Điều khiển nâng cao hiệu suất hệ truyền động động cơ đồng bộ nam châm vĩnh cửu

115 1.9K 11
Điều khiển nâng cao hiệu suất hệ truyền động động cơ đồng bộ nam châm vĩnh cửu

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

B GIO DC V O TO TRNG I HC BCH KHOA H NI NGUYN AN TON IU KHIN NNG CAO HIU SUT H TRUYN NG NG C NG B NAM CHM VNH CU LUN VN THC S KHOA HC K THUT IU KHIN V T NG HểA H NI 2016 B GIO DC V O TO TRNG I HC BCH KHOA H NI NGUYN AN TON IU KHIN NNG CAO HIU SUT H TRUYN NG NG C NG B NAM CHM VNH CU LUN VN THC S KHOA HC K THUT IU KHIN V T NG HểA NGI HNG DN KHOA HC: PGS TS T CAO MINH H NI 2016 LI CAM OAN Tụi xin cam oan bn lun thc s iu khin nõng cao hiu sut h truyn ng ng c ng b nam chõm vnh cu l cụng trỡnh ca tụi v c thc hin di s hng dn ca PGS TS T Cao Minh Cỏc s liu v kt qu l hon ton trung thc hon thnh lun ny, tụi ch s dng nhng ti liu c ghi danh mc Ti liu tham kho v khụng chộp hay s dng bt k ti liu no khỏc Nu phỏt hin cú s chộp tụi xin chu hon ton trỏch nhim H Ni, ngy 25 thỏng 04 nm 2016 Hc viờn Nguyn An Ton i LI CM N u tiờn, tụi xin by t lũng tri õn sõu sc v kớnh trng n thy T Cao Minh, thy ó trc tip hng dn, nh hng khoa hc quỏ trỡnh nghiờn cu Hc trũ Bo An cm n thy rt nhiu Tụi xin trõn trng cm n cỏc ging viờn v cỏn b Vin in i hc Bỏch Khoa H Ni ó tn tỡnh giỳp tụi quỏ trỡnh hc v thc hin lun Tụi xin trõn trng cm n cỏc cỏn b, nghiờn cu sinh v cu sinh viờn ti Trung tõm Nghiờn cu ng dng v Sỏng to Cụng ngh (CTI) i hc Bỏch Khoa H Ni ó h tr tụi quỏ trỡnh thc hin lun Cm n cỏc bn Phm Cụng Minh, Bựi ỡnh Dõn, Lờ Tt Thng, Ngc Hõn c bit, tụi xin cm n anh Nguyn Bo Huy ó nhit tỡnh trao i v h tr tụi quỏ trỡnh hc v nghiờn cu ti CTI Tụi xin trõn trng cm n Ban Giỏm hiu trng i hc Quy Nhn, Ban Ch nhim khoa K thut v Cụng ngh ó to mi iu kin thun li nht cho tụi c trung hc ti H Ni sut thi gian qua Xin chõn thnh cm n s quan tõm, giỳp v ng viờn ca cỏc ng nghip, hc viờn cao hc lp 14AKTH Cm n nhng ngi bn khu Nh khỏch Dõn s Ký tỳc xỏ i hc Kinh t Quc dõn ó luụn ng viờn, khớch l tụi Cú nhng ngi luụn bờn cnh nhng khụng cn tụi mt li cm n no, ú l gia ỡnh ca tụi, ngi ch to tn nuụi dy tụi Bn thõn tụi ch bit khc ct ghi tõm Kh nng ca tụi cũn nhiu hn ch nờn thnh qu l rt nh bộ, nhng nu khụng cú h tr v giỳp nh trờn thỡ tụi s khụng lm c gỡ Mt ln na, tụi xin gi li tri õn sõu sc n tt c mi ngi ii MC LC LI CAM OAN i LI CM N ii MC LC iii DANH MC CC Kí HIU vi DANH MC CC CH VIT TT viii DANH MC CC BNG ix DANH MC CC HèNH V V TH x M U 1 Lý chn ti Lch s nghiờn cu Mc ớch, i tng, phm vi nghiờn cu Phng phỏp nghiờn cu Chng TNG QUAN 1.1 Gii thiu v ng c ng b nam chõm vnh cu 1.1.1 Cỏc loi PMSM 1.1.2 ng c ng b IPM 10 1.1.3 Mt s phng phỏp iu khin PMSM 12 1.2 Phng phỏp iu khin vector PMSM 13 1.2.1 Cụng thc chuyn i Clarke 14 1.2.2 Cụng thc chuyn i Park 15 1.3 Phõn tớch hot ng ca PMSM 17 1.3.1 Mụ hỡnh toỏn hc ca PMSM 17 1.3.2 Gii hn dũng in v in ỏp 18 1.3.3 Cỏc c tớnh ca PMSM 19 1.3.4 c tớnh cụng sut tc 22 1.4 Kt lun chng 24 Chng IU KHIN NG C NG B NAM CHM VNH CU 26 2.1 Cu hỡnh iu khin cho PMSM 26 2.2 iu ch rng xung cho b nghch lu ba pha 27 2.2.1 Mụ hỡnh húa mch nghch lu ngun ỏp ba pha 27 iii Mc lc 2.2.2 Phng phỏp iu ch vector khụng gian 28 2.3 Thit k cỏc b iu khin dũng in v tc 33 2.3.1 Thit k b iu khin dũng in bng k thut hm chun bc hai 33 2.3.2 Thit k mch vũng tc theo phng phỏp ti u i xng 37 2.3.3 Mụ phng v kt qu 39 2.4 Kt lun chng 42 Chng IU KHIN NNG CAO HIU SUT NG C NG B NAM CHM VNH CU 44 3.1 Mụ hỡnh tn tht ca PMSM 44 3.1.1 Tn tht ng 44 3.1.2 Tn tht st 44 3.1.3 Tn tht ph 45 3.1.4 Tn tht tng 46 3.2 Bóo ho t 46 3.3 Mt s phng phỏp gim thiu tn tht ó bit 48 3.3.1 Phng phỏp iu khin MTPA 49 3.3.2 Phng phỏp thc nghim 53 3.3.3 Phng phỏp xp x a thc 55 3.4 Phng phỏp ti thiu tn tht xut 58 3.4.1 Ti thiu tn tht vựng gii hn in ỏp v dũng in 59 3.4.2 Ti thiu tn tht trờn biờn gii hn in ỏp 62 3.4.3 iu khin nõng cao hiu sut PMSM 63 3.5 Kt lun chng 66 Chng Mễ PHNG V NH GI KT QU 69 4.1 Mụ phng h truyn ng MATLAB/SIMULINK 69 4.1.1 Mụ hỡnh h truyn ng 69 4.1.2 Kt qu mụ phng v nhn xột 72 4.2 So sỏnh LMA xut vi phng phỏp xp x a thc ca Lee 77 4.3 Kt lun chng 83 KT LUN 85 DANH MC CễNG TRèNH CễNG B CA LUN VN 86 TI LIU THAM KHO 87 iv Mc lc PH LC 91 P.1 Chuyn i gia cỏc h trc ta MATLAB/SIMULINK 91 P.2 Mụ hỡnh ng c ng b IPM xõy dng MATLAB/SIMULINK 92 P.3 Mụ hỡnh b nghch lu ngun ỏp ba pha MATLAB/SIMULINK 93 P.4 Khõu SVM xõy dng MATLAB/SIMULINK 93 P.5 Khõu iu khin dũng in v tc 96 P.6 Bng cỏc thụng s v h s ca mt PMSM trờn FCEV [18] 97 P.7 Bng cỏc giỏ tr t tc v mụmen cn trờn trc ng ng c theo thi gian 97 P.8 Lu thut toỏn ti thiu tn tht cho IPMSM m Lee ó xut 98 P.9 Chng trỡnh MATLAB function thc hin LMA xut 101 v DANH MC CC Kí HIU Ký hiu n v í ngha r rad/s Gúc pha gia trc chun vi trc ca rotor (Gúc c) s rad/s Gúc pha gia trc chun vi trc ca vector t thụng rotor (Gúc pha t thụng) Wb T thụng khe h khụng khớ d , q Wb Thnh phn trc d v q ca t thụng múc vũng1 stator s Wb T thụng stator H s nhp nhụ2 s Wb Vector t thụng stator m Wb T thụng nam chõm vnh cu (T thụng rotor) base rad/s Tc c bn e rad/s Tc in r rad/s Tc quay ca rotor (Tc quay ca trc ng c) C fe H s tn tht st Cstr H s tn tht ph d1 , d3 , d5 Tớn hiu iu ch es V Sc in ng t cm esd , esq V Thnh phn trc d v q ca sc in ng t cm is A Vector dũng in stator i , i A Thnh phn trc v ca dũng in stator ia , ib , ic A Dũng in pha id , iq A Thnh phn trc d v q ca dũng in stator if A Dũng in kớch thớch tng ng ca nam chõm vnh cu (Ngun dũng o) Flux linkage Saliency ratio vi Danh mc cỏc ký hiu I dm A Dũng in nh mc ca ng c I qsat A Mc giỏ tr dũng in iq m in cm Lq bt u gim mnh dũng in iq tng Is A Biờn dũng in pha stator I s max A Biờn dũng in ln nht ca ng c J kgm2 Ld H in cm trc d (in cm dc trc) Lq H in cm trc q (in cm ngang trc) Pcu W Tn tht ng Pfe W Tn tht st Pstr W Tn tht ph Pt W Tn tht tng Mụmen quỏn tớnh ca rotor S ụi cc Pn Rs in tr stator (in tr phn ng) T0 , T7 s Thi gian thc hin vector u , u Tp , Tt s Thi gian thc hin vector biờn phi, biờn trỏi Tc Nm Mụmen cn (Mụmen ti) Te Nm Mụmen in t ca ng c u0,1, ,7 V Vector in ỏp chun (Vector chun) u p , ut V Vector biờn phi, biờn trỏi us V Vector in ỏp stator u , u V Thnh phn trc v ca in ỏp u cc ua , ub , uc V in ỏp pha ud , uq V Thnh phn trc d v q ca in ỏp u cc U dm V in ỏp nh mc ca ng c U dc V in ỏp mch mt chiu trung gian (in ỏp dc-link) U s max V in ỏp nh ln nht ca b nghch lu vii DANH MC CC CH VIT TT Vit tt Tờn ting Anh Ngha ting Vit BLDC Brushless Direct Current (ng c) mt chiu khụng chi than CPSR Constant Power Speed Range Di tc cụng sut khụng i DTC Direct Torque Control iu khin trc tip mụmen FCEV Fuel Cell Electric Vehicle Xe ụ tụ in s dng pin nhiờn liu FEM Finite Element Method Phng phỏp phn t hu hn FOC Field Oriented Control iu khin ta theo t thụng IM Induction Motor ng c khụng ng b IPM Interior Permanent Magnet Nam chõm vnh cu chỡm LMA Loss Minimization Algorithm Thut toỏn ti thiu tn tht LMC Loss Model Controller B iu khin mụ hỡnh tn tht MTPA Maximum Torque per Ampere Ti u dũng in u vo ỏp ng mụmen ca ph ti PMAC Permanent Current PMSM Permanent Magnet Synchronous ng c ng b nam chõm vnh Motor cu PWM Pulse Width Modulation iu ch rng xung SPM Surface Permanent Magnet Nam chõm vnh cu b mt SRM Switch Reluctance Motor ng c t tr thay i SynRM Synchronous Reluctance Motor ng c ng b t tr thay i WFSM Wound Machine Magnet Field Alternating ng c ng b nam chõm vnh cu cú sc phn in ng hỡnh sin Synchronous ng c ng b kớch t bng cun dõy viii TI LIU THAM KHO Ting Vit [1] Bựi Quc Khỏnh, Nguyn Vn Lin (2007), C s Truyn ng in, Nh xut bn Khoa hc v K thut [2] T Cao Minh (2015), Bi ging iu khin truyn ng in, Trng i hc Bỏch khoa H Ni (cha xut bn) [3] Trn Trng Minh, V Hong Phng (2014), Thit k iu khin cho cỏc b bin i in t cụng sut, Trng i hc Bỏch khoa H Ni (cha xut bn) [4] Nguyn Doón Phc (2009), Lý thuyt iu khin tuyn tớnh, 4th ed., Nh xut bn Khoa hc v K thut [5] Nguyn Phựng Quang (1998), iu khin t ng truyn ng in xoay chiu ba pha, 1st ed., Nh xut bn Giỏo dc Vit Nam [6] Nguyn Phựng Quang, Andreas Dittrich (2006), Truyn ng in thụng minh, 3rd ed., Nh xut bn Khoa hc v K thut Ting Anh [7] Bianchi N., Bolognani S., Zigliotto M (2001), High-performance PM synchronous motor drive for an electrical scooter, IEEE Trans Ind Appl., 37(5), pp 13481355 [8] Blaschke, F (1971), Das Prinzip der Feld-orientierung, die Grundlage fỹr die Transvector-Regelung von Drehfeldmaschinen, Siemens Zeitshrift, 45(10), pp 757760 [9] Bose, B.K (2002), Modern Power Electronics And AC Drives, Prentice Hall PTR, New Jersey [10] Cavallaro C., Tommaso A.O.D., Miceli R., Raciti A., Galluzzo G.R., Trapanese M (2005), Efficiency enhancement of permanent-magnet 87 Ti liu tham kho synchronous motor drives by online loss minimization approaches, IEEE Trans Ind Electron., 52(4), pp 11531160 [11] EL-Refaie A.M., Jahns T.M., Reddy P.B., McKeever J.W (2008), Modified vector control algorithm for increasing partial-load efficiency of fractional-slot concentrated-winding surface PM machines, IEEE Trans, 44(5), pp 1543 1551 [12] Gallegos-Lúpez G., Gunawan F.S., Walters J.E (2005), Optimum torque control of permanent-magnet AC machines in the field-weakened region, IEEE Trans Ind Appl., 41(4), pp 10201028 [13] Gieras, J.F (2010), Permanent Magnet Motor Technology, 3rd ed., CRC Press, LLC, New York [14] Hasse, K (1968), Zum dynamischen verhalten der asynchron maschine bei betrieb mit variabler stander-frequenz und standerspannung, in Proc Electrotech Zeitung ETZ-A89 Conf., pp 7781 [15] Jeong Y.S., Sul S.K., Hiti S., Rahman K.M (2006), Online minimum-copperloss control of an interior permanent-magnet synchronous machine for automotive applications, IEEE Trans Ind Appl., 42(5), pp 12221229 [16] Kim H., Hartwig J., Lorenz R.D (2002), Using On-Line Parameter Estimation to Improve Efficiency of IPM Machine Drives, IEEE Power Electron Spec Conf., pp 815820 [17] Krishnan, R (2010), Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press, LLC, New York [18] Lee J.G., Nam K.H., Choi S.H., Kwon S.W (2009), Loss-minimizing control of PMSM with the use of polynomial approximations, IEEE Trans Power Electron., 24(4), pp 10711082 [19] Lee J.G., Nam K.H., Lee S.H., Choi S.H., Kwon S.W (2009), A Lookup Table Based Loss Minimizing Control for FCEV Permanent Magnet 88 Ti liu tham kho Synchronous Motors, Electr Eng Technol., 4(2), pp 201210 [20] Mademlis C., Kioskeridis I., Margaris N (2004), Optimal Efficiency Control Strategy for Interior Permanent-Magnet Synchronous Motor Drives, IEEE Trans Energy Convers., 19(4), pp 715723 [21] Mademlis C., Xypteras J., Margaris N (2000), Loss minimization in surface permanent-magnet synchronous motor drives, IEEE Trans Ind Electron., 47(1), pp 115122 [22] Mi C.C., Slemon G.R., Fellow L., Bonert R (2005), Minimization of Iron Losses of Permanent Magnet Synchronous Machines, IEEE Trans Energy Convers., 20(1), pp 121127 [23] T Cao Minh, Hori Y (2001), Convergence Improvement of EfficiencyOptimization Control of Induction Motor Drives, IEEE Trans Ind Appl., 37(6), pp 17461753 [24] Morimoto S., Sanada M., Takeda Y (1996), Inverter-Driven Synchronous Motors for Constant Power, IEEE Ind Appl Mag., 2(6), pp 1824 [25] Morimoto S., Sanada M., Takeda Y (1994), Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator, IEEE Trans Ind Appl., 30(4), pp 920926 [26] Morimoto S., Takeda Y., Hatanaka K., Tong Y., Hirasa T (1993), Design and control system of inverter-driven permanent magnet synchronous motors for high torque operation, IEEE Trans Ind Appl., 29(6), pp 11501155 [27] Morimoto S., Takeda Y., Hirasa T., Taniguchi K (1990), Expansion of Operating Limits for Permanent Magnet Motor by Current Vector Control Considering Inverter Capacity, IEEE Trans Ind Appl., 26(5), pp 866871 [28] Morimoto S., Tong Y., Takeda Y., Hirasa T (1994), Loss minimization control of permanent magnet synchronous motor drives, IEEE Trans Ind Electron., 41(5), pp 511517 89 Ti liu tham kho [29] Nam, K.H (2010), AC motor control and electric vehicle applications, CRC Press, LLC, New York [30] Novotny D.W., Lipo T.A (1996), Vector Control and Dynamics of AC Drives, Clarendon Press, Oxford [31] Park, R.H (1929), Two Reaction Theory of Synchronous Machines, Trans AIEE, 48, pp 716730 [32] Soong W.L., Miller T.J.E (1994), Field-weakening performance of brushless synchronous AC motor drives, IEE Proc - Electr Power Appl., 141(6), pp 331-340 [33] Vaez S., John V.I., Rahnnan M.A (1997), Energy saving vector control strategies for electric vehicle motor drives, Proc Power Convers Conf PCC Nagaoka 97, 1, pp 1318 90 PH LC P.1 Chuyn i gia cỏc h trc ta MATLAB/SIMULINK Cụng thc chuyn i Clarke (1.2) v (1.3), v cụng thc chuyn i Park (1.4) v (1.5) c xõy dng MATLAB/SIMULINK nh trờn Hỡnh P.1 v Hỡnh P.2 (a) (b) Hỡnh P.1: Cỏc khõu chuyn i gia hai h ta a-b-c v - (a) Chuyn t h ta a-b-c sang h ta -; (b) Chuyn t h ta - sang h ta a-b-c (a) (b) Hỡnh P.2: Cỏc khõu chuyn i gia hai h ta - v d-q (a) Chuyn t h ta - sang h ta d-q; (b) Chuyn t h ta d-q sang h ta - 91 Ph lc P.2 Mụ hỡnh ng c ng b IPM xõy dng MATLAB/SIMULINK T cỏc phõn tớch v phng phỏp SVM mc 1.2 v mụ hỡnh toỏn hc ca PMSM c a mc 1.3.1, tỏc gi ó xõy dng c mụ hỡnh IPMSM MATLAB/SIMULINK nh Hỡnh P.3 Trong ú, a-b-c to d-q v d-q to ab-c c thc hin da vo cỏc phộp chuyn i ó a ph lc P.1 Cũn ni dung ca IPM Motor Model d-q c th hin Hỡnh P.4 Hỡnh P.3: Mụ hỡnh ca ng c ng b IPM Hỡnh P.4: Mụ hỡnh IPMSM h ta d-q 92 Ph lc P.3 Mụ hỡnh b nghch lu ngun ỏp ba pha MATLAB/SIMULINK Mụ hỡnh b nghch lu ngun ỏp ba pha trờn Hỡnh P.5 bờn di c thc hin MATLAB/SIMULINK da vo kt qu mụ hỡnh húa mch nghch lu ngun ỏp mc 2.2.1 v ni dung Bng 2.1 (Bng trng thỏi úng ct van v giỏ tr in ỏp ng vi cỏc vector chun) mc 2.2.2 Hỡnh P.5: Mụ hỡnh b nghch lu ngun ỏp ba pha P.4 Khõu SVM xõy dng MATLAB/SIMULINK Khõu SVM Hỡnh P.6 c xõy dng da vo ni dung ca mc 2.2.2 Hỡnh P.6: Khõu iu ch vector khụng gian (SVM) 93 Ph lc Ni dung chng trỡnh MATLAB Function Define Sector Hỡnh P.6: function [uref,gamma,sector] = DefineSector(ualpha,ubeta) persistent ua ub uc %% Define sector ua = ualpha; ub = (-ualpha + sqrt(3)*ubeta)/2.0; uc = (-ualpha - sqrt(3)*ubeta)/2.0; if (ua >= ub) if(ub >= uc) sector = 1; else if(uc >= ua) sector = 5; else sector = 6; end end else if(ub < uc) sector = 4; else if(uc < ua) sector = 2; else sector = 3; end end end %% Calculate gamma gamma = atan2(ubeta,ualpha); if (gamma < 0) gamma = gamma + 2*pi; end %% Calculate uref uref = sqrt(ualpha^2 + ubeta^2); end Ni dung chng trỡnh MATLAB Function Calculate Tp,Tt,T0 Hỡnh P.6: function [Tp,Tt,T0] = CalTpTtT0(Udc,uref,gamma,sector) persistent T %% Calculate time to execute vectors up,ut,uo T = 1; Tp = sqrt(3)*abs(uref)*T*sin(pi/3.0 - gamma + (sector - 1)*pi/3.0)/(Udc); Tt = sqrt(3)*abs(uref)*T*sin(gamma - (sector - 1)*pi/3.0)/(Udc); T0 = T - Tp - Tt; end 94 Ph lc Ni dung chng trỡnh MATLAB Function Calculate d1,d3,d5 Hỡnh P.6: function [d1,d3,d5] = Cald1d3d5(Tp,Tt,T0,sector) persistent d11 d31 d51 d11 = 0; d31 = 0; d51 = 0; %% Define modulation factor d1, d3, d5 if (sector == 1) d11 = Tp+Tt+T0/2.0; d31 = Tt+T0/2.0; d51 = T0/2.0; end if (sector == 2) d31 = Tp+Tt+T0/2.0; d11 = Tp+T0/2.0; d51 = T0/2.0; end if (sector == 3) d31 = Tp+Tt+T0/2.0; d51 = Tt+T0/2.0; d11 = T0/2.0; end if (sector == 4) d51 = Tp+Tt+T0/2.0; d31 = Tp+T0/2.0; d11 = T0/2.0; end if (sector == 5) d51 = Tp+Tt+T0/2.0; d11 = Tt+T0/2.0; d31 = T0/2.0; end if (sector == 6) d11 = Tp+Tt+T0/2.0; d51 = Tp+T0/2.0; d31 = T0/2.0; end d1 = d11; d3 = d31; d5 = d51; end cú xung PWM cp cho b nghch lu ngun ỏp ba pha (Hỡnh P.5), thỡ tớn hiu iu ch (d1 , d3 , d ) c so sỏnh vi súng tam giỏc cõn cú biờn nh bng v tn s ỳng bng tn s PWM mong mun, v khõu ny c xõy dng 95 Ph lc MATLAB/SIMULINK nh Hỡnh P.7 õy cng chớnh l ni dung ca PWM khõu iu ch vector khụng gian Hỡnh P.6 Hỡnh P.7: Khõu so sỏnh tớn hiu iu ch vi súng tam giỏc to xung PWM P.5 Khõu iu khin dũng in v tc Hỡnh P.8: Khõu iu khin dũng in cú bự xen kờnh Hỡnh P.9: Khõu iu khin tc 96 Ph lc P.6 Bng cỏc thụng s v h s ca mt PMSM trờn FCEV [18] Tờn thụng s (h s) Giỏ tr Cụng sut u cc i [kW] 80 Tc cc i [rpm] 11000 Dũng in pha cc i [A] 400 Cụng sut u nh mc [kW] 40 Tc nh mc [rpm] 2600 Dũng in pha nh mc [A] 216 S rónh stator 54 S ụi cc ( Pn ) T thụng nam chõm vnh cu ( m ) [Wb] 0,07 Mụmen quỏn tớnh ( J ) [kgm2] 0,02 in cm trc d ( Ld ) [àH] 375 in cm trc q ( Lq ) [àH] 835 in tr stator ( Rs ) [m] 29.5 H s tn tht st (C fe ) 2,110-2 H s tn tht ph (Cstr ) 6,510-9 P.7 Bng cỏc giỏ tr t tc v mụmen cn trờn trc ng ng c theo thi gian t [s] 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 r*[rad/s] 136 272 350 453 566 n* [rpm] Tc [Nm] 1300 2600 3342 4326 5405 50 80 101 76,1 Trong bng cỏc giỏ tr t trờn, cỏc ụ giỏ tr tc vựng tc cao c bụi en, tng ng vi trng hp nghim ti thiu tn tht theo mụ hỡnh tn tht khụng cũn nm vựng gii hn dũng in v in ỏp Khi ú, bi toỏn ti thiu tn tht c xột trờn biờn gii hn in ỏp (mc 3.4 ca lun vn) 97 Ph lc P.8 Lu thut toỏn ti thiu tn tht cho IPMSM m Lee v cỏc ng s ó xut Hỡnh P.10: Thut toỏn iu khin ti thiu tn tht IPMSM theo phng phỏp xp x a thc c Lee v cỏc cng s xut [18] thng nht phộp xp x giỏ tr in cm Lq nú thay i bóo hũa t (ó cp mc 3.2 v mc 3.3.3 lun vn), thỡ chng trỡnh MATLAB function thc hin theo thut toỏn ca Lee (Hỡnh P.10) s s dng phộp xp x giỏ tr in cm Lq m lun a iu ny l nhm ng nht giỏ tr in cm xp x s dng thut toỏn ca hai phng phỏp, phc v cho vic so 98 Ph lc sỏnh kt qu mc 4.2 Ni dung chng trỡnh MATLAB function ny c th hin nh bờn di %% Loss minimization algorithm Solution of Lee % Saturday, August 5, 2015 % Programmed by : Nguyen An Toan function [id,iq] = LMA(Te,w,time) persistent Udc Rs Ld Lq0 Lq psi poles Cfe Cstr alpha Iqsat gamma Pn we persistent id1 iq1 f_id1 df_id1 id2 iq2 persistent id2_upper id2_lower iq2_upper iq2_lower persistent A B C D E Usmax zeta eta rho %% Table PMSM parameters % Table 8.2 Parameters and coefficients of a PMSM for FCEV: % [Kwang Hee Nam]#212 Udc = 240; % Input DC link voltage Rs = 29.5e-3; % Stator resistance Ld = 0.375e-3; % Nominal d axis inductance Lq0 = 0.835e-3; % Nominal q axis inductance psi = 0.07; % Permanent magnet flux poles = 6; % Number of pole Cfe = 2.1e-2; % Coefficient of iron loss Cstr = 6.5e-9; % Coefficient of stray loss alpha = 1.07e-6; % Coefficient of q axis inductance Iqsat = 180; % Mold iq value that Lq starts to saturate gamma = 1.5; % Constant Steinmetzt (1.5~1.6) %% Calculate the motor constants Pn = poles/2; % Number of double pole we = w*Pn; % Electrical angular velocity %% Limit of current id* and iq* id2_upper = 300; % Upper limit of id2 id2_lower = -300; % Lower limit of id2 iq2_upper = 300; % Upper limit of iq2 iq2_lower = -300; % Lower limit of iq2 %% Calculate the coefficients A, B, C, D, E % [Kwang Hee Nam]#216 A = (27*poles^3/64)*((Ld - Lq0)^3)*(3*Rs + 2*Cstr*we^2 + 2*Cfe*abs(we)^gamma*Ld^2); B = (27*poles^3/64)*psi*(Ld - Lq0)^2*(9*Rs + 6*Cstr*we^2 + 6*Cfe*abs(we)^gamma*Ld^2 + 2*(Ld - Lq0)*Cfe*abs(we)^gamma*Ld); C = (27*poles^3/64)*psi^2*(Ld - Lq0)*(9*Rs + 6*Cstr*we^2 + 6*Cfe*abs(we)^gamma*Ld^2 + 6*(Ld - Lq0)*Cfe*abs(we)^gamma*Ld); D = (27*poles^3/64)*psi^3*(3*Rs + 2*Cstr*we^2 + 2*Cfe*abs(we)^gamma*Ld^2 + 6*(Ld - Lq0)*Cfe*abs(we)^gamma*Ld); E = (27*poles^3/32)*psi^4*Cfe*abs(we)^gamma*Ld - 9*poles/4*(Ld - Lq0)*Rs*Te^2 - 3*poles/2*(Ld - Lq0)*(Cstr*we^2*Te^2 + Cfe*abs(we)^gamma*Lq0^2*Te^2); %% Loss Minimizing Solution in the Interior % [Junggi Lee] IEEE#1075 % Step I: First approximate solution id1 = (-D + sqrt(D^2 - 4*C*E)/(2*C)); iq1 = Te/((3*poles/4)*(psi + (Ld - Lq0)*id1)); 99 Ph lc % Step II: Modification by incorporating Lq saturation if (iq1 id2_upper) id2 = id2_upper; end if (id2 < id2_lower) id2 = id2_lower; end iq2 = Te/((3*poles/4)*(psi + (Ld - Lq)*id2)); if (iq2 > iq2_upper) iq2 = iq2_upper; end if (iq2 < iq2_lower) iq2 = iq2_lower; end %% Maximum Voltage Usmax = Udc/sqrt(3); %% Let zeta = Lq0/Ld*psi; eta = (Lq0*(Ld - Lq0)/Ld*4*Te/(3*poles))^2; rho = ((Ld - Lq0)/Ld*Usmax/we)^2; %% Approximate Boundary Solution if (time < 1.6) % if (((Ld*id2 + psi)^2 + (Lq0*iq2)^2)*we^2

Ngày đăng: 19/07/2017, 22:09

Từ khóa liên quan

Mục lục

  • LỜI CAM ĐOAN

  • LỜI CẢM ƠN

  • MỤC LỤC

  • DANH MỤC CÁC KÝ HIỆU

  • DANH MỤC CÁC CHỮ VIẾT TẮT

  • DANH MỤC CÁC BẢNG

  • DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ

  • MỞ ĐẦU

    • 1. Lý do chọn đề tài

    • 2. Lịch sử nghiên cứu

    • 3. Mục đích, đối tượng, phạm vi nghiên cứu

    • 4. Phương pháp nghiên cứu

    • Chương 1

    • TỔNG QUAN

      • 1.1 Giới thiệu về động cơ đồng bộ nam châm vĩnh cửu

        • 1.1.1 Các loại PMSM

        • 1.1.2 Động cơ đồng bộ IPM

        • 1.1.3 Một số phương pháp điều khiển PMSM

        • 1.2 Phương pháp điều khiển vector PMSM

          • 1.2.1 Công thức chuyển đổi Clarke

          • 1.2.2 Công thức chuyển đổi Park

          • 1.3 Phân tích hoạt động của PMSM

            • 1.3.1 Mô hình toán học của PMSM

            • 1.3.2 Giới hạn dòng điện và điện áp

            • 1.3.3 Các đặc tính của PMSM

              • 1.3.3.1 Dải tốc độ quay định mức

Tài liệu cùng người dùng

Tài liệu liên quan