16.1.3 к -means Clustering 16.1.4 Clustering using fuzzy к -means 16.2 Iterative methods for computing inverses of matrices 16.2.1 The Jacobi method 16.2.2 Gauss-Seidel iteration 16.2.3 Successive over-relaxation (SOR) 16.3 Algebraic reconstruction techniques (ART) 16.4 Conjugate-direction methods 16.5 Conjugate-gradient method 16.6 Nonquadratic problems 16.7 Exercises 16.8 References 695 695 695 697 698 700 701 702 703 705 706 708 710 713 713 715 17 The EM Algorithm in Signal Processing 17.1 An introductory example 17.2 General statement of the EM algorithm 17.3 Convergence of the EM algorithm 17.3.1 Convergence rate: Some generalizations Example applications of the EM algorithm 17.4 Introductory example, revisited 17.5 Emission computed tomography (ЕСТ) image reconstruction 17.6 Active noise cancellation (ANC) 17.7 Hidden Markov models 17.7.1 The E-and M-steps r, r 17.7.2 The forward and backward probabilities 17.7.3 Discrete output densities 17.7.4 Gaussian output densities 17.7.5 Normalization 17.7.6 Algorithms for HMMs 17.8 Spread-spectrum, multiuser communication 17.9 Summary 17.10 Exercises 17.11 References 717 718 721 723 724 725 725 729 732 734 735 736 736 737 738 740 743 744 747 V Methods of Optimization 749 18 Theory of Constrained Optimization 18.1 Basic definitions 18.2 Generalization of the chain rule to composite functions 18.3 Definitions for constrained optimization 18.4 Equality constraints: Lagrange multipliers 18.4.1 Examples of equality-constrained optimization 18.5 Second-order conditions 18.6 Interpretation of the Lagrange multipliers 18.7 Complex constraints 18.8 Duality in optimization 751 751 755 757 758 764 767 770 773 773 Contents xiv 19 18.9 Inequality constraints: Kuhn-Tucker conditions 18.9.1 Second-order conditions for inequality constraints 18.9.2 An extension: Fritz John conditions 18.10 Exercises 18.11 References 777 783 783 784 786 Shortest-Path Algorithms and Dynamic Programming 19.1 Definitions for graphs 19.2 Dynamic programming 19.3 The Viterbi algorithm 19.4 Code for the Viterbi algorithm 19.4.1 Related algorithms: Dijkstra's and Warshall's 19.4.2 Complexity comparisons of Viterbi and Dijkstra 787 787 789 791 795 798 799 Applications of path search algorithms 19.5 Maximum-likelihood sequence estimation 19.5.1 The intersymbol interference (ISI) channel 19.5.2 Code-division multiple access 19.5.3 Convolutional decoding HMM likelihood analysis and HMM training 19.6.1 Dynamic warping Alternatives to shortest-path algorithms Exercises References 800 800 804 806 808 811 813 815 817 Linear Programming 20.1 Introduction to linear programming 20.2 Putting a problem into standard form 20.2.1 Inequality constraints and slack variables 20.2.2 Free variables 20.2.3 Variable-bound constraints 20.2.4 Absolute value in the objective 20.3 Simple examples of linear programming 20.4 Computation of the linear programming solution 20.4.1 Basic variables 20.4.2 Pivoting 20.4.3 Selecting variables on which to pivot 20.4.4 The effect of pivoting on the value of the problem 20.4.5 Summary of the simplex algorithm 20.4.6 Finding the initial basic feasible solution 20.4.7 MATLAB® code for linear programming 20.4.8 Matrix notation for the simplex algorithm 20.5 Dual problems 20.6 Karmarker's algorithm for LP 20.6.1 Conversion to Karmarker standard form 20.6.2 Convergence of the algorithm 20.6.3 Summary and extensions 818 818 819 819 820 822 823 823 824 824 826 828 829 830 831 834 835 836 838 842 844 846 19.6 19.7 19.8 19.9 20 Examples and applications of linear programming 20.7 20.8 Linear-phase FIR filter design 20.7.1 Least-absolute-error approximation Linear optimal control 846 847 849 Contents xv 20.9 Exercises 20.10 References 850 853 A Basic Concepts and Definitions A.l Set theory and notation A.2 Mappings and functions A.3 Convex functions A.4 О and о Notation A.5 Continuity A.6 Differentiation A.6.1 Differentiation with a single real variable A.6.2 Partial derivatives and gradients on W" A.6.3 Linear approximation using the gradient A.6.4 Taylor series A.7 Basic constrained optimization A.8 The Holder and Minkowski inequalities A.9 Exercises A 10 References 855 855 859 860 861 862 864 864 865 867 868 869 870 871 876 В Completing the Square B The scalar case B.2 The matrix case B.3 Exercises 877 877 879 879 С Basic Matrix Concepts C.l Notational conventions C.2 Matrix Identity and Inverse C.3 Transpose and trace C.4 Block (partitioned) matrices C.5 Determinants C.5.1 Basic properties of determinants C.5.2 Formulas for the determinant C.5.3 Determinants and matrix inverses C.6 Exercises C.7 References 880 880 882 883 885 885 885 887 889 889 890 D Random Processes D.l Definitions of means and correlations г D.2 Stationarity D.3 Power spectral-density functions D.4 Linear systems with stochastic inputs D.4.1 Continuous-time signals and systems D.4.2 Discrete-time signals and systems D.5 References 891 891 892 893 894 894 895 895 E Derivatives and Gradients E Derivatives of vectors and scalars with respect to a real vector E.l.l Some important gradients E.2 Derivatives of real-valued functions of real matrices E.3 Derivatives of matrices with respect to scalars, and vice versa E.4 The transformation principle E.5 Derivatives of products of matrices 896 896 897 899 901 903 903 xvi Contents E.6 E.7 E.8 E.9 E.10 F Derivatives of powers of a matrix Derivatives involving the trace Modifications for derivatives of complex vectors and matrices Exercises References 904 906 908 910 912 Conditional Expectations of Multinomial and Poisson r.v.s F Multinomial distributions F.2 Poisson random variables F.3 Exercises 913 913 914 914 Bibliography 915 Index 929 & ... Introduction and Foundations Introduction and Foundations 1.1 What is signal processing? 1.2 Mathematical topics embraced by signal processing 1.3 Mathematical models 1.4 Models for linear systems and signals... 15 13.7 613 613 616 617 620 Iterative and Recursive Methods in Signal Processing 621 Basic Concepts and Methods of Iterative Algorithms 14.1 Definitions and qualitative properties of iterated... Eigendecomposition methods 6.8 6.9 6.10 6.11 6.12 6.13 6.14 Karhunen-Loeve low-rank approximations and principal methods — 6.8.1 Principal component methods Eigenfilters 6.9.1 Eigenfilters for random signals

Ngày đăng: 01/06/2018, 15:09

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan