Nghiên cứu đánh giá hiệu quả xử lý nước thải dệt nhuộm bằng vật liệu nanotitandioxit pha tạp

145 625 0
Nghiên cứu đánh giá hiệu quả xử lý nước thải dệt nhuộm bằng vật liệu nanotitandioxit pha tạp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi v khụng trựng lp vi bt k cụng trỡnh khoa hc no khỏc Cỏc s liu, kt qu nờu lun ỏn l trung thc v cha s dng bo v mt hc v no, cha c cụng b bt k mt cụng trỡnh nghiờn cu no H Ni, thỏng 04 nm 2016 Tỏc gi lun ỏn Nguyn Th Thu Trang LI CM N Tụi xin by t lũng bit n chõn thnh v sõu sc n th giỏo viờn hng dn, TS Nguyn Minh Tõn v PGS.TS Nguyn Hng Khỏnh, ó cho tụi nhng ch dn quý bỏu v phng phỏp lun v to mi iu kin thun li giỳp tụi hon thnh bn Lun ỏn ny Tụi cng vụ cựng bit n PGS.TS Lờ Th Hoi Nam ó tn tỡnh ch dn v giỳp tụi v khoa hc v nh hng nghiờn cu sut quỏ trỡnh tụi thc hin Lun ỏn Tụi xin chõn thnh cm n B Khoa hc v Cụng ngh (Nhim v hp tỏc quc t v khoa hc v cụng ngh theo ngh nh th, mó s ti: 04/2012/H-NT) ó h tr kinh phớ cho vic thc hin Lun ỏn Tụi xin chõn thnh cm n Lónh o v cỏc bn ng nghip phũng Gii phỏp cụng ngh ci thin mụi trng Vin Cụng ngh mụi trng v phũng Húa hc xanh Vin Húa hc ó to iu kin v mi mt v úng gúp cỏc ý kin quý bỏu v chuyờn mụn sut quỏ trỡnh tụi thc hin v bo v Lun ỏn Tụi cng xin chõn thnh cm n Vin nghiờn cu v phỏt trin ng dng cỏc hp cht thiờn nhiờn (INAPRO) Trng i hc Bỏch Khoa H Ni v GS.TS Gianaurelio Cuniberti - B mụn Khoa hc Vt liu v k thut nano - Vin Khoa hc Vt liu Trng i hc Tng hp K thut Dresden (c) ó to iu kin tụi cú c hi c hc v lm vic ti Vin Khoa hc Vt liu Trng i hc Tng hp K thut Dresden Tụi cng xin gi li cm n ti TS Klaus Kuehn v cỏc ng nghip vỡ s giỳp nhit tỡnh v nhng ý kin úng gúp quý giỏ v khoa hc thi gian tụi lm vic ti c Tụi xin trõn trng cm n Ban Lónh o v b phn o to sau i hc Vin Cụng ngh mụi trng ó giỳp tụi hon thnh cỏc hc phn ca Lun ỏn v mi th tc cn thit Cui cựng tụi xin by t li cm n sõu sc nht n gia ỡnh, ngi thõn ó luụn chia s, ng viờn tinh thn v l ngun c v, giỳp tụi vt qua mi khú khn sut quỏ trỡnh thc hin Lun ỏn i MC LC MC LC I DANH MC CH VIT TT III DANH MC HèNH V DANH MC BNG IX M U CHNG TNG QUAN 1.1 TNG QUAN V NC THI DT NHUM CễNG NGHIP 1.1.1 Cỏc ngun phỏt sinh nc thi v c tớnh ụ nhim ca nc thi dt nhum cụng nghip 1.1.2 Phng phỏp x lý nc thi dt nhum cụng nghip 10 1.2 TNG QUAN V X Lí NC THI DT NHUM BNG VT LIU NANO TITAN IOXIT 17 1.2.1 Gii thiu chung v vt liu TiO2 17 1.2.2 Cỏc cht mang nano titan ioxit 26 1.2.3 ng dng nano titan ioxit x lý nc thi dt nhum 36 CHNG PHNG PHP NGHIấN CU 43 2.1 I TNG V NI DUNG NGHIấN CU 43 2.1.1 i tng nghiờn cu 43 2.1.2 Ni dung nghiờn cu 43 2.2 PHNG PHP THC NGHIM 45 2.2.1 Xõy dng qui trỡnh tng hp vt liu xỳc tỏc 45 2.2.2 ỏnh giỏ hot tớnh quang xỳc tỏc phn ng phõn hy thuc nhum 49 2.3 PHNG PHP PHN TCH 54 2.3.1 Cỏc phng phỏp nghiờn cu cu trỳc vt liu 54 2.3.2 Cỏc phng phỏp phõn tớch cht lng nc thi dt nhum trc v sau x lý 58 2.4 PHNG PHP X Lí S LIU 58 ii 2.4.1 Xỏc nh hng s tc phn ng 58 2.4.2 ỏnh giỏ hiu qu x lý 59 CHNG KT QU V THO LUN 60 3.1 C TRNG CU TRC TINH TH CA VT LIU XC TC 60 3.1.1 Vt liu xỳc tỏc dng bt 60 3.1.2 Vt liu xỳc tỏc dng lp ph 75 3.2 TNH CHT QUANG XC TC CA NANO TIO2 PHA TP NG DNG TRONG X Lí NC THI DT NHUM 89 3.2.1 Hot tớnh quang xỳc tỏc x lý metyl da cam v metylen xanh 89 3.2.2 ỏnh giỏ hiu qu x lý nc thi dt nhum 104 KT LUN V KIN NGH 118 NHNG ểNG GểP MI CA LUN N 121 DANH MC CC CễNG TRèNH CễNG B 122 TI LIU THAM KHO 124 iii DANH MC CH VIT TT Ch vit tt Tờn ting Vit Tờn ting Anh AC Than hot tớnh Activated Carbon AOPs Quỏ trỡnh oxy húa nõng cao Advanced Oxidation Processes Brunauer Emmett - Teller BET BOD Nhu cu oxy sinh hc Biochemical Oxygen Demand CB Vựng dn Conduction Band COD Nhu cu oxy húa hc Chemical Oxygen Demand CVD Lng ng pha hi húa hc Chemical Vapor Deposition Eg Nng lng vựng cm ca vt liu bỏn dn theo thuyt vựng EDX Ph tỏn sc nng lng tia X Energy Dispersive X ray Spectroscopy FESEM Kớnh hin vi in t quột phỏt x trng Field Emission Scanning Electron Microscopy IEP im ng in Isoelectric Point IR Ph hng ngoi Infrared Spectroscopy MB Metylen xanh Methylene Blue MO Metyl da cam Methyl Orange MQTB Mao qun trung bỡnh Mesopore NTDN Nc thi dt nhum ppi S l xp trờn mt n v chiu di inch SBET Din tớch b mt riờng tớnh theo phng phỏp BET TBOT Pore per inch Tetrabutyl octotitanat TEM Kớnh hin vi in t truyn qua Transmission electron microscopy TOC Tng cacbon hu c Total Organic Carbon iv TSS Tng cht rn l lng TTIP Total Suspended Solid Titanium tetraisopropoxit UV Vựng bc x t ngoi UltraViolet VB Vựng húa tr Valence Band XPS Ph quang in t tia X X-ray Photoelectron Spectroscopy XRD Gin nhiu x tia X X-ray Diffraction v DANH MC HèNH Hỡnh 1.1: S nguyờn lý cụng ngh dt nhum v cỏc ngun nc thi Hỡnh 1.2: Phn ng oxy húa kh trờn b mt TiO2 19 Hỡnh 1.3: Phõn b nng lng mt tri theo bc súng 20 Hỡnh 1.4: S minh quỏ trỡnh kớch hot v phõn tỏch in t v l trng ca cu trỳc d th TiO2/Cu2O di bc x ỏnh sỏng 23 Hỡnh 1.5: S mc nng lng ca TiO2 pha N 26 Hỡnh 1.6: Quỏ trỡnh phõn hy cht hu c ca composit TiO2/AC 29 Hỡnh 1.7: Xp polyuretan (A, B, D); cacbon cú cu trỳc xp (C) v SiC cú cu trỳc xp (E) .30 Hỡnh 1.8: Nhụm oxit cú cu trỳc xp (a) 10 ppi, (b) 15 ppi .32 Hỡnh 2.1: S nghiờn cu thc nghim 44 Hỡnh 2.2: S tng hp TiO2 pha ng bng phng phỏp sol-gel h tr siờu õm 46 Hỡnh 2.3: S tng hp TiO2 pha crụm/nit bng phng phỏp dung nhit 47 Hỡnh 2.4: Cu trỳc phõn t ca metyl da cam mụi trng axit v kim 50 Hỡnh 2.5: Cu trỳc phõn t ca metylen xanh 50 Hỡnh 2.6: H phn ng quang xỳc tỏc dng lp ph 52 Hỡnh 2.7: th biu din s bin thiờn ca P /V(Po - P) theo P/Po 56 Hỡnh 3.1: Gin nhiu x tia X ca vt liu TiO2 pha ng 61 Hỡnh 3.2: Ph hp th t ngoi kh kin ca vt liu TiO2 pha ng 63 Hỡnh 3.3: ng cong biu din mi quan h gia (h)2 v h ca vt liu TiO2 pha ng 63 Hỡnh 3.4: nh TEM ca cỏc mu vt liu TiO2 pha ng: (a) 0%; (b) 0,15%; (c) 2,5% 64 Hỡnh 3.5: Gin XPS ca mu vt liu TiO2 pha ng 0,15% Cu-TiO2 66 vi Hỡnh 3.6: Ph XPS phõn gii cao ca O1s (a), Ti2p (b), C1s (c) v Cu2p (d) ca mu vt liu TiO2 pha ng 0,15% Cu-TiO2 67 Hỡnh 3.7: Th zeta ca cỏc mu vt liu TiO2 pha ng .68 Hỡnh 3.8: Gin nhiu x tia X ca vt liu TiO2 pha crụm, nit 70 Hỡnh 3.9: Ph hp th t ngoi kh kin ca vt liu TiO2 pha crụm, nit 71 Hỡnh 3.10: ng cong biu din mi quan h gia (h)2 v h ca vt liu TiO2 pha crụm, nit 72 Hỡnh 3.11: nh TEM ca cỏc mu vt liu TiO2 khụng pha (a) v TiO2 pha crụm, nit Ti:N:Cr = 1:2:2% (b) .72 ỡnh 3.12: Gin XPS ca mu vt liu TiO2 pha crụm, nit Ti:N:Cr = 1:2:2% 73 Hỡnh 3.13: Ph XPS phõn gii cao ca O1s (a), Ti2p (b), C1s (c), N1s (d), Cr2p (e) ca mu vt liu TiO2 pha Cr, N Ti:N:Cr = 1:2:2% 74 Hỡnh 3.14: Gin XRD ca mng mng TiO2 pha ng ph trờn ht thy tinh 76 Hỡnh 3.15: nh FESEM ca mng mng 0,05% Cu-TiO2 ph lp trờn kớnh ch to bng phng phỏp sol-gel ph nhỳng: (a) B mt, (b) Mt ct ngang .77 Hỡnh 3.16: nh FESEM ca mng mng 0,05% Cu-TiO2 ph lp trờn kớnh ch to bng phng phỏp sol-gel ph nhỳng: (a) B mt, (b) Mt ct ngang .77 Hỡnh 3.17: nh FESEM ca mng mng 0,05% Cu-TiO2 ph lp trờn kớnh ch to bng phng phỏp sol-gel ph nhỳng: (a) B mt, (b) Mt ct ngang .78 Hỡnh 3.18: Gin XRD ca cỏc mu TiO2: Cr,N-TiO2 v Cr,N-TiO2/AC 79 Hỡnh 3.19: Ph UV-Vis rn ca ca cỏc mu TiO2: Cr,N-TiO2 v Cr,N-TiO2/AC 79 Hỡnh 3.20: nh FESEM ca mu Cu-TiO2/AC 80 Hỡnh 3.21: Ph EDX ca mu Cu- TiO2/AC (a) vựng mu trng; (b) vựng mu xỏm 81 Hỡnh 3.22: nh FESEM ca mu Cr,N-TiO2/AC .82 vii Hỡnh 3.23: Ph EDX ca mu Cr, N- TiO2/AC (b1) vựng mu trng (b1) v (b2) vựng mu xỏm 83 Hỡnh 3.24: Ph IR ca mu than hot tớnh cha ph (a) v mu Cr,N-TiO2/AC (b) 85 Hỡnh 3.25: Gin XRD ca mu TiO2 ph trờn xp polyuretan 86 Hỡnh 3.26: nh FESEM ca mu TiO2/polyuretan cỏc phõn gii khỏc 87 Hỡnh 3.27: Ph IR ca mu polyuretan (a) v TiO2 ph trờn xp polyuretan (b) .88 Hỡnh 3.28: Phn ng quang xỳc tỏc x lý MO bng vt liu xỳc tỏc 0,05% Cu-TiO2: (a) hiu qu x lý v (b) hng s tc phn ng loi mu MO .93 Hỡnh 3.29: Phn ng quang xỳc tỏc x lý MB bng vt liu xỳc tỏc 0,15% Cu-TiO2: (a) hiu qu x lý v (b) hng s tc phn ng loi mu MB 94 Hỡnh 3.30: Hiu qu x lý MO, MB ca cỏc vt liu ht thy tinh ph TiO2 sau thi gian phn ng 240 phỳt 100 Hỡnh 3.31: Hiu qu x lý MO, MB ca cỏc mu TiO2 pha ph trờn than hot tớnh: Cr,N-TiO2/AC, Cu-TiO2/AC v mu than hot tớnh khụng ph xỳc tỏc (AC) .102 Hỡnh 3.32: Hiu qu x lý MO v MB ca vt liu Cr,N-TiO2/PU sau thi gian phn ng 240 phỳt 103 Hỡnh 3.33: Hng s tc phn ng phõn hy mu MO, MB ca vt liu Cr,NTiO2/PU thay i xp ca vt liu .103 Hỡnh 3.34: Hiu qu x lý mu v COD sau 480 phỳt bc x t ngoi (UVA) v nhỡn thy (LED) thay i h s pha loóng nc thi u vo 105 Hỡnh 3.35: Hiu qu x lý mu v COD sau 480 phỳt bc x t ngoi (UVA) v nhỡn thy (LED) thay i hm lng xỳc tỏc 106 Hỡnh 3.36: Hiu qu x lý mu v COD sau 480 phỳt bc x t ngoi (UVA) v nhỡn thy (LED) thay i nhit phn ng 108 Hỡnh 3.37: Hiu qu x lý mu v COD sau 480 phỳt bc x t ngoi (UVA) v nhỡn thy (LED) 109 viii Hỡnh 3.38: Hiu qu x lý mu v COD sau 480 phỳt bc x t ngoi (UVA) v nhỡn thy (LED) thay i h s pha loóng nc thi u vo 110 Hỡnh 3.39: Hiu qu x lý mu v COD sau 480 phỳt bc x t ngoi (UVA) v nhỡn thy (LED) thay i lng xỳc tỏc 111 Hỡnh 3.40: Hiu qu x lý mu v COD sau 480 phỳt bc x t ngoi (UVA) v nhỡn thy (LED) thay i nhit phn ng 112 Hỡnh 3.41: Hiu qu x lý mu v COD sau 480 phỳt bc x t ngoi (UVA) v nhỡn thy (LED) thay i pH ca dung dch .114 Hỡnh 3.42: So sỏnh hiu qu x lý mu v COD sau 480 phỳt bc x t ngoi (UVA) v nhỡn thy (LED) s dng xỳc tỏc dng huyn phự v dng lp ph trờn than hot tớnh 115 Hỡnh 3.43: Hiu qu x lý mu v COD ca nc thi dt nhum sau cỏc ln tỏi s dng ca xỳc tỏc dng huyn phự di bc x t ngoi (UVA) v nhỡn thy (LED) 116 Hỡnh 3.44: Hiu qu x lý mu v COD ca nc thi dt nhum sau cỏc ln tỏi s dng ca xỳc tỏc dng lp ph di bc x t ngoi (UVA) v nhỡn thy (LED) 116 119 91% v 100% Hiu qu x lý MO ca mu Cr,N-TiO2/AC v Cu-TiO2/AC di bc x bng ỏnh sỏng thng t 86% v 44% Trong trng hp phõn hy MB, hiu qu x lý MB tt c cỏc trng hp u cao, t trờn 90% ó nghiờn cu ch to vt liu nano TiO2 pha ph trờn nn polyuretan nhit thp (100oC) Di iu kin bc x t ngoi, hiu qu x lý c hai loi thuc nhum (MO, MB 5mg/l, th tớch dung dch phn ng 15 mg/l, lng cht mang ph xỳc tỏc 0,2g) u cao t trờn 95% Trong ú di bc x nhỡn thy, hot tớnh quang xỳc tỏc ca vt liu ch bng khong 50% hot tớnh vựng t ngoi Khi tng xp ca vt liu t 10 ppi n 30 ppi, hng s tc tng 1,5 ln i vi phn ng phõn hy MO v tng gn ln i vi phn ng phõn hy MB Vt liu nano titan ioxit pha ng thi Cr, N dng bt hay ph trờn nn than hot tớnh cho hiu qu x lý nc thi dt nhum cao nht cỏc iu kin sau: h s pha loóng nc thi d = 10 (tng ng vi COD 783 mgO2/l, mu 142 Pt-Co), pH =3, nhit phn ng 60oC Trong cựng iu kin thớ nghim (d = 10, pH = 9, to = 30oC, xỳc tỏc tớnh theo TiO2 0,5 g/l, t = 480 phỳt), hiu qu x lý nc thi dt nhum i vi mu v COD ca xỳc tỏc dng huyn phự t 100% v 62% di bc x t ngoi v t 95% v 49% di bc x nhỡn thy, cao hn 14% n 20% so vi xỳc tỏc dng lp ph Sau ln s dng, hiu qu x lý mu v COD ca nc thi bng xỳc tỏc Cr,N-TiO2/AC l 68% v 30% di bc x t ngoi; 45% v 20% di bc x nhỡn thy KIN NGH Do khuụn kh nghiờn cu ca lun ỏn tin s cú hn, cỏc nghiờn cu ca lun ỏn mang tớnh cht l cỏc nghiờn cu c bn cú th ỏp dng cỏc kt qu ca lun ỏn vo thc t, cn thit phi cú nghiờn cu ton din v thit b phn ng phự hp vi tớnh cht v hỡnh thỏi hc ca vt liu xỳc tỏc quang húa ó ch to nhm mc ớch nõng cao hiu qu s dng xỳc tỏc Mt s cỏc ni dung nghiờn cu cn c 120 thc hin tip nhm mc ớch nõng cao hiu qu s dng xỳc tỏc v hon thin cụng ngh x lý nc thi dt nhum bng vt liu quang xỳc tỏc dng lp ph bao gm: - Nghiờn cu cỏc thụng s ti u v thit b nh cng ỏnh sỏng, kớch thc vt liu mang, iu kin khuy trn t ú a cỏc mụ hỡnh thit b phn ng phự hp vi tng i tng vt liu mang khỏc - Nghiờn cu cỏc yu t nh hng n kh nng tỏi s dng xỳc tỏc v cỏc iu kin tỏi sinh xỳc tỏc nhm nõng cao hiu qu s dng xỳc tỏc 121 NHNG ểNG GểP MI CA LUN N ó ch to vt liu polyuretan cú ph TiO2 pha ng thi crụm, nit nhit thp (100oC) v ỏnh giỏ hot tớnh quang xỳc tỏc ca vt liu ch to phn ng phõn hy MO, MB di bc x t ngoi v bc x nhỡn thy La chn v thc hin ph TiO2 pha ng, TiO2 pha crụm, nit lờn cỏc dng vt liu nn linh ng (than, polyuretan), trờn c s ú a cỏc cu hỡnh thit b phn ng quang xỳc tỏc khỏc ó ỏnh giỏ nh hng ca hm lng ng pha ti hiu qu x lý metyl da cam v metylen xanh cỏc mụi trng dung dch khỏc (axit, trung tớnh, kim) Kt qu l tin quan trng ng dng x lý nc thi dt nhum bng vt liu quang xỳc tỏc TiO2 s khỏc v bn cht thuc nhum cỏc dũng thi nhum khỏc ó xỏc nh c hiu qu x lý nc thi dt nhum thc ca vt liu TiO2 pha Cr, N dng huyn phự v dng lp ph trờn than hot tớnh ó khng nh khong nhit lm vic tt nht ca xỳc tỏc ó ch to l nhit cao (60oC), iu ny thớch hp x lý trc tip nc thi dt nhum sau cụng on nhum 122 DANH MC CC CễNG TRèNH CễNG B 1) Nguyen Thi Thu Trang, Fumiaki Amano, Nguyen Van Hieu, Tran Quang Vinh, Nguyen Hong Khanh, Nguyen Minh Tan and Le Thi Hoai Nam, Studies on characterization and evaluation of photocatalytic activities of metals doped TiO2 in degradation of dyes, Proceedings of the 4th International Workshop on Nanotechnology and Application, 14 16 November 2013, Vung Tau, Viet Nam, pp 405 410 2) Nguyn Th Thu Trang, Nguyn Vn Hiu, Trn Quang Vinh, Nguyn Hng Khỏnh, Phm Tun Linh, Nguyn Minh Tõn, Fumiaki Amano, Lờ Th Hoi Nam, Tng hp, c trng v ỏnh giỏ hot tớnh quang xỳc tỏc ca vt liu nano TiO2 bin tớnh tng hp bng phng phỏp sol gel h tr siờu õm, Tp Húa hc, T 51 (6ABC), tr 477-483, 2013 3) Nguyn Th Thu Trang, Nguyn Vn Hiu, Trn Quang Vinh, Nguyn Hng Khỏnh, Phm Tun Linh, Nguyn Minh Tõn, Lờ Th Hoi Nam, ỏnh giỏ hiu qu quang xỳc tỏc ca mng mng TiO2 i vi phn ng phõn hy metyl da cam, Tp Húa hc, s 51(6), tr 696-699, (2013) 4) Nguyen Thi Thu Trang, Tran Quang Vinh, Nguyen Hong Khanh, Nguyen Minh Tan, Le Thi Hoai Nam, Characterization and photocatalytic activity of Ag/TiO2 powder deposited TiO2 thin film, Proceedings of the 15th International Symposium on Eco-materials Processing and Design (ISBN 978-89-5708-236-2), 12 15 January 2014, Hanoi, Viet Nam, pp 96 101 5) Nguyen Thi Thu Trang, Nguyen Thi Nhiem, Tran Quang Vinh, Nguyen Hong Khanh, Pham Tuan Linh, Nguyen Minh Tan, Le Thi Hoai Nam, Phototcatalytic performance of Cr, N co-doped TiO2 under visible light irradiation, Proceedings of sciencetific conference on oil refining and petrochemical engineering (ISBN 978-604-911-943-9), 12 October 2014, Hanoi, Viet Nam, pp 41 46 6) Trang T.T Nguyen, Vinh Q Tran, Khanh H Nguyen, Tan M Nguyen, Nam T.H Le, Fabrication and Photocatalytic Activity of Ag/TiO2 Powder Immobilized TiO2 Thin Film in Methyl Orange Mineralization, International Journal of Research in Chemistry and Environment, Vol Issue (1-8) (2015) 123 7) Trang Nguyen Thi Thu, Nhiem Nguyen Thi, Vinh Tran Quang, Khanh Nguyen Hong, Tan Nguyen Minh & Nam Le Thi Hoai, Synthesis, characterisation, and effect of pH on degradation of dyes of copperdoped TiO2, Journal of Experimental Nanoscience, DOI: 10.1080/17458080.2015.1053541 8) Nguyen Thi Thu Trang, Nguyen Thi Nhiem, Tran Quang Vinh, Pham Tuan Linh, Nguyen Hong Khanh, Nguyen Minh Tan, Le Thi Hoai Nam, Photocatalytic activity of Cr, N co-doped TiO2 on activated carbon in the photodegradation of methyl orange, Journal of Science and Technology, Vol 53 (3A), pp.43 48 (2015) 124 TI LIU THAM KHO 10 11 12 13 14 S Malato, P Fernỏndez-Ibỏủez, M I Maldonado, J Blanco, W Gernjak (2009), "Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends", Catalysis Today, Vol 147(1), 1-59 X Chen, S.S Mao (2007), "Titanium dioxide nanomaterials: Synthesis, Properties, Modifications, and Applications", Chemical Reviews, Vol 107(7), 59 A.L Linsebigler, G Lu, J.T Yates (1995), "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results", Chemical Reviews, Vol 95, 735758 ng Trn Phũng, Trn Hiu Nhu (2006), "X lý nc cp v nc thi dt nhum" Nh xut bn khoa hc v k thut, H Ni Trn Vn Nhõn, Ngụ Th Nga (1999), "Giỏo trỡnh cụng ngh x lý nc thi" Nh xut bn khoa hc v k thut, H Ni Thnh Th Thng Thng (2006), "ỏnh giỏ hin trng ngnh cụng nghip dt nhum v xut xõy dng tiờu chun mụi trng nc thi ngnh dt nhum Vit Nam", Lun Thc s, Vin Khoa hc Cụng ngh mụi trng - i hc Bỏch khoa H Ni Cao Hu Trng, Hong Th Lnh (1995), "Húa hc thuc nhum" Nh xut bn khoa hc v k thut, H Ni R.M.S.R Mohamed, N Mt.Nanyan, N.A Rahman, N.M A, I Kutty, A.H.M Kassim (2014), "Colour removal of reactive dye from textile industrial astewater using different types of coagulants", Asian Journal of Applied Sciences Vol 2(5), 650 - 657 M.T Yagub, T.K Sen, S Afroze, H.M Ang (2014), "Dye and its removal from aqueous solution by adsorption: A review", Advances in Colloid and Interface Science, Vol 209, 172-184 Nguyn Hng Khỏnh (2005), "Tng cng nng lc bo v mụi trng cho mt s ngnh cụng nghip trng im Vit Nam", Vin Cụng ngh Mụi trng - Vin Hn Lõm khoa hc v cụng ngh Vit Nam Lờ Vn Cỏt (2007), "X lý nc thi giu hp cht nit v pht pho" Nh xut bn khoa hc t nhiờn v cụng ngh, H Ni Faisal Ibney Hai, Kazuo Yamamoto, Kensuke Fukushi (2007), "Hybrid treatment systems for dye wastewater", Critical Reviews in Environmental Science and Technology, Vol 37(4), 315-377 N Azbar, T Yonar, K Kestioglu (2004), "Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent", Chemosphere, Vol 55(1), 3543 S Ledakowicz, M Gonera (1999), "Optimisation of oxidants dose for combined chemical and biological treatment of textile wastewater", Water Research, Vol 33(11), 2511-2516 125 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 L Szpyrkowicz, C Juzzolino, S.N Kaul (2001), "A Comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent", Water Research, Vol 35(9), 2129-2136 C Wang, A Yediler, D Lienert, Z Wang, A Kettrup (2003), "Ozonation of an azo dye C.I Remazol Black and toxicological assessment of its oxidation products", Chemosphere, Vol 52(7), 1225-1232 S Gomes de Moraes, R Sanches Freire, N Durỏn (2000), "Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes", Chemosphere, Vol 40(4), 369-373 M Pộrez, F Torrades, X Domốnech, J Peral (2002), "Fenton and photo-Fenton oxidation of textile effluents", Water Research, Vol 36(11), 2703-2710 F Torrades, M Pộrez, H.D Mansilla, J Peral (2003), "Experimental design of Fenton and photo-Fenton reactions for the treatment of cellulose bleaching effluents", Chemosphere, Vol 53(10), 1211-1220 R Liu, H.M Chiu, C Shiau, R.Y Yeh, Y Hung (2007), "Degradation and sludge production of textile dyes by Fenton and photo-Fenton processes", Dyes and Pigments, Vol 73(1), 1-6 C.T Wang, W.L Chou, M.H Chung, Y.M Kuo (2010), "COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode", Desalination, Vol 253(13), 129-134 H.S El-Desoky, M.M Ghoneim, R El-Sheikh, N.M Zidan (2010), "Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electrogenerated Fenton's reagent", Journal of Hazardous Materials, Vol 175(13), 858865 K Hashimoto, H Irie, A Fujishima (2005), "TiO2 Photocatalysis: A Historical Overview and Future Prospects", Japanese Journal of Applied Physics, Vol 44(12), 8269-8285 R Cucitore, S Cangiano, L Cassar (2006), "High durability photocatalytic paving for reducing urban polluting agents", Google Patents M M Ballari, H.J.H Brouwers (2013), "Full scale demonstration of air-purifying pavement", Journal of Hazardous Materials, Vol 254255, 406-414 Nguyn Th Hu (2010), "Nghiờn cu x lý ụ nhim khụng khớ bng vt liu sn nano TiO2/apatite, TiO2/Al2O3, TiO2/bụng thch anh", Vin Cụng ngh Mụi trng, Vin Hn lõm Khoa hc v Cụng ngh Vit Nam Mc ỡnh Thit (2013), "Nghiờn cu tng hp vt liu quang xỳc tỏc nano h TiO2-CeO2 v thm dũ kh nng ng dng x lý mụi trng", Lun ỏn Tin s, i hc Khoa hc t nhiờn - i hc Quc gia H Ni Lờ Diờn Thõn (2013), "Nghiờn cu cỏc quỏ trỡnh iu ch v tớnh cht ca bt TiO2 kớch thc nanomet c bin tớnh bng N v Fe", Lun ỏn Tin s, i hc Khoa hc t nhiờn, i hc Quc gia H Ni Lờ Th Thanh Thỳy (2013), "Nghiờn cu bin tớnh TiO2 bng st v cacbon lm cht xỳc tỏc quang húa vựng kh kin x lý cỏc hp cht hu c bn mụi trng nc", Lun ỏn Tin s, Trng i hc Khoa hc t nhiờn, i hc Quc gia H Ni 126 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Nguyn Th Hng Phng (2014), "Nghiờn cu cụng ngh ch to nano TiO2 v ng dng to mng ph trờn vt liu gm s.", Lun ỏn Tin s, Trng i hc Bỏch Khoa H Ni Nguyn Th Anh (2013), "Nghiờn cu tng hp, c trng v mt s ng dng ca vt liu cha titan", Lun ỏn Tin s, Vin Húa hc - Vin Hn lõm Khoa hc v Cụng ngh Vit Nam Anh Tuan Vu, Quoc Tuan Nguyen, Thi Hai Linh Bui, Manh Cuong Tran, Tuyet Phuong Dang, Thi Kim Hoa Tran (2010), "Synthesis and characterization of TiO2 photocatalyst doped by transition metal ions (Fe3+, Cr3+ and V5+)", Advances in Natural Sciences: Nanoscience and nanotechnology Vol M.S Kim, J.G Chung (2001), "A study on the adsorption characteristics of orthophosphates on rutile-type titanium dioxide in aqueous solutions", Journal of colloid and interface science, Vol 233(1), 31-37 M Keshmiri, M Mohseni, T Troczynski (2004), "Development of novel TiO2 sol gel-derived composite and its photocatalytic activities for trichloroethylene oxidation", Applied Catalysis B: Environmental, Vol 53(4), 209-219 C.M Teh, A.R Mohamed (2011), "Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review", Journal of Alloys and Compounds, Vol 509(5), 1648-1660 H Lachheb, E Puzenat, A Houas, M Ksibi, E Elaloui, C Guillard, J Herrmann (2002), "Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania", Applied Catalysis B: Environmental, Vol 39(1), 75-90 Nguyn c Ngha (2007), "Húa hc nano: Cụng ngh nn v vt liu ngun" Nh xut bn khoa hc t nhiờn v cụng ngh, H Ni T.S Natarajan, M Thomas, K Natarajan, H.C Bajaj, R.J Tayade (2011), "Study on UV-LED/TiO2 process for degradation of Rhodamine B dye", Chemical Engineering Journal, Vol 169, 126-134 Trn Mnh Trớ (11/2011), "Quang xỳc tỏc nh ỏnh sỏng mt tri Gii phỏp cho mụi trng v nng lng bn vng ca th k 21", Hi ngh xỳc tỏc hp ph ton quc ln th 6, Hu D Beydoun, R Amal, G Low, S McEvoy (1999), "Role of nanoparticles in photocatalysis", Journal of Nanoparticle Research, Vol 1, 439-458 W Choi, A Termin, M.R Hoffmann (1994), "The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics", The Journal of Physical Chemistry, Vol 98(51), 1366913679 M.A Rauf, M.A Meetani, S Hisaindee (2011), "An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals", Desalination, Vol 276(13), 13-27 R Asahi, T Morikawa, T Ohwaki, K Aoki, Y Taga (2001), "Visible-light photocatalysis in nitrogen-doped titanium oxides", science, Vol 293(5528), 269271 127 44 45 46 47 48 49 50 51 52 53 54 55 56 57 K.Y Song, Y.T Kwon, G.J Choi, W.I Lee (1999), "Photocatalytic Activity of Cu/TiO2 with Oxidation State of Surface-loaded Copper", Bulletin of the Korean Chemical Society, Vol 20(8), 957-960 Y Zhang, L Ma, J Li, Y Yu (2007), "In Situ Fenton Reagent Generated from TiO2/Cu2O Composite Film: a New Way to Utilize TiO2 under Visible Light Irradiation", Environmental Science & Technology, Vol 41(17), 6264-6269 L Huang, F Peng, H Wang, H Yu, Z Li (2009), "Preparation and characterization of Cu2O/TiO2 nanonano heterostructure photocatalysts", Catalysis Communications, Vol 10(14), 1839-1843 K Wilke, H D Breuer (1999), "The influence of transition metal doping on the physical and photocatalytic properties of titania", Journal of Photochemistry and Photobiology A: Chemistry, Vol 121(1), 49-53 R Lúpez, R Gúmez, S Oros-Ruiz (2011), "Photophysical and photocatalytic properties of TiO2-Cr solgel prepared semiconductors", Catalysis Today, Vol 166(1), 159-165 S Sato (1986), "Photocatalytic activity of NOx-doped TiO2 in the visible light region", Chemical Physics Letters, Vol 123(1), 126-128 F Peng, L Cai, L Huang, H Yu, H Wang (2008), "Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method", journal of Physics and Chemistry of Solids, Vol 69(7), 1657-1664 M.S Wong, W.C Chu, D.S Sun, H.S Huang, J.H Chen, P.J Tsai, N.T Lin, M.S Yu, S.F Hsu, S.L Wang (2006), "Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens", Applied and environmental microbiology, Vol 72(9), 6111-6116 S Rehman, R Ullah, A.M Butt, N.D Gohar (2009), "Strategies of making TiO2 and ZnO visible light active", Journal of hazardous materials, Vol 170(2), 560569 Y Guo, X Zhang, W Weng, G Han (2007), "Structure and properties of nitrogendoped titanium dioxide thin films grown by atmospheric pressure chemical vapor deposition", Thin Solid Films, Vol 515(18), 7117-7121 C Di Valentin, E Finazzi, G Pacchioni, A Selloni, S Livraghi, M.C Paganini, E Giamello (2007), "N-doped TiO2: theory and experiment", Chemical Physics, Vol 339(1), 44-56 C Di Valentin, G Pacchioni, A Selloni, S Livraghi, E Giamello (2005), "Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations", The Journal of Physical Chemistry B, Vol 109(23), 11414-11419 J Zhang, Y Wu, M Xing, S.A.K Leghari, S Sajjad (2010), "Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides", Energy & Environmental Science, Vol 3(6), 715-726 G Balasubramanian, D.D D Dionysiou, M.T Suidan, I Baudin, J.M Lanộ (2004), "Evaluating the activities of immobilized TiO2 powder films for the 128 58 59 60 61 62 63 64 65 66 67 68 69 70 photocatalytic degradation of organic contaminants in water", Applied Catalysis B: Environmental, Vol 47, 73 - 84 H Fakhouri (2012), "Thin film deposition of pure and doped TiO2 by RF magnetron sputtering for visible light photocatalytic and optoelectronic application", THESE DE DOCTORAT, UPMC-Sorbonne Universitộs T Kanki, S Hamasaki, N Sano, A Toyoda, K Hirano (2005), "Water purification in a fluidized bed photocatalytic reactor using TiO2-coated ceramic particles", Chemical Engineering Journal, Vol 108(12), 155-160 D Robert, V Keller, N Keller, Immobilization of a semiconductor photocatalyst on solid supports: Methods, materials, and applications, Photocatalysis and water purification: From fundamentals to recent applications, P Pichat, Editor 2013, Wiley-VCH Verlag GmbH & Co KGaA: Boschstr 12, 69469 Weinheim, Germany B Zhu, L Zou (2009), "Trapping and decomposing of color compounds from recycled water by TiO2 coated activated carbon", Journal of Environmental Management, Vol 90(11), 3217-3225 K.Y Foo, B.H Hameed (2010), "Decontamination of textile wastewater via TiO2/activated carbon composite materials", Advances in Colloid and Interface Science, Vol 159(2), 130-143 X Wang, Y.i Liu, Z Hu, Y Chen, W Liu, G Zhao (2009), "Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities", Journal of Hazardous Materials, Vol 169(13), 1061-1067 Nguyn Th Bớch Lc, Cao Th H (2008), "Nghiờn cu kh nng phõn hy paranitrophenol cú mt TiO2 tm trờn than hot tớnh", Tp phõn tớch Húa, Lý v Sinh hc, Vol 13(1), 18-23 Tri Truong Huu, M Lacroix, Pham Huu Cuong, D Schweich, D Edouard (2009), "Towards a more realistic modeling of solid foam: Use of the pentagonal dodecahedron geometry", Chemical Engineering Science, Vol 64(24), 5131-5142 M Lacroix, P Nguyen, D Schweich, Pham Huu Cuong, S Savin-Poncet, D Edouard (2007), "Pressure drop measurements and modeling on SiC foams", Chemical Engineering Science, Vol 62(12), 3259-3267 G Plantard, F Correia, V Goetz (2011), "Kinetic and efficiency of TiO2-coated on foam or tissue and TiO2-suspension in a photocatalytic reactor applied to the degradation of the 2,4-dichlorophenol", Journal of Photochemistry and Photobiology A: Chemistry, Vol 222(1), 111-116 G Plantard, V Goetz, F Correia, J P Cambon (2011), "Importance of a medium's structure on photocatalysis: Using TiO2 coated foams", Solar Energy Materials and Solar Cells, Vol 95(8), 2437-2442 Z.Q Xiong, G.Q Zhang, L Xiong, L.P Fu, H.G Pan (2011), "Photocatalytic Inactivation of Chlorella by TiO2/Foam Nickel" S Zhu, X Yang, G.N Wang, L.L Zhang, H.F Zhu, M.X Huo (2011), "Facile preparation of P-25 films dip-coated nickel foam and high photocatalytic activity 129 71 72 73 74 75 76 77 78 79 80 81 82 83 for the degradation of quinoline and industrial wastewater", International Journal of Chemical Reactor Engineering, Vol 9(1) M Vargovỏ, G Plesch, U.F Vogt, M Zahoran, M Gorbỏr, K Jesenỏk (2011), "TiO2 thick films supported on reticulated macroporous Al2O3 foams and their photoactivity in phenol mineralization", Applied Surface Science, Vol 257(10), 4678-4684 Y Yao, T Ochiai, H Ishiguro, R Nakano, Y Kubota (2011), "Antibacterial performance of a novel photocatalytic-coated cordierite foam for use in air cleaners", Applied Catalysis B: Environmental, Vol 106(34), 592-599 S Josset, S Hajiesmaili, D Begin, D Edouard, Pham Huu Cuong, M.C Lett, N Keller, V Keller (2010), "UV-A photocatalytic treatment of Legionella pneumophila bacteria contaminated airflows through three-dimensional solid foam structured photocatalytic reactors", Journal of Hazardous Materials, Vol 175(13), 372-381 P Jain, T Pradeep (2005), "Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter", Biotechnol Bioeng, Vol 90(1), 59-63 J.C Yu, J Lin, D Lo, S.K Lam (2000), "Influence of thermal treatment on the adsorption of oxygen and photocatalytic activity of TiO2", Langmuir, Vol 16, 7304-7308 Nguyn Nng nh (2005), "Vt lý v k thut mng mng" Nh xut bn i hc Quc gia H Ni, C Y W Lin, D Channei, P Koshy, A Nakaruk, C C Sorrell (2012), "Effect of Fe doping on TiO2 films prepared by spin coating", Ceramics International, Vol 38(5), 3943-3946 A.M Gaur, R Joshi, M Kumar (2011), "Deposition of doped TiO2 thin film by sol gel technique and its characterization: A review", Proceedings of the World Congress on Engineering, London, U.K N.J Kim, Y.H La, S.H Im, B.K Ryu (2010), "Optical and structural properties of FeTiO2 thin films prepared by solgel dip coating", Thin Solid Films, Vol 518(24, Supplement), e156-e160 M Vishwasam, S.K Sharmab, K.N Raob, S Mohanb, K.V.A Gowdac, R.P.S Chakradhard (2009), "Optical, dielectric and morphological studies of solgel derived nanocrystalline TiO2 films", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol 74, 839 - 842 H Tada, M Tanaka (1997), "Dependence of TiO2 photocatalytic activity upon its film thickness", Langmuir, Vol 13, 360-364 Nguyn Cao Khang (2012), "Ch to vt liu nano TiO2 pha Fe, Co, Ni, N, vt liu TiO2/GaN v nghiờn cu mt s tớnh cht vt lý ca chỳng", Lun ỏn Tin s, i hc S phm H Ni B Gao, P.S Yap, T.M Lim, T Lim (2011), "Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO2: Effect of activated carbon support and aqueous anions", Chemical Engineering Journal, Vol 171(3), 1098-1107 130 84 85 86 87 88 89 90 91 92 93 94 95 96 97 P.A Pekakis, N.P Xekoukoulotakis, D Mantzavinos (2006), "Treatment of textile dyehouse wastewater by TiO2 photocatalysis", Water Research, Vol 40(6), 12761286 I.A Balcioglu, I Arslan (1998), "Application of photocatalytic oxidation treatment to pretreated and raw effluents from the Kraft bleaching process and textile industry", Environmental Pollution, Vol 103(23), 261-268 Y Li, J Chen, J Liu, M Ma, W Chen, L Li (2010), "Activated carbon supported TiO2-photocatalysis doped with Fe ions for continuous treatment of dye wastewater in a dynamic reactor", Journal of Environmental Sciences, Vol 22(8), 1290-1296 C Hu, Y Wang (1999), "Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastwater", Chemosphere, Vol 39(12), 21072115 S.G De Moraes, R.S Freire, N Duran (2000), "Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes", Chemosphere, Vol 40(4), 369-373 A Alinsafi, F Evenou, E M Abdulkarim, M N Pons, O Zahraa, A Benhammou, A Yaacoubi, A Nejmeddine (2007), "Treatment of textile industry wastewater by supported photocatalysis", Dyes and Pigments, Vol 74(2), 439-445 M.D Motta, R Pereira, M.M Alves, L Pereira (2014), "UV/TiO2 photocatalytic reactor for real textile wastewaters treatment", Water Science and Technology, Vol 70(10), 1670-6 A Mittal, A Malviya, D Kaur, J Mittal, L Kurup (2007), "Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials", Journal of Hazardous Materials, Vol 148(1), 229-240 L Andronic, A Duta (2008), "The influence of TiO2 powder and film on the photodegradation of methyl orange", Materials Chemistry and Physics, Vol 112(3), 1078-1082 H Zhu, R Jiang, Y Fu, Y Guan, J Yao, L Xiao, G Zeng (2012), "Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation", Desalination, Vol 286, 4148 C McManamon, P Delaney, M A Morris (2013), "Photocatalytic properties of metal and non-metal doped novel sub 10nm titanium dioxide nanoparticles on methyl orange", Journal of colloid and interface science, Vol 411, 169-172 A Gỹrses, ầ Doar, M Yalỗn, M Aỗkyldz, R Bayrak, S Karaca (2006), "The adsorption kinetics of the cationic dye, methylene blue, onto clay", Journal of Hazardous Materials, Vol 131(1), 217-228 B.A Fil, C ệzmetin, M Korkmaz (2012), "Cationic dye (Methylene Blue) removal from aqueous solution by Montmorillonite", Bulletin of the Korean Chemical Society, Vol 33(10), 3184-3190 S Obregún, G Colún (2013), "On the different photocatalytic performance of BiVO4 catalysts for methylene blue and rhodamine B degradation", Journal of Molecular Catalysis A: Chemical, Vol 376, 40-47 131 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 M.A Rauf, M.A Meetani, A Khaleel, A Ahmed (2010), "Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS", Chemical Engineering Journal, Vol 157(2), 373-378 American Public Health Association (2012), "Standard methods for the examination of water and wastewater , 22nd edition" V.D Adams (1990), "Water and wastewater examination manual" Lewis Publishers, K.J Hwang, J.W Lee, W.G Shim, H.D Jang, S.I Lee, S.J Yoo (2012), "Adsorption and photocatalysis of nanocrystalline TiO2 particles prepared by sol gel method for methylene blue degradation", Advanced Powder Technology, Vol 23, 414-418 M Asiltỹrk, Fu Saylkan, E Arpaỗ (2009), "Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and visirradiation", Journal of Photochemistry and Photobiology A: Chemistry, Vol 203(1), 64-71 J Nair, P Nair, F Mizukami, Y Oosawa, T Okubo (1999), "Microstructure and phase transformation behavior of doped nanostructured titania", Materials Research Bulletin, Vol 34(8), 1275-1290 B Choudhury, A Choudhury (2013), "Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles", Materials Science and Engineering: B, Vol 178(11), 794-800 Z Wang, G Yang, P Biswas, W Bresser, P Boolchand (2001), "Processing of iron-doped titania powders in flame aerosol reactors", Powder Technology, Vol 114(13), 197-204 N.R Khalid, E Ahmed, Z Hong, M Ahmad, Y Zhang, S Khalid (2013), "Cudoped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis", Ceramics International, Vol 39(6), 7107-7113 G Colún, M Maicu, M C Hidalgo, J A Navớo (2006), "Cu-doped TiO2 systems with improved photocatalytic activity", Applied Catalysis B: Environmental, Vol 67(12), 41-51 A Mishima (1996), "Optical absorption in the double-layer two-dimensional twoband model", Chinese Journal of Physics, Vol 34(2), 347-351 X Nie, S.H Wei, S.B Zhang (2002), "First-principles study of transparent p-type conductive SrCu2O2 and related compounds", Physical Review B, Vol 65(7), 075111 M Sahu, Biswas P (2011), "Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor", Nanoscale research letters, Vol 6(1), 114 L Andronic, L Isac, A Duta (2011), "Photochemical synthesis of copper sulphide/titanium oxide photocatalyst", Journal of Photochemistry and Photobiology A: Chemistry, Vol 221(1), 30-37 L.S Yoong, F.K Chong, B.K Dutta (2009), "Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light", Energy, Vol 34(10), 1652-1661 132 113 114 115 116 117 118 119 120 121 122 123 124 125 Ngoc Tai Ly, Thanh Van Hoang, Thi Hong Le Ngo, Van Chien Nguyen, Dang Thanh Trang, Hung Manh Do, Dinh Lam Vu, Xuan Nghia Nguyen, Thi Hoa Dao, Quang Huy Le, Minh Hong Nguyen, Van Hong Le (2012), "TiO2 nanocrystal incorporated with CuO and its optical properties", Advances in natural sciences: nanoscience and nanotechnology Vol X Yang, S Wang, H Sun, X Wang, J Lan (2015), "Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles", Transactions of nonferrous metals society of China, Vol 25, 504-509 B Tian, C Li, J Zhang (2012), "One-step preparation, characterization and visiblelight photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases", Chemical Engineering Journal, Vol 191, 402-409 J Zhu, Z Deng, F Chen, J Zhang, H Chen, M Anpo, J Huang, L Zhang (2006), "Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+", Applied Catalysis B: Environmental, Vol 62, 329-335 Y Hu, H.L Tsai, C.L Huang (2003), "Effect of brookite phase on the anatase rutile transition in titania nanoparticles", Journal of the European Ceramic Society, Vol 23(5), 691-696 X Fan, X Chen, S Zhu, Z Li, T Yu, J Ye, Z Zou (2008), "The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2", Journal of Molecular Catalysis A: Chemical, Vol 284(1), 155-160 J Ananpattarachai, P Kajitvichyanukul, S Seraphin (2009), "Visible light absorption ability and photocatalytic oxidation activity of various interstitial Ndoped TiO2 prepared from different nitrogen dopants", Journal of hazardous materials, Vol 168(1), 253-261 N.T Nolan, D.W Synnott, M.K Seery, S.J Hinder, A Van Wassenhoven, S.C Pillai (2012), "Effect of N-doping on the photocatalytic activity of solgel TiO2", Journal of hazardous materials, Vol 211, 88-94 V Etacheri, M.K Seery, S.J Hinder, S.C Pillai (2010), "Highly visible light active TiO2 xNx heterojunction photocatalysts", Chemistry of Materials, Vol 22(13), 3843-3853 M Asiltỹrk, S ener (2012), "TiO2-activated carbon photocatalysts: Preparation, characterization and photocatalytic activities", Chemical Engineering Journal, Vol 180, 354-363 J Yu, X Zhao, Q Zhao, G Wang (2001), "Preparation and characterization of super-hydrophilic porous TiO2 coating films", Materials Chemistry and Physics, Vol 68(1), 253-259 J Shi, J Zheng, P Wu, X Ji (2008), "Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size", Catalysis Communications, Vol 9(9), 1846-1850 H Meng, W Hou, X Xu, J Xu, X Zhang (2014), "TiO2-loaded activated carbon fiber: Hydrothermal synthesis, adsorption properties and photo catalytic activity under visible light irradiation", Particuology, Vol 14, 38-43 133 126 127 128 129 130 131 132 133 134 135 136 137 138 S Ghasemi, S Rahimnejad, S Rahman Setayesh, S Rohani, M R Gholami (2009), "Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid", Journal of Hazardous Materials, Vol 172(23), 1573-1578 J Oakes, P Gratton (1998), "Kinetic investigations of the oxidation of Methyl Orange and substituted arylazonaphthol dyes by peracids in aqueous solution", J Chem Soc., Perkin Trans 2, Vol (12), 2563-2568 E Haque, J.W Jun, S.H Jhung (2011), "Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235)", Journal of Hazardous materials, Vol 185(1), 507511 K.P Singh, D Mohan, S Sinha, G.S Tondon, D Gosh (2003), "Color removal from wastewater using low-cost activated carbon derived from agricultural waste material", Industrial & engineering chemistry research, Vol 42(9), 1965-1976 B Xin, P Wang, D Ding, J Liu, Z Ren, H Fu (2008), "Effect of surface species on Cu-TiO2 photocatalytic activity", Applied surface science, Vol 254(9), 25692574 Y Li, S Peng, F Jiang, G Lu, S Li (2007), "Effect of doping TiO2 with alkalineearth metal ions on its photocatalytic activity", Journal of the Serbian Chemical Society, Vol 72(4), 393-402 N Riaz, C F Kait, Z Man, B K Dutta, R M Ramli, M S Khan (2014), "Visible light photodegradation of azo dye by Cu/TiO2", Advanced Materials Research, Vol 917, 151-159 I.K Konstantinou, T.A Albanis (2004), "TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review", Applied Catalysis B: Environmental, Vol 49(1), 1-14 M Trillas, J Peral, X Domốnech (1995), "Redox Photodegradation of 2,4dichlorophenoxyacetic Acid Over TiO2", Appl Catal B Environ., Vol 5(4), 377387 F Hussein, M Obies, A Drea (2010), "Photocatalytic Decolorization of Bismarck Brown R by Suspension Of Titanium Dioxide", Int J Chem Sci., Vol 18(4), 2736-2746 D Chen, A Ray (1998), "Photodegradation Kinetics of 4-nitrophenol in TiO2 Suspension", Water Research, Vol 32(11), 3223-3234 A Attia, S Kadhim, F Hussein (2008), "Photocatalytic degradation of textile dyeing wastewater using titanium dioxide and zinc oxide", E-Journal of Chemistry, Vol 5(2), 219-223 T Kim, M Lee (2010), "Effect of pH and temperature for photocatalytic degradation of organic compound on carbon-coated", Journal of Advanced Engineering and Technology, Vol 3(2), 193-198 [...]... theo nước thải dệt nhuộm hay dung dịch thuốc nhuộm đặc trưng nào đó và chỉ có rất ít các báo cáo nghiên cứu sự phân hủy nước thải dệt nhuộm thực bằng quang xúc tác TiO2 Từ những lý do trên, chúng tôi chọn đề tài: Nghiên cứu đánh giá hiệu quả xử lý nước thải dệt nhuộm bằng vật liệu nano titandioxit pha tạp Để giải quyết các vấn đề nêu ra ở trên, luận án đặt ra các mục tiêu như sau:  Chế tạo vật liệu. .. BẢNG Bảng 1.1: Nguồn phát sinh và đặc tính nước thải dệt nhuộm .6 Bảng 1.2: Chất lượng nước thải của một số nhà máy dệt nhuộm tại Hà Nội .9 Bảng 1.3: Thế oxi hóa của một số tác nhân oxi hóa 12 Bảng 1.4: Một số kết quả nghiên cứu xử lý nước thải dệt nhuộm bằng AOPs 16 Bảng 1.5: Tóm tắt các kết quả nghiên cứu ứng dụng TiO2 trong xử lý nước thải dệt nhuộm 40 Bảng 3.1: Kích thước... giặt Nước thải NaOCl/H2O2 Hóa chất Tẩy trắng Nước thải H2SO4, H2O, chất tẩy giặt Giặt Nước thải NaOH, hóa chất Làm bóng Nước thải Nhuộm, in hoa Dịch nhuộm thải Dung dịch nhuộm H2O, H2SO4, chất tẩy giặt Giặt Nước thải Hơi nước, hóa chất, hồ Hoàn tất Nước thải Sản phẩm Hình 1.1: Sơ đồ nguyên lý công nghệ dệt nhuộm và các nguồn nước thải [5] 6 Bảng 1.1: Nguồn phát sinh và đặc tính nước thải dệt nhuộm. .. với sinh vật và con người Do vậy, xử lý nước thải của các cơ sở dệt nhuộm ngày càng trở thành vấn đề cấp thiết 1.1.1 Các nguồn phát sinh nước thải và đặc tính ô nhiễm của nước thải dệt nhuộm công nghiệp 1.1.1.1 Nguồn phát sinh nước thải dệt nhuộm công nghiệp Các chất thải trong nước thải dệt nhuộm có thể phân thành một số loại như sau [4]: - Các thành phần nguyên liệu không mong muốn như tạp chất thiên... than hoạt tính, polyuretan)  Đánh giá hoạt tính quang xúc tác của vật liệu nano TiO2 pha tạp cố định trên các chất nền trong xử lý metyl da cam và metylen xanh  Khảo sát các yếu tố ảnh hưởng đến quá trình xử lý nước thải dệt nhuộm thực bằng vật liệu TiO2 pha tạp dạng huyền phù và dạng lớp phủ đã chế tạo 4 CHƯƠNG 1 TỔNG QUAN 1.1 TỔNG QUAN VỀ NƯỚC THẢI DỆT NHUỘM CÔNG NGHIỆP Dệt may là một trong những... dàng loại bỏ bằng các phương pháp hóa lý thông thường như keo tụ, hấp phụ Trong khi đó, thuốc nhuộm hoạt tính là loại thuốc nhuộm được sử dụng nhiều nhất hiện nay nhưng khác với các loại thuốc nhuộm khác, hiệu quả xử lý thuốc nhuộm hoạt tính trong các hệ thống xử lý nước thải dệt nhuộm rất thấp [8, 9] Nghiên cứu này tập trung vào xử lý dòng nước thải nhuộm hoạt tính ngay sau công đoạn nhuộm 1.1.1.3... tiêu như sau:  Chế tạo vật liệu nano TiO2 có pha tạp đồng (Cu), crôm (Cr)  Đánh giá vai trò của các chất pha tạp (Cu, Cr) trong việc cải thiện hoạt tính quang xúc tác của vật liệu nano TiO2  Cố định vật liệu nano TiO2 đã chế tạo trên các hệ nền khác nhau (thủy tinh, than hoạt tính, polyuretan)  Đánh giá hiệu quả xử lý nước thải dệt nhuộm thực bằng vật liệu đã chế tạo ở quy mô phòng thí nghiệm Để... sinh nước thải của nhà máy dệt nhuộm, nước thải công đoạn nhuộm là một trong những nguồn ô nhiễm cao, thành phần phức tạp, khó xử lý Nguyên liệu đầu Kéo sợi, chải, ghép, đánh ống H2O, tinh bột phụ gia, hơi nước Hồ sợi Nước thải chứa hồ tinh bột, hóa chất Dệt vải Nước thải chứa hồ tinh bột bị thủy phân, NaOH Enzym, NaOH Giũ hồ NaOH, Hóa chất, Hơi nước Nấu Nước thải H2SO4, H2O, chất tẩy giặt Xử lý axit,... được những mục tiêu đã đề ra, nội dung nghiên cứu của luận án bao gồm: 3  Tổng hợp đặc trưng vật liệu nano TiO2 pha tạp đồng và vật liệu nano TiO2 pha tạp đồng thời crôm và nitơ  Đánh giá hoạt tính quang xúc tác của vật liệu đã chế tạo, xác định hàm lượng chất pha tạp tối ưu trong xử lý metyl da cam và metylen xanh  Tổng hợp đặc trưng vật liệu nano TiO2 pha tạp đã chế tạo phủ trên các chất nền khác... động, thực vật Vì vậy, ô nhiễm nước thải trong ngành công nghiệp dệt nhuộm là một vấn đề cần quan tâm giải quyết, nhằm bảo vệ sức khỏe cộng đồng và cải thiện môi trường sinh thái Nước thải dệt nhuộm có thành phần phức tạp và khó phân hủy sinh học, do đó để xử lý hiệu quả và đặc biệt để loại màu của thuốc nhuộm trong dòng nước thải này thường phải kết hợp các công nghệ xử lý khác nhau như vật lý, hóa học ... CỦA NANO TIO2 PHA TẠP ỨNG DỤNG TRONG XỬ LÝ NƯỚC THẢI DỆT NHUỘM 89 3.2.1 Hoạt tính quang xúc tác xử lý metyl da cam metylen xanh 89 3.2.2 Đánh giá hiệu xử lý nước thải dệt nhuộm ... TiO2 Từ lý trên, chọn đề tài: Nghiên cứu đánh giá hiệu xử lý nước thải dệt nhuộm vật liệu nano titandioxit pha tạp Để giải vấn đề nêu trên, luận án đặt mục tiêu sau:  Chế tạo vật liệu nano... cộng [85] nghiên cứu xử lý dòng thải nhà máy dệt nhuộm hai trường hợp chưa xử lý sơ qua xử lý sơ Tốc độ hiệu xử lý quang xúc tác phụ thuộc nhiều vào mức độ tiền xử lý, phương pháp tiền xử lý (keo

Ngày đăng: 22/04/2016, 10:01

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan