Nghiên cứu các tính chất của màng PZT nhằm chế tạo cảm biến áp điện định hướng ứng dụng trong y sinh

162 711 0
Nghiên cứu các tính chất của màng PZT nhằm chế tạo cảm biến áp điện định hướng ứng dụng trong y sinh

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

GI I THIỆU LUẬN ÁN M Các vật liệu áp điện với khả năng chuyển đổi cơ năng thành điện năng và ngược lại đã và đang được sử dụng rộng rãi trong các linh kiện cảm biến, các thiết bị truyền động và các thiết bị vi cơ điện tử khác như đầu dò siêu âm và máy gia tốc [1]. Trong số các vật liệu áp điện phổ biến hiện nay như AlN, ZnO và các vật liệu với cấu trúc tinh thể dạng perovskite Ba(Sr,Ti)O 3 hay (K,Na)NbO 3 , thì vật liệu áp điện Pb(Zr x Ti 1-x )O 3 (0 < x < 1, PZT) được lựa chọn nhiều nhất do có các tính chất sắt điện và áp điện nổi trội hơn so với các vật liệu áp điện khác [172]. Ngoài ra, một trong các đặc trưng quan trọng của vật liệu PZT là ảnh hưởng của t lệ thành phần Zr/Ti lên tính chất của vật liệu, gây ra bởi sự chuyển pha cấu trúc mặt thoi – tứ giác. Đối với vật liệu PZT dạng khối thì giá trị cực đại của hệ số phân cực điện dư, hằng số điện môi và hệ số áp điện đạt được ở vị trí biên pha hình thái cấu trúc (morphotropic boundary), vị trí mà vật liệu chuyển từ pha tứ giác sang pha mặt thoi [19]. Vị trí biên pha hình thái cấu trúc của vật liệu PZT có thành phần là Pb(Zr 0.52 Ti 0.48 )O 3 (PZT52/48) hay là hỗn hợp của hai thành phần PbZrO 3 (pha mặt thoi) và PbTiO 3 (pha tứ giác) với t lệ 52/48 [20]. Việc tích hợp các vật liệu áp điện PZT dưới dạng màng lên trên bề mặt đế silic là một yếu tố quan trọng nhằm th c đẩy khả năng ứng dụng của các linh kiện vi cơ điện từ [48, 140, 154, 209, 82]. Màng áp điện sẽ góp phần làm giảm kích thước, tăng độ nhạy cũng như làm giảm giá thành sản phẩm. Trong các linh kiện vi cơ điện tử này thì vấn đề quan trọng hàng đầu là việc chế tạo thành công màng áp điện có các cấu trúc và tính chất đặc trưng như mong muốn. Cấu trúc và tính chất của màng áp điện phụ thuộc vào nhiều yếu tố khác nhau như phương pháp chế tạo, lớp tiếp xúc, lớp điện cực hay sự pha tạp ion. Hiện nay có nhiều phương pháp được sử dụng trong việc chế tạo màng áp điện theo cả hai phương pháp: phương pháp vật lý và phương pháp hóa học. Các phương pháp vật lý bao gồm phương pháp ph n xạ [205, 30, 178], phương pháp bốc bay xung laser (PLD) [220, 210, 125, 53, 135] và phương pháp lắng đọng chùm phân tử epitaxy (MBE) [238]. Trong số các phương pháp hóa học có phương pháp lắng đọng pha hơi hợp chất kim loạihữu cơ (MOCVD) [32, 249], phương pháp lắng đọng hơi hóa học bằng plasma (PECVD) [73, 72] và phương pháp quay phủ sol-gel [245, 75, 8, 78, 216]. Trong các phương pháp này thì phương pháp quay phủ sol-gel là phương pháp yêu cầu thiết bị đơn giản, rẻ tiền và có thể dễ dàng thay đổi thành phần màng cũng như phù hợp với điều kiện công nghệ hiện nay ở Việt Nam. Tuy nhiên nhược điểm của phương pháp này là mật độ kết khối thấp và màng thường bị nứt gẫy trong quá trình chế tạo. Trong luận án này, màng sắt điện – áp điện PZT đã được chế tạo trên đế silic bằng phương pháp quay phủ sol-gel. Quy trình công nghệ chế tạo màng PZT đã được tối ưu hóa, trên cơ sở kế thừa và phát triển các kết quả của các nghiên cứu trước, nhằm thu được các màng có chất lượng với độ ổn định cao. Màng sau khi chế tạo có mật độ kết khối cao và không bị nứt gẫy. Việc cải thiện các tính chất sắt điện và áp điện của màng được nghiên cứu thông qua việc chế tạo màng với cấu trúc dị lớp (các lớp màng PZT có thành phần khác nhau được quay phủ xen kẽ vào nhau). Nguyên nhân là do ảnh hưởng của lớp tiếp xúc sắt điện – sắt điện (với thành phần khác nhau), ứng suất kéo trong cấu trúc giảm đi và cùng với sự hình thành một thế điện áp nội tại lớp tiếp x c đã làm tăng khả năng quay của các domain sắt điện. Màng PZT sau đó được sử dụng trong việc chế tạo các linh kiện cảm biến khối lượng trên cơ sở các thanh rung áp điện. Thanh rung áp điện, với kích thước micro-m t được chế tạo bằng phương pháp quang khắc, bao gồm hai phần: phần dao động (điện cực/màng PZT/điện cực) được gắn kết lên trên thanh rung silic (dày 10 micro-mét, rộng 100 micro-mét và dài 100-800 micro-m t). Độ phát hiện tới hạn của các linh kiện cảm biến đã đươc khảo sát thông qua việc gắn kết chất chỉ thị sinh học MHDA (16Mercaptohexadecanoic acid, HS-(CH 2 ) 15 -COOH), là chất dùng để phát hiện phân tử gây ra bệnh ung thư ở người. Độ phát hiện tới hạn của thanh rung, khảo sát trong dung dịch chứa MHDA, là 20 ng/mL hay 70 pmol/mL. N ụ ủ Nhiệm vụ của luận án gồm 3 nhiệm vụ chính như sau: o Ổn định quy trình chế tạo màng áp điện PZT với chất lượng cao bằng phương pháp quay phủ sol-gel. o Tích hợp màng PZT vào thanh rung silic nhằm chế tạo các linh kiện cảm biến với kích thước micro-mét. o Định hướng ứng dụng của linh kiện cảm biến trong việc phát hiện các hợp chất cần phân tích trong l nh vực y - sinh học. Luận án được nghiên cứu bằng phương pháp thực nghiệm, kết hợp với phân tích số liệu dựa trên các kết quả thực nghiệm đã công bố và các mô hình lý thuyết. Các mẫu sử dụng trong luận án được chế tạo bằng phương pháp quay phủ sol-gel tại Phòng thí nghiệm Vi cảm biến và hệ thống, Viện Đào tạo Quốc tế về Khoa học vật liệu (ITIMS), Trường Đại học Bách khoa Hà Nội.

LI CAM OAN Tụi cam oan: õy l cụng trỡnh nghiờn cu ca riờng tụi di s hng dn ca PGS TS V Ngc Hựng v TS Nguyn c Minh, thc hin ti Vin o to Quc t v Khoa hc Vt liu Vin ITIMS, Trng i hc Bỏch Khoa H Ni Cỏc s liu v kt qu lun ỏn l hon ton trung thc v cha tng c cụng b bt k cụng trỡnh no Tỏc PGS TS V N H N i lu ỏn T Q C LI CM N Li u tiờn tụi xin by t lũng kớnh trng v bit n sõu sc nht n PGS.TS V Ngc Hựng v TS Nguyn c Minh, nhng ngi Thy ó tn tỡnh hng dn, giỳp v to mi iu kin thun li cho tụi sut thi gian thc hin lun ỏn Cỏc Thy thc s l nhng nh khoa hc mu mc, luụn quan tõm, ng viờn v khớch l tụi gp khú khn c cụng vic v cuc sng, cựng hc trũ chia s c tht bi ln thnh cụng Cỏc Thy ó truyn cho tụi ng lc v nim hnh phỳc ln lao nghiờn cu v khỏm phỏ khoa hc, bit vt qua khú khn hon thnh lun ỏn c nghiờn cu vi cỏc Thy, tụi hc cỏc Thy tinh thn tn ty vi hc trũ v nghiờm tỳc nghiờn cu khoa hc, hin ti v tng lai Tụi xin trõn trng cm n B Giỏo dc v o to, Trng i hc Bỏch Khoa H ni, Vin o to Quc t v Khoa hc Vt liu (ITIMS), Trng i hc Lõm nghip ó to iu kin thun li v thi gian, vt cht cng nh tinh thn tụi thc hin lun ỏn Tụi xin cm n PGS TS Trnh Quang Thụng, TS Chu Mnh Hong, TS V Thu Hin, Th S Nguyn Thanh Hng, ThS Phm Ngc Tho, C nhõn Nguyn Ti ó thng xuyờn quan tõm v ng viờn cng nh ó cú nhiu bn lun khoa hc v ý kin úng gúp quý giỏ cho tụi quỏ trỡnh thc hin lun ỏn Tụi xin cm n th cỏn b B mụn Vt lý, Khoa C in v cụng trỡnh, Trng i hc Lõm nghip ó ng viờn, chia s v giỳp tụi sut thi gian qua Tụi cng xin c cm n bn bố, ng nghip v ngi thõn ó ng viờn, giỳp tụi tụi cú iu kin thc hin lun ỏn Cui cựng, tụi xin gi ti nhng ngi thõn yờu gia ỡnh nh ca tụi lũng bit n vt ngoi gii hn ca ngụn t S ng viờn, h tr v hy sinh thm lng ca chng, con, anh em thc s th hin nhng tỡnh cm vụ giỏ, l ngun ng lc tinh thn vụ cựng mnh m giỳp tụi kiờn trỡ vt qua khú khn, tr ngi i n thnh cụng Mong rng hai Bo Ngõn Nguyt Anh s n lc hc hn na ti thnh cụng trờn ng hc H Ni, ngy thỏng nm 20 Tỏc gi ii MC LC Trang LI CAM OAN i LI CM N .ii DANH MC CC Kí HIU vi BNG DANH MC THUT NG viii DANH MC CC BNG xi DANH MC CC HèNH NH, TH xii GI I THIU LUN N M N í 3.1 ngh a khoa hc 3.2 Nhng úng gúp mi ca lun ỏn B CHNG L C S Lí THUYT 1.1.1 Phõn cc t phỏt 1.1.1.1 Tớnh i xng 1.1.1.2 Hin tng st in 1.1.1.3 Hin tng phn st in 1.1.1.4 Hin tng in 1.1.1.5 Hin tng ỏp in 1.1.2 Lý thuyt chuyn pha st in Ginzburg-Landau 10 1.1.3 Gii thiu vt liu st in 14 1.1.4 ụ men st in 16 1.1.4.1 S hỡnh thnh ụ men 16 1.1.4.2 Cu tr c ụ men t nh ca vt liu mng mng 18 1.1.4.3 Phõn b v c t phõn cc 19 1.1.4.4 Chuyn vỏch ụ men st in 20 1.1.5 Hin tng ghim ụ men 21 T PZT 22 1.2.1 nh hng ca thnh phn pha 22 1.2.2 S ph thuc vo nh hng ca mng 25 1.2.3 B dy, lp tip x c v kớch thc ht 28 iii 1.2.4 Chuyn ng ụ men (Hỡnh thnh ụ men/ hỡnh thnh v dch chuyn vỏch ụ men) 31 1.2.5 Tớnh cht mi 33 1.2.6 nh hng ca cu tr c d lp n tớnh cht ca mng mng PZT 34 1.2.7 nh hng ca cht n cu tr c, tớnh cht ca mng mng PZT 35 M K CHNG PZT 40 41 CễNG NGH CH TO V CC PHNG PHP NGHIấN CU 43 P PZT 43 2.1.1 Tng quan v phng phỏp ch to sol-gel 43 2.1.2 Ch to mng mng PZT bng phng phỏp quay ph sol-gel 45 2.1.2.1 Vt liu to sol 45 2.1.2.2 Quy trỡnh cụng ngh sol-gel ch to mng mng PZT 45 2.1.2.3 Quay ph to mng 46 P 47 2.2.1 Phng phỏp xỏc nh cu tr c ca mng mng 47 2.2.1.1 Nhiu x tia X (XRD) 47 2.2.1.2 Cỏc phng phỏp xỏc nh hỡnh thỏi cu tr c b mt 48 2.2.2 Cỏc phng phỏp kho sỏt tớnh cht st in - ỏp in 49 2.2.2.1 Phng phỏp kho sỏt tớnh cht st in 49 2.2.2.2 Phng phỏp kho sỏt tớnh cht in mụi 51 2.2.2.3 Phng phỏp kho sỏt tớnh cht ỏp in 52 C 54 2.3.1 Phng phỏp n mũn khụ 57 2.3.2 Phng phỏp n mũn t 57 K 57 CHNG NGHIấN CU TNH CHT CA MNG MNG SOL-GEL PZT 59 T PZT 59 3.1.1 nh hng ca nhit 59 3.1.2 nh hng ca chiu dy mng mng PZT 63 N K PZT rỳ 67 77 CHNG NGHIấN CU NH HNG CA PHA TP Fe3+ v Nb5+ N TNH CHT CA MNG MNG PZT 79 4.1 Fe3+ iv PZT, PFZT/PZT 79 4.1.1 nh hng ca Fe3+ n tớnh cht ca mng mng PZT 79 4.1.2 nh hng ca Fe3+ n tớnh cht ca mng mng d lp PFZT/PZT 84 K Nb5+ PZT 86 91 CHNG NGHIấN CU NG DNG CH TO LINH KIN PIEZOMEMS 93 rỡ ũ 95 5.1.1 n mũn lp in cc 95 5.1.2 n mũn mng mng PZT 97 L b r 101 5.2.1 Linh kin cm bin kiu rung 101 5.2.1.1 Kt qu ch to linh kin dng rung 101 5.2.1.2 Kho sỏt tớnh cht ca linh kin 105 5.2.2 Linh kin dng mng chn 108 5.2.2.1 Kt qu ch to linh kin dng mng chn 108 5.2.2.2 Kho sỏt tớnh cht ca mng chn 109 K C b rờ r 112 118 KT LUN CHUNG 120 XUT: 121 TI LIU THAM KHO 123 v DANH MC CC Kí HIU K N f rng ca mt na ng cong tn s cng hng c bn (Fundamental resonance frequency curve) , Hng s in mụi mụi trng v chõn khụng in tr sut ca mng Dung sai A Din tớch bn t C in dung D Khong cỏch gia hai bn t (b dy ca mng) dijk Mụun ỏp in cm in mụi E, ED in trng ngoi, in trng kh phõn cc Ej Thnh phn ca v ct cng in trng fr Giỏ tr ng vi nh ca ng cong tn s cng hng k H s liờn kt in c k Hng s Boltzmann k15 H s liờn kt xon k31 H s liờn kt ngang k33 H s liờn kt theo chiu dy kij Cỏc thnh phn ca h s liờn kt in c kp H s liờn kt b mt kt H s liờn kt theo chiu di Np , Nt Hng s tn s cỏc mode dao ng theo bỏn kớnh v theo chiu dy (Hz.m) PFZT Pb([Zr0.52Ti0.48]Fe)O3 Pr, Ps phõn cc d, bóo hũa Q H s phm cht Qe phm cht cng hng in Qm phm cht c R RA, RB, RO RS in tr thun ca mng mng PZT Bỏn kớnh cation Pb2+, cation Zr4+/Ti4+, anion O2in tr dõy ni vi sE , sD Sut n hi tng ng vi iu kin in trng khụng i v mt in tớch khụng i (10-12 m2/N) Sjk Thnh phn ca Tenx bin dng T Nhit tuyt i T Nhit (C, K) tan Tang gúc tn hao Tc Nhit Curie TC Nhit chuyn pha (C, K) Tjk Thnh phn ca Tenx ng sut Tm Nhit ng vi hng s in mụi cc i (C, K) U in th vii BNG DANH MC THUT NG T N A space-charge model Mụ hỡnh vựng khụng gian in tớch Actuators Linh kin chp hnh AF Antiferroelectric phase (pha khụng st in hay pha cht) AFM Atomic Force Microscopy (kớnh hin vi lc nguyờn t) Antibody Phn dựng gn kt Antigen Cht cn phõn tớch Ar-beam dry etching n mũn khụ bng chựm tia Ar Atomic concentration Nng nguyờn t Cantilever length Chiu di linh kin Chrome mask Lp mt l Chrome Coil Cun lũ xo CSD Chemical solution deposition (dung dch húa hc) CVD Chemical vapor deposition (phng phỏp lng ng t pha hi) Dipole Lng cc st in Displacement dch chuyn Downward displacement dch chuyn theo chiu xung di DRIE Deep reactive-ion etching (thit b quang khc) DTA Differential Thermal Analysis (phõn tớch nhit vi sai) Effective area Phm vi hot ng ca linh kin Etch rate Tc n mũn Ferroelectric domain ụ men st in Ferroelectric phase Pha st in Ferroelectric Random Acces Memory (b nh truy cp ngu FRAM nhiờn st in) Field Emission Scanning Electron Microscopy (phng phỏp FE-SEM chp nh hin vi in t qu t phỏt x trng) Gas pressure p sut khớ viii Gas pressure p sut khớ Heterolayers Cu tr c d lp Hydrochloric acid A xớt HCl Hydrofluoric acid A xớt HF Inert passivation layer Lp th ng tr In-plane transverse H s bin dng mng piezo coefficient Interfacial cỏc lp phõn biờn th ng passive layers Lp phõn biờn th ng Mask Mt n bo v MBE Molecular beam epitaxy (phng phỏp epitaxy chựm phõn t) Membrane Linh kin dng mng chn MEMS Micro Electro Mechanial Systems (h thng vi c in t) MHDA Phõn t 16-Mercaptohexadecanoic a xớt (HS-(CH2)15-COOH) Microactuator Vi chp hnh Microscope nh hin vi quang hc Microsensor Vi cm bin MPB Morphotropic Phase Boundary (biờn pha hỡnh thỏi) P40 Pb(Zr0.4Ti0.6)O3 P60 Pb(Zr0.6Ti0.4)O3 Paraelectric cubic Pha khụng st in lp phng PFZT Pb([Zr0.52Ti0.48]Fe)O3 Photoresist Lp bo v Piezo Lp hot ng Piezoresponse force microscopy (kớnh hin vi lc hi ỏp ỏp PFM in) Piezoelectric cantilever Thanh rung ỏp in PNZT Pb(Zr0.52Ti0.48)1-xNbxO3 Polarization loop ng cong in tr Prostate-specific antigen (mt cht gõy bnh ung th PSA ngi) Pyrochlore A2B2O7 Pyrochlore phase (pha thiu chỡ) PZT Loi gm, mng cú cụng thc Pb(TixZr1-x)O3 ix Rhombohedral Cu tr c trc thoi Residue Cht cn SAM Self-assembled monolayers (phn t lp rỏp n lp) SEM Scaning Electro Microscopy (hin vi in t qu t) Sensors Linh kin c dng cm bin Silicon cantilever- beam Linh kin dng rung Silicon membrane Linh kin dng mng chn SOI Silicon on Insulators (phin Silic dng SOI) Sputter time Thi gian tỏn x SRO SrRuO3 TEM Hin vi in t truyn qua Tetragonal Cu tr c t giỏc X-ray photoelectron spectroscopy (phng phỏp ph nhiu x XPS in t tia X) Undercut n mũn sõu Upward displacement dch chuyn theo chiu lờn trờn UV exposure Chựm sỏng UV Wet-chemical etching n mũn t x [88] I Kanno, S Hayashi, R Takayama, and T Hirao, (1996) Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering Appl Phys Lett., 68(3): 328-330 [89] I Stolichnov, (2004) in Nanoscale Phenomena in Ferroelectric Thin Films, edited Se g he hi H g, e h II Size effe i i fe ee i e i : e f ize, Springer, New York, 4047 [90] I Suzuki and K Okada, (1978) Phenomenological theory of antiferroelectric transition IV Ferroelectric J Phys Soc Jpn., 45(4): 1302 [91] Ionela Vrejoiu,a Yinlian Zhu, Gwenaởl Le Rhun, Markus Andreas Schubert, Dietrich Hesse, and Marin Alexe, (2007) Structure and properties of epitaxial ferroelectric PbZr0.4Ti0.6O3 /PbZr0.6Ti0.4O3 superlattices grown on SrTiO3 (001) by pulsed laser deposition, Max Planck Institute of Microstructure Physics, D-06120 Halle, Germany, Appl Phys Lett 90, 072909 [92] J Ajitsaria, S Y Choe, D Shen and D J Kim, (2007) Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation, Smart Mater Struct 16, 447454 [93] J Chen, M.P.Harmer and D M.Smyth, (1994) Composition control of ferroelectric fatigue in perovskite ferroelectric ceramics and thin films, J.Appl.Phys 76 5394 [94] J F Scott, D Matthew, (2000) Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics, Applied Physics Letters 76, 38013803 [95] J F Shepard Jr., P J Moses, S Trolier-McKinstry, (1998) The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films, Sensors and Actuators A 71, 133-138 [96] J H Lee, K H Yoon, K S Hwang, J Park, S Ahn and T S Kim, (2004) Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein, Biosens Bioelectron 20 269-275 [97] J -H Li, L Chen, V Nagarajan, R Ramesh, and A L Roytburd, (2004) Finite element modeling of piezoresponse in nanostructured ferroele i , Appl Phys Lett 84, 2626 [98] J Junquera and Ph Ghosez, (2003) Critical thickness for ferroelectricity in e ie hi , Nature 422, 506 [99] J K Yang, W S Kim, and H H Park, (2001) Effect of grain size of Pb(Zr0.4Ti0.6)O3 sol-ge e i e hi he fe ee i e ie , Appl Surf Films 169, 544 [100] J L Jones,A Pramanick, J.C.Nino, S.M.Motahari,E ăUstă undag,M R Daymond, and E C Oliver, (2007) Time-resolved and orientationdependent electric-e induced strains in lead zirconate titanate ceramics, Appl Phys Lett 90, 172909 130 [101] J Lee, L Johnson, A Safari, R Ramesh, T Sands, H Gilchrist, and V G Keramidas, (1993) Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 hi capacitors, Appl Phys Lett 63, 27 [102] J M Herbert, (1982) Ferroelectric Transducers and Sensors, Measurement, Instrumentation, and Sensors Handbook, Second Edition Gordon and Breach, New York [103] J Pộrez de la Cruz, E Joanni, P.M Vilarinho, A.L Kholkin, (2010) Thickness effect on the dielectric, ferroelectric, and piezoelectric properties of ferroelectric lead zirconate titanate thin films, J Appl Phys., 108, pp 114106 [104] J S Cross, K Shinozaki, T Yoshioka, J Tanaka, S.H Kim, H Morioka, K Saito, (2010) Characterization and ferroelectricity of Bi and Fe co-doped PZT films, Materials Science and Engineering B 173, 1820 [105] J S Horwitz, K S Grabowski, D B Chrisey, and R E Leuchtner, (1991) In situ deposition of epitaxial PbZrxTi(1-x)O3 thin Films by pulsed laser deposition Appl Phys Lett., (13): 1565 [106] J Schwarzkopf and R Fornari (2006) Epitaxial growth of ferroelectric oxide Films Prog Cryst Growth & Charact., 52: 159 [107] J W Jang, S J Chung, W J Cho, T S Hahn, and S S Choi, (1997) Thickness e e e e f e e e e i i i f i e TiO hi by radio-frequencymagnetron sputtering, J Appl Phys 81, 6322 [108] J Zhai, X Yao, Z Xu, and H Chen, (2005) Integrated Ferroelectrics, vol 75, pp 47 [109] Jeon Y B, Sood R, Jeong J H and Kim S G, (2005) MEMS power generator with transverse mode thin film, Sensors and Actuators A: Physical 122 (1), 16-22, 2005 [110] Jian Lu, Yi Zhang, Takeshi Kobayashi, Ryutaro Maeda, Takashi Mihara, (2007) Preparation and characterization of wafer scale lead ziconate titanate film for MEMS application, Sensor and Actuators A 139, 152-157 [111] John F Moulder, William F Stickle, Peter E Sobol, Kenneth D Bomben, (1979) Handbook of X Ray Photoelectron Spectroscopy Perkin Elmer Corporation Physical Electronic Devision, USA [112] K Abe and S Komatsu, (1995) Ferroelectric properties in epitaxially grown Ba x Sr TiO3 thin films J App Phys 77, 6461 [113] K Carl and K H Haerdtl, (1978) Electrical after-effects in Pb(Ti,Zr)O3 ceramic, Ferroelectrics 17, 473-486 131 [114] K Matsuura, Y Cho, and R Ramesh, (2003) Observation of domain walls in P Ti0 8O hi i g i g i e ie e i i , Appl Phys Lett 83, 2650 [115] K Ramam, V Miguel, (2006) Microstructure, dielectric and ferroelectric characterization of Ba doped PLZT ceramics, Eur Phys J Appl Phys 35 43-47 [116] K S Hwang, S M Lee, K Eom, J H Lee, Y S Lee, J H Park, D S Yoon and T S Kim, Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase, Biosens Bioelectron 23 (2007) 459-465 [117] K S Hwang, S M Lee, S K Kim, J H Lee, T S Kim, (2009) Micro- and Nanocantilever Devices and Systems for Biomolecule Detection, Ann Rev Analyt Chem 2, 77-98 [118] K S Yun, E Yoon, (2006) Micropumps for MEMS/NEMS and Microfluidic systems, in MEMS/NEMS Handbook Techniques and Applications, Editor T.L Cornelius, Springer-Verlag, 121-153 [119] Kayasu, M Ozenbas, (2009) The effect of Nb doping on dielectric and ferroelectric e ie f P T hi e e i e ii , Journal of the European Ceramic Society 29, 1157 [120] KH Hellwege and A M Hellwege, ed., (1990) Complex Perovskite-type Oxides, Landolt-Bornstein: Oxides, Vol 16a, Springer-Verlag [121] Klissurska, R D., Brooks, K G., Reaney, I M., Pawlaczyk, C., Kosec, M and Setter, N., (1995) Effect of Nb doping on the microstructure of solgel-derived P T hi J Am Ceram Soc, 78, 1513 [122] Kurchania, R and Milne, S J., ( 008) ( ) hi e ffe f i i i i P T gel route J SolGel Sci Technol., 28 143 [123] L E Cross, (1980) Encyclopedia of Chemical Technology 10, ed Kirk Othmer, Wiley [124] L E Cross (1967) Antiferroelectric-ferroelectric switching in a simple "Kittel" anti-ferroelectric J Phys Soc Jpn., 23(1): 77 [125] L Feigl, J Zheng, B I Birajdar, B J Rodriguez, Y L Zhu, M Alexe and D Hesse, (2009) Impact of high interface density on ferroelectric and structural properties of PbZr0.2Ti0.8O3/PbZr0.4Ti0.6O3 epitaxial multilayers, J Phys D: Appl Phys 42, 085305 [126] L Lian, N.R Sottos, (2004) Stress effects in sol-gel derived ferroelectric thin films, J Appl Phys., 95, pp 629-634 132 [127] Lee H N, Senz S, Zakharov N D, Harnagea C, Pignolet A, Hesse D and Gosele U, (2000) Nanoscale Characterisation of Ferroelectric Materials: Scanning Probe microscopy approach, Appl Phys Lett 77 3260 [128] Li B S., Li G R., Yin Q R., Zhu Z G., Ding A L., Cao W W (2005) Pinning and depinning mechanism of defect dipoles in PMnNPZT ceramics, J Phys D: Appl Phys., 38, pp 11071111 [129] Li B S., Li G R., Zhao S C., Zhu Z G., Ding A L (2005) Reorientation of Defect Dipoles in Ferroelectric Ceramics, Chin Phys Lett, 22(5), pp 1236-1238 [130] Li B S., Zhu Z G., Li G R., Yin Q R., Ding A L (2004), Peculiar Hysteresis Loop of Pb(Mn1/3Nb2/3)O3- Pb(Zr,Ti)O3 Ceramics, Jpn J Appl Phys., 43(4A), pp 14581463 [131] Ling-Sheng Jang, and Kuo-Ching Kuo, (2007) Fabrication and Characterization of PZT Thick Films for Sensing and Actuation, Sensors, 7, pp 493-507 [132] M D Nguyen, C T Q Nguyen, L Q Nguyen, H T Vu, H N Vu and G Rijnders, (2015) Quality factor and mass sensitivity dependence on length, width and bending mode of piezoelectric thin film microcantilevers, submitted to Sensors and Actuators B [133] M D Nguyen, C.T.Q Nguyen, T.Q Trinh, T Nguyen, T.N Pham, G Rijnders and H.N Vu, (2013) Enhancement of ferroelectric and piezoelectric properties in P T hi wi h he e ee e Mater Chem Phys 138, 862 [134] M D Nguyen, M Dekkers, H N Vu, G Rijnders, (2013) Film-thickness and composition dependence of epitaxial thin-film PZT-based mass-sensors, Sensors and Actuators A 199, 98-105 [135] M D Nguyen, R J A Steenwelle, P M te Riele, J M Dekkers, D H A Blank and G Rijnders (2008), Growth and properties of functional oxide thin films for PiezoMEMS, in EUROSENSORS XXII Dresden-Germany, p 810-813 [136] M Es-Souni *, A Piorra, C.-H Solterbeck, M Abed, (2001) Processing, crystallization behaviour and dielectric properties of metallorganic deposited Nb doped PZT thin films on highly textured 111-Pt, B86 (2001) 237244 [137] M Dawber, J.F Scott, (2000) A model for fatigue in ferroelectric perovskite thin films, Applied Physics Letters 76, 10601062 [138] M De Keijser, J F M Cillessen, R B F Janssen, A E M De Veirman, and D M de Leeuw, (1996) Structural and electrical characterization of heteroepitaxial e zi e i e hi , J.Appl Phys 79, 393 [139] M Dekkers, H Boschker, M van Zalk, M Nguyen, H Nazeer, E Houwman, G Rijnders, (2013) The significance of the piezoelectric coefficient d31,eff determined from cantilever structures, J Micromech Microeng 23 025008 133 [140] M Dekkers, M D Nguyen, R Steenwelle, P M te Riele, D H A Blank and G Rijnders, (2009) Ferroelectric properties of epitaxial Pb(Zr,Ti)O3 thin films on silicon by control of crystal orientation, Appl Phys Lett 95, 012902 [141] M H Lente and J A Eiras, (2000) 90 domain reorientation and domain wall rearrangement in lead zirconate titanate ceramics characterized by transient current and hysteresis loop measurements, J.Appl Phys 89, 5093 [142] M Iwata and Y Ishibashi (2000) Theory of morphotropic phase boundary in solid e solution systems of perovskite- i e fe ee i : gi ee e ụ e congurations Jpn J Appl Phys., 39: 5156, [143] M J Haun, T J Harvin, M T Lanagan, Z Q Zhuang, S J Jang, and L E (1989) Cross Thermodynamic theory of PbZrO3 J Appl Phys., 65(8): 3173 [144] M J Madou, (2011) Fundamentals of Microfabrication and Nanotechnology, Volume II, Manufacturing Techniques for Microfabrication and Nanotechnology, Third Edition, CRC Press, Taylor & Francis Group [145] M K Durbin, J.C Hicks, S.-E Park, T.R Shrout, (2000) X-ray diffraction and he e gi ie f he e gi ee e i i ụ e i i ge crystal relaxor ferroelectrics, J Appl Phys., 87, pp.8159-8164 [146] M Stengel, N.A Spaldin, (2006) Origin of the dielectric dead layer in nanoscale capacitors, Nature, 443 (2006), pp 679-682 [147] M Tsukada, H Yamawaki, and M Kondo, (2003) Crystal structure and polarization phenomena of epitaxially grown Pb(Zr,Ti)O3 thin-film capacitors, Appl Phys Lett 83pp 4393-4395 [148] Mark Daniel Losego, (2005) The Chemical solution deposition of lead zirconate titanate (PZT) thin films directily on copper surfaces, Master of scienc [149] Michael A.Todd; PaulP Donohue; Rex Watton; Dennis J Williams; Carl J Anthony; Mark G Blamire, (2002) High-performance ferroelectric and magnetoresistive materials for next-generation thermal detector arrays, Proc SPIE 4795, Materials for Infrared Detectors II, 88 [150] Minh D Nguyen, Thong Q Trinh, M Dekkers, E.P Houwman, Hung N Vu and Guus Rijnders, (2014) Effect of dopants on ferroelectric and piezoelectric properties of lead zirconate titanate thin films on Si substrates, Ceramics International, 40 (2014) 1013-1018 [151] Minh Nguyen Duc, (2010) Ferroelectric and piezoelectric properties of epitaxial PZT films and devices on silicon, Ph.D thesis University of Twente, Enschede, The Netherlands, 2010, p.101 134 [152] N A Pertsev and A G Zembilgotov, (1996) fe ee i hi : The e i i ụ men populations in epitaxial i wi h e e i e , J Appl Phys 80, 6401 [153] N A Pertsev, , A G Zembilgotov R Wazer, (1998) Effective dielectric and piezoelectric constants of thin polycrystalline ferroelectric films, Volume 40, Issue 12, pp 2002-2008, Phys Rev [154] N Izyumskaya, Y I Alivov, S J Cho, H Morkoỗ, H Lee, Y S Kang, Processing, structure, properties, and applications of PZT thin films, Crit Rev Solid State Mater Sci 32 (2007) 111-202 [155] N Yazdi, F Ayazi, and K Najafi., (1998) Micromachined inertial sensors, Proceedings of the IEEE 86 1640-1659 [156] Nava Setter, (2007) Electroceramic-Based MEMS: Fabrication-Technology and Applications, Springer Science-Bussiness Media, Newyork, USA [157] Nguyen Thi Quynh Chi, Pham Ngoc Thao, Nguyen Tai, Trinh Quang Thong, Nguyen Duc Minh and Vu Ngoc Hung, (2012) Improved ferroelectric and piezoelectric properties in PZT thin films with heterolayered structure, International Conference on Advanced Materials and Nanotechnology (ICAMN), 13-14/12/2012, Hanoi, Vietnam, pp.128-131 [158] Nguyen Thi Quynh Chi, Pham Ngoc Thao, Nguyen Tai, Trinh Quang Thong, Vu Thu Hien, Nguyen Duc Minh, Vu Ngoc Hung, (2013) Fabricattion and improvement of electrical properties of heterolayered lead zirconate titanate (PZT) thin films, Tp KH v CN cỏc Trng i hc K thut, s 95C, pp 171-176 [159] Noheda B., Cox D E., Shirane G., Gonzalo J A., Cross L E., Park S E (1999) A Monoclinic Ferroelectric Phase in the Pb(Zr1- xTix)O3 Solid Solution, Appl Phys Lett., 74, pp 2059 [160] Noheda B., Gonzalo J A, Guo R., Park S E., Cross L E., Cox D E., Shirane G (2000) The Monoclinic Phase In PZT: New Light on Morphotropic Phase Boundaries, AIP Conf Proc., 535, pp 304-313 [161] Noheda B.,Cox D E., Shirane G., Guo R., Jones B., Cross L.E (2000) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1- xTixO3, Phys Rev B, 63, p 014103 [162] O Auciello and A I Kingon,(1992) A critical view of physical vapor deposition techniques of the synthesis of ferroelectric thin Films IEEE 8-th International Symposium on Applications of Ferroelectrics, Proceedings, 1: 320 135 [163] O E Fesenko, R V Kolesova, and Yu G Sindeyev, (1978) The structural phase transition in lead zirconate in super-high electric Fields Ferroelectr., 20: 177, [164] O Lohse, D Bolten, M Grossmann, and R Waser, W Hartner, and G Schindler, (1998) Ferroelectric Random Access Memories: Fundamentals and Applications, Mater Res Soc Proc 267 Springer-Verlag, Berlin-Heidelberg-New York [165] Orlando Auciello, (1997) A critical comparative review of PZT and SBT - based science and technology for non-volatile ferroelectric memories, An International Journal, Volume 15, Issue 1-4, pages 211-220 [166] P Ari-Gur and L Benguigui, (1974) X-ray study of the PZT solid solutions near morphotropic phase transition Solid State Commun., 15: 1077 [167] P C Juan, J D Jiang, W C Shih, J Y M Lee, (2007) Effect of annealing temperature on electrical properties of metal-ferroelectric (PbZr0.53Ti0.47O3)insulator (ZrO2)- semiconductor (MFIS) thin-film capacitors, Microelectron Eng., 84, pp 2014- 2017 [168] P Gerber, U Bottger, and R Waser, (2006) ii i e e he e e i and elec e h i e ie f e zi e i e hi , J Appl Phys 100, 124105 [169] P K Clifford and D T Tuma, (1983) Characteristics of semiconductor gas sensors II Transient response to temperature change Sens Actuators B 3:255-281 [170] P K Larsen, G J M Dormans, D J Taylor, and P J v Veldhoven, (1994) Ferroelectric Properties and Fatigue of PbZr0.51Ti0.49O3 Thin Films of Varying Thickness: Blocking Layer Model, J Appl Phys., vol 76, pp 2405, 1994 [171] P Muralt, (2000) Ferroelectric thin films for micro-sensors and actuators: a review, J Micromech Microeng 10, pp 136146 [172] P Muralt, (2002) PZT thin films for microsensors and actuators: Where we stand?, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, Vol.47, Iss 4, pp 903 - 915 [173] Pham Ngoc Thao, (2013) optimization of fabrication parameters of Barium-doped Pb(Zr0.52Ti0.48)O3 thin films on TiN/Si substrates using pulsed laze deposition, mater thesis of science material science, ITIMS, University of science and Technology, HN [174] Pham Ngoc Thao, Nguyen Tai, Nguyen Thi Quynh Chi, Vu Thu Hien, Nguyen Duc Minh* and Vu Ngoc Hung, (2013) Effect of dopants on the properties of ferroelectric PZT thin-films capacitors, Journal of science & technology No 95 2013 Proceedings of IWNA 2013, the 4th International workshop on Nanotechnology and application 136 [175] Q Cui, C Liu, X F Zha, (2007) Study on a piezoelectric micropump for the controlled drug delivery system, Microfluid Nanofluid 3, 377-390 [176] R Bittner, K Humer, H W Weber, K Kundzins, A Sternberg, D A Lesnyh, D V Kulikov, and Y V Trushin (2004) Oxygen vacancy defects in antiferroelectric PbZrO3 thin films heterostructures after neutron irradiation J Appl Phys., 96(6): 3239 [177] R Bouregba and G Poullain, (2003) Computation of the polarization due to the ferroelectric layer in a stacked capacitor from SawyerTower hysteresis measurements,J Appl Phys., vol 93, pp 522 [178] R Bouregba, N Sama, C Soyer and D Remiens, Analysis of size effects in Pb(Zr0.54Ti0.46)O3 thin film capacitors with platinum and LaNiO3 conducting oxide electrodes, J Appl Phys 106 (2009) 044101 [179] R Dat, D J Lichtenwalner, O Auciello, and A I Kingon, (1994) The metalorganic CVD of lanthanunm nickelate electrodes for use in ferroelectric devices, Appl Phys Lett., vol 64, pp 2673 [180] R E Newnham, (1975) Structure-Property Relations, Springer-Verlag, New York [181] R Ramesh, A Inam, W K Cham, B Wilkens, K Myers, K Remschnig, D L Hart, and J M Tarascon, (1991) Epitaxial cuprate superconductor/ferroelectric heterostructures Science, 252: 944 [182] R Ramesh, H Gilchrist, T Sands, V G Keramidas, R Haakenaasen, and D.K Fork, (1993) FerroelectricLa-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O heterostructures on silicon via template growth, Appl Phys Lett 63, 3592 [183] R Ramesh,W K Chan, B.Wilkens, H Gilchrist, T Sands, J.M Tarascon, D K Fork, J Lee, and A Safari, (1992) Fatigue and retention in ferroelectric Y-Ba-CuO/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures, Appl Phys Lett 61, 1537 [184] R W Whatmore, (1999) Ferroelectrics, microsystems and nanotechnology Ferroelectric, 225: 179, 1999 [185] S B Majumder, B Roy, R.S Katiyar, S.B Krupanidhi, (2001) Effect of axepto and donor dopants on polarization components of lead zirconate titanate thin films, Applied Physics Letters 79 239242 [186] S B.Majumder, B.Roy, R.S.Katiyar, (2001) Effect of Nd doping on the dielectric and ferroelectric characteristics of sol-gel derived lead zirconate titanate (53/47) thin films, J.Appl.Phys 90, 2975 [187] S Buhlmann, B Dwir, J Baborovski, and P.Muralt, (2002) Size effect in mesoscopic epitaxial ferroelectric structures: Increase of piezoelectric response with decreasing feature size, Appl Phys Lett.80, 3195 137 [188] S D Bernstein, T Y Wang, Y Kisler, and R W Tustison, (1993) Fatigue of ferroelectric PbZrxTiyO3 capacitors with Ru and RuOX electrodes, J Mater Res 8, 12 [189] S D Berstein, Y Kisler, J M Wahl, S E Bernacki, and S R Collins, (1992) ffe f i hi e P T hi i e ie , Mater Res Soc Symp Proc 243, 373 [190] S Dohn, W Svendsen, A Boisen and O Hansen, (2007) Mass and position determination of attached particles on cantilever based mass sensors, Rev Sci Instrum 78, 103303 [191] S H Bae, K B Jeon, and B M Jin, (2005) A study of enhanced memory effect in PZ/PZT multilayers thin Films (in PZ/PZT series sequences) prepared by sol-gel technique Ferroelectr., 398: [192] S -H Kim, D.-J Kim, J Hong, S Streiffer, and A Kingon, (1999) Ghi ụ e and Fatigue Properties of Chemical Solution Derived Pb1-xLax(ZryTi1y)1x/4O3 Thin Films, J Mater Res 14 (1999), 1371 [193] S H Kim, J.G Hong, J C Gunter, S.K Streiffer, and A I Kingon, (1998) Ferroelectric Thin Films VI, Mater Res Soc Symp Proc 493, Warrendale, PA, 131 [194] S R Sangawar, B Praveenkumar, H.H Kumar, D.K Kharat, (2011) Effect of Fe and FeBa substitution on the piezoelectric and dielectric properties of lead zirconate titanate ceramics, Mater Science and Engineering B 176, 242 [195] S Sherrit, H D Wiederick, B K Mukherjee, M Sayer, (1997) An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode, J Phys D: Appl Phys 30 2354-2363 [196] S Yokoyama, Y Honda, H Morioka, S Okamoto, H Funakubo, T Iijima, H Matsuda, K Saito, T Yamamoto, H Okino, O Sakata, and S Kimura, (2005) e e e e fee i e ie fe i i P ( ,Ti)O hi orientation and Zr/(Zr+Ti) ratio, J Appl Phys 98, 094106 [197] S Zurn, M Hsieh, G Smith, D Markus, M Zang, G Hughes, Y Nam, M Arik, D Polla, Fabrication and structural characterization of a resonant frequency PZT microcantilever, Smart Mater Struct 10 (2001) 252-263 [198] Sakaki C., Newalkar B., Komarneni S., Uchino K (2001), Grain Size Dependence of High Power Piezoelectric Characteristics in Nb Doped Lead Zirconate Titanate Oxyde Ceramics, Jpn J Appl Phys, 40, pp 6907-6920 [199] Sama N, Herdier R, Jenkins D, Soyer C, Remiens D, Detalle M and Bouregba R (2008) On the Influence of the Top and Bottom Electrodes A Comparative Study Between Pt and LNO Electrodes for PZT Thin Films, J Cryst Growth 310 3299 138 [200] Singh A K., Mishra S K., Pandey D., Yoon S., Baik S., Shin N (2008) Origin of High Piezoelectric Response of Pb(ZrxTi1-x)O3 at the Morphotropic Phase Boundary: Role of Elastic Instability, Applied Physics Letters, 92(2), ID:022910 (3 pages) [201] Susanne Hoffmann-Eifert, Dieter Richter, Susan Trolier-Mc Kinstry, (2012) Dielectric, Ferroelectric, and Optical Properties 12 [202] Susanne Hoffmann-Eifert, Peter Grỹnberg Institute & JARA-FIT, Forschungszentrum Jỹlich, Germany; Dieter Richter, Jỹlich Centre for Neutron Science & Institute for Complex Systems,Forschungszentrum Jỹlich, Germany; Susan Trolier-Mc Kinstry, MATSE Department, Pennsylvania State University, USA, (2012) Dielectric, Ferroelectric, and Optical Properties 12 NE3rd 12.book Seite 33 Dienstag, 14 [203] Suzuki H, Miwa Y, Naoe T, Miyazaki H, Ota T, Fuji M and Takahashi M, (2006) Orientation Control and Electrical Properties of PZT/LNO Capacitor Through Chemical Solution Deposition, J of the European Ceramic Society 26 1953-195 [204] T Haccart, D Remiens, E Cattan, (2003) Substitution of Nb doping on the structural, microstructural and electrical properties in PZT films, Thin Solid Films 423, 235242 [205] T Hata, S Kawagoe, W Zhang, K Sasaki and Y Yoshioka, (1998) Proposal of new mixture target for PZT thin films by reactive sputtering, Vacuum 51 665-671 [206] T J Yang, V Gopalan P J Swart, and U Mohideen, (1999) Direct Observation of Pi i g wi g f Si g e Fe ee i ụ e W , Appl Phys Lett 82 4106 [207] T Kobayashi, M Ichiki, R Kondou, K Nakamura, R Maeda, (2007) Degradation in the ferroelectric and piezoelectric properties of Pb(Zr,Ti)O3 thin films derived from a MEMS microfabrication process, J Micromech Microeng 17, 1238-1241 [208] T Kumazawa, Y Kumagai, H Miura, M Kitano, K Kushida, (1998) Effect of external stress on polarization in ferroelectric thin films, Appl Phys Lett., vol 72, No 5, pp 608-610 [209] T M Kamel, R Elfrink, M Renaud, D Hohlfeld, M Goedbloed, C de Nooijer, M Jambunathan and R van Schaijk, (2010) Modeling and characterization of MEMS-based piezoelectric harvesting devices, J Micromech Microeng 20 105023 [210] T Morita, Y Wagatsuma, Y Cho, H Morioka, H Funakubo and N Setter, (2004) Ferroelectric properties of an epitaxial lead zirconate titanate thin film deposited 139 by a hydrothermal method below the Curie temperature, Appl Phys Lett 84 5094-5096 [211] T Nakamura, Y.Nakao, A.Kamisawa, and H.Takasu, (1994) Preparation of P ( ,Ti)O hi ee e i i g I O2, Appl Phys Lett 65, 1522 [212] T Nakamura,Y.Nakao,A.Kamisawa, and H.Takasu, (1994) Preparation of Pb(Zr,Ti)O3 hi I I O2 electrodes, Jpn J Appl Phys 33, 5207 [213] T Oikawa, M Aratani, H Funukubo, K Saito, and M.Mizuhira, (2004) Composition and orientation dependence of electrical properties of epitaxial Pb(Zr1-xTix)O3 hi g w i g e g i he i e ii , J Appl Phys 95, 3111 [214] T P Burg, A R Mirza, N Milovic, C H Tsau, G A Popescu, J S Foster and S R Manalis, (2006) Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection, J Microelectromech Syst 15, 1466-1476 [215] T P Burg, M Godin, S M Knudsen, W Shen, G Carlson, J S Foster, K Babcock and S R Manalis, (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid, Nature 446, 1066-1069 [216] T Schneller and R Waser, (2007) Chemical modifications of Pb(Zr0.3,Ti0.7)O3 precursor solutions and their influence on the morphological and electrical properties of the resulting thin films, J Sol-Gel Sci Technol 42 337-352 [217] T Tuchiya, T Itoh, G Sasaki, T Suga, (1996) Preparation and Properties of Piezoelectric Lead Zirconate Titanate Thin Films for Microsensors and Microactuators by Sol-Gel Processing, J Ceram Soc Jpn 104, 159-163 [218] T Tybel, C H Ahn, and J.-M Triscone, (1999) Ferroelectricity in thin perovskite , Appl Phys Lett 75, 856 [219] T Yamamoto, (1998) Crystallographic, dielectric and piezoelectric properties of PbZrO3-PbTiO3 system by phenomenological thermodynamics Jpn J Appl Phys., 37: 6041 [220] T Yu, Y -F Chen, Z -G Liu, S -B Xiong, L Sun, X -Y Chen, L -J Shi and N B Ming, (1996) Epitaxial Pb(Zr0.53Ti0.47)O3/LaNiO3 heterostructures on single crystal substrates, Appl Phys Lett 69, 2092-2094 [221] Tagantsev A K, Landivar M, Colla E, Brooks K G and Setter N (1995) Depletion, depolarizing effects and switching in ferroelectric thin filmsScience and Technology of Electroceramic Thin Filmsed, O Auciello and R Waser (Boston, MA: Kluwer) p 301 140 [222] Tagantsev A K, Pawlaczyk C, (1994) Built-in electric field assisted nucleation and coercive fields in ferroelectric thin films Integr Ferroelectric, Brooks K and Setter N, Integrated Ferroelectrics: An International Journal, Volume 4, Issue [223] Tawidjaja, C.H Sim, J Wang, (2007) Ferroelectric and dielectric behavior of heterolayered PZT thin films, J Appl Phys., 102, pp 124102 [224] U Robels and G Arlt, (1993) ụ e w i g i fe ee i ie i of defects, J Appl Phys 73, 3454-3460 [225] V Nagarajan, C S Ganpule, B Nagaraj, S Aggarwal, S P.Alpay, A L Roytburd, E D.Williams, and R Ramesh, (1999) Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3(90%)PbTiO3( 0%) e hi , Appl Phys Lett 75, 4183 [226] V Nagarajan, I G Jenkins, S P Alpay, H Li, S Aggarwal,L Salamanca-Riba, A L Roytburd, and R Ramesh, (1999) Thickness dependence of structural and electrical properties in epitaxial lead zirc e i e , J Appl Phys 86, 595 [227] V Yu Topolov, A V Turik, O E Fesenko, and V V Eremkin (1995) Mechanical stresses and three-phase states in perovskite-type ferroelectrics Ferroelectr.,Lett Sect., 20: 19 [228] Von R E Newnham, (1975) Crystal Chemistry of Non-Metallic Materials Auflage, Structure-property relations Band Springer-Verlag, Berlin- Heidelberg-New York., 234 Seiten, 92 Bilder, gebunden 72, DM [229] W A Brantley, (1973) Calculated elastic constants for stress problems associated with semiconductor devices, J Appl Phys 44 534-535 [230] W Cao and L E Cross, (1991) Theory of tetragonal twin structures in ferroelectric perovskite with a first-order phase transition, Phys Rev B44, [231] W H King, (1964) Piezoelectric sorption detector, Anal Chem 36 1735-1739 [232] W L Warren, B a Tuttle and D Dimos, (1995) Ferroelectric fatigue in perovskite oxides Appl Phys Lett 67 [10] 1426 [233] W L Warren, D Dimos, B.A Tuttle, R.D Nasby, G.E Pike, (1994) Electronic ụ men pinning in Pb(Zr,Ti)O3thin films and its role in fatigue, Applied Physics Letters 65 10181020 [234] Walter Heywang, Karl Lubitz, Wolfram Wersing, Editors, (2008) Piezoelectricity, evolution and Future of a Technology, Springer [235] Wang Y K, Tseng T Y and Lin P, (2002) Enhanced ferroelectric properties of Pb(Zr 0.53Ti 0.47)O3 thin films on SrRuO3 / Ru/SiO2 / Si substrates, Appl Phys Lett 80 3790 141 [236] Waser R., Bửttger U., Tiedke S (2005), Polar Oxides: Properties, Characterization and Imaging, Wiley-VCH Verlag, Weinheim, Germany [237] X Du, J.Zheng,U.Belegundu, and K.Uchino, (1998) Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near themorphotropic phase boundary, Appl Phys Lett 72, 2421 [238] X Gu, (2007) High quality molecular beam epitaxy growth and characterization of lead titanate zirconate based complex-oxides, PhD thesis,Virginia Commonwealth University, Richmond, Virginia, USA [239] X J Meng, J.L Sun, J Yu, L.X Bo, C.P Jiang, Q Sun, S.L Guo, J.H Chu, (2001) Changes in the interface capacitance for fatigued lead-zirconate-titanate capacitors, Appl Phys Lett., 78, pp 2548-2550 [240] Xiao-hong Du, Jiehui Zheng, Uma Belegundu, and Kenji Uchino, (1998) Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary, Appl Phys Lett 72 [241] Xie J, Hu M, Ling S F and Du H, (2006) Monitoring structural integrity using a piezoelectric inertial actuator cum sensor, Sensors and Actuators A 126 182 [242] Xu Y (1991) Ferroelectric materials and their applications, Elsevier Science Publisher, North Holland, Tokyo-Paris-New York [243] Y B Jeon, R Sood, J h Jeong, S G Kim, (2005) MEMS power generator with transverse mode thin film PZT, Sensors and Actuators A 122 16-22 [244] Y -C Chen, Y.-M Sun, and J.-Y Gan, (2004) Improved fatigue properties of lead zi e i e e ge -implanted platinum electrodes, Thin Solid Films 460, 25 [245] Y -C Hsu, C.-C Wu, C -C Lee, G Z Cao and I Y Shen, (2004) Demonstration and characterization of PZT thin-film sensors and actuators for meso- and microstructures, Sens Act A: Phys 116 369-377 [246] Y Ishibashi and M Iwata (1999) Theory of morphotropic phase boundary in solidsolution systems of perovskite-type oxide ferroelectrics: Elastic properties Jpn J Appl Phys., 38: 1454, [247] Y L Li, S Y Hu, and L Q Chen, (2005) Fe 001 P Ti O e i i hi ee fatigue properties of perovskite Pb(Zr,Ti)O3 hi 142 ụ e h gie f , J Appl Phys 97, 034112 (1-7) [248] Y Masuda and T Nozaka, (2003) The i e e f 42, 5941 i i e ee e , Jpn J Appl Phys Part [249] Y Otani, S Okamura and T Shiosaki, (2004) Recent developments on MOCVD of ferroelectric thin films, J Electroceram 13, 15-22 [250] Z.+H Zhou, J.M Xue, W.Z Li, J Wang, H Zhu, J.M Miao, (2004) Heterolayered lead zirconate titanate thin films of giant polarization, J Appl Phys., 96 (2004), pp 5706-5711 [251] Zhu Chen, Chentao Yang, Bo Li, Mingxia Sun, Bangchao Yang, (2005) Preferred orientation controlling of PZT (52-48) thin films prepared by sol- gel process, Journal of Crystal Growth 258, 627-632 143 144 [...]... hiện nay ở Việt Nam Tuy nhiên nhược điểm của phương pháp n y là mật độ kết khối thấp và màng thường bị nứt g y trong quá trình chế tạo 1 Trong luận án n y, màng sắt điện – áp điện PZT đã được chế tạo trên đế silic bằng phương pháp quay phủ sol-gel Quy trình công nghệ chế tạo màng PZT đã được tối ưu hóa, trên cơ sở kế thừa và phát triển các kết quả của các nghiên cứu trước, nhằm thu được các màng có chất. .. chuyển của thanh rung áp điện với màng mỏng PZT được chế tạo bằng phương pháp quay phủ sol-gel 105 5.18 Ảnh hưởng của chiều dài đến hệ số áp điện ngang (d31,f) của thanh rung áp điện trên cơ sở màng mỏng PZT chế tạo bằng phương pháp quay phủ solgel Chiều rộng của các thanh rung là 100 µm 107 5.19 Sự phụ thuộc của hệ số phẩm chất Q vào chiều dài của thanh rung áp điện trên cơ sở màng mỏng PZT chế tạo. .. (phương pháp hóa học) có chất lượng tốt và độ lặp lại cao, cho phép thực hiện các nghiên cứu về tính chất và chế tạo linh kiện; (2) Khảo sát ảnh hưởng của nhiệt độ ủ, chiều d y, điện cực, cấu trúc dị lớp, pha tạp và thành phần của màng lên các tính chất sắt điện và áp điện, nhằm mục đích cải thiện chất lượng của màng; (3) Thiết kế, chế tạo và khảo sát các tính chất của các linh kiện cảm biến khối lượng... một thế điện áp nội tại lớp tiếp x c đã làm tăng khả năng quay của các domain sắt điện Màng PZT sau đó được sử dụng trong việc chế tạo các linh kiện cảm biến khối lượng trên cơ sở các thanh rung áp điện Thanh rung áp điện, với kích thước micro-m t được chế tạo bằng phương pháp quang khắc, bao gồm hai phần: phần dao động (điện cực /màng PZT/ điện cực) được gắn kết lên trên thanh rung silic (d y 10 micro-mét,... tạo màng áp điện PZT với chất lượng cao bằng phương pháp quay phủ sol-gel o Tích hợp màng PZT vào thanh rung silic nhằm chế tạo các linh kiện cảm biến với kích thước micro-mét o Định hướng ứng dụng của linh kiện cảm biến trong việc phát hiện các hợp chất cần phân tích trong l nh vực y - sinh học Luận án được nghiên cứu bằng phương pháp thực nghiệm, kết hợp với phân tích số liệu dựa trên các kết quả thực... môi – điện áp và (b) hằng số điện môi, của màng mỏng đa lớp PZT với chiều d y khác nhau 66 3.12 (a) Giản đồ pha và (b) Cấu tr c tinh thể dạng tứ giác và trực thoi của vật liệu sắt điện PZT 67 3.13 Sự phụ thuộc giữa hệ số áp điện (a) và hằng số điện môi (b) vào thành phần pha và định hướng pha của tinh thể vật liệu sắt điện – áp điện PZT 68 3.14 Định hướng của đô men sắt điện dưới tác dụng của điện áp. .. cơ sở , t y thuộc vào các y u cầu ứng dụng khác nhau; (4) Định hướng nghiên cứu ứng dụng của các linh kiện cảm biến áp điện trong l nh vực y sinh học B ụ ủ Luận án được trình b y trong 5 chương, 121 trang bao gồm 111 hình vẽ và đồ thị, 8 bảng số liệu Cụ thể cấu trúc của luận án như sau: M : Mục đích và lý do chọn vật liệu sắt điện -áp điện Pb(ZrxTi1-x)O3 dạng màng và cấu tr c linh kiện cảm biến khối... sở lý thuyết C ư : Công nghệ chế tạo và các phương pháp nghiên cứu C ư : Nghiên cứu tính chất của màng mỏng sol-gel PZT C ư : Nghiên cứu ảnh hưởng của pha tạp Fe3+ và Nb5+ đến tính chất của màng PZT C ư P 5: Nghiên cứu ứng dụng chế tạo linh kiện piezoMEMS : Tổng kết và tóm tắt các kết quả quan trọng đã đạt được trong quá trình nghiên cứu Cuối cùng là b và ụ rì ả 3 ê ã ượ CHƯƠNG CƠ SỞ LÝ THUYẾT MEMS... quốc tế ISI) Các kết 2 quả được trình b y từ chương 3 đến chương 5 Việc chế tạo thành công linh kiện cảm biến khối lượng với kích thước micro-m t trên cơ sở màng áp điện PZT sẽ gi p cho việc triển khai nghiên cứu phát hiện các hợp chất sinh học, đặc biệt là các phân tử chất g y ra bệnh ung thư ở người u Các vấn đề mới đặt ra trong nghiên cứu n y là: (1) Chế tạo màng PZT bằng phương pháp quay phủ sol-gel... lượng với độ ổn định cao Màng sau khi chế tạo có mật độ kết khối cao và không bị nứt g y Việc cải thiện các tính chất sắt điện và áp điện của màng được nghiên cứu thông qua việc chế tạo màng với cấu trúc dị lớp (các lớp màng PZT có thành phần khác nhau được quay phủ xen kẽ vào nhau) Nguyên nhân là do ảnh hưởng của lớp tiếp xúc sắt điện – sắt điện (với thành phần khác nhau), ứng suất kéo trong cấu trúc

Ngày đăng: 10/05/2016, 17:00

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan