Đề thi và đáp án tuyển sinh đại học môn toán năm 2012

5 202 0
  • Loading ...
1/5 trang

Thông tin tài liệu

Ngày đăng: 21/03/2016, 21:45

ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Môn: TOÁN; Khối D (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC Câu Đáp án Điểm a) (1,0 điểm) (2,0 điểm) 2 Khi m = 1, hàm số trở thành y = x3 − x − x + 3 • Tập xác định: D = \ • Sự biến thiên: - Chiều biến thiên: y ′ = x − x − 4; y ′ = ⇔ x = −1 x = 0,25 Các khoảng đồng biến: (−∞; −1) (2; +∞); khoảng nghịch biến ( −1; 2) - Cực trị: Hàm số đạt cực đại x = −1, yCĐ = 3, đạt cực tiểu x = 2, yCT = −6 - Giới hạn: lim y = − ∞, lim y = + ∞, x →− ∞ 0,25 x →+ ∞ - Bảng biến thiên: x −∞ y' –1 + +∞ – + +∞ 0,25 y −∞ • Đồ thị: –6 y –1 O x 0,25 –6 b) (1,0 điểm) Ta có y ′ = x − 2mx − 2(3m − 1) 0,25 Đồ thị hàm số có hai điểm cực trị phương trình y′ = có hai nghiệm phân biệt ⇔ 13m − > ⇔ m > 13 13 m < − 13 13 0,25 Ta có: x1 + x2 = m x1 x2 = − 3m , x1 x2 + 2( x1 + x2 ) = ⇔ − 3m + 2m = 0,25 2 ⇔ m = m = Kiểm tra điều kiện ta m = 3 0,25 Trang 1/4 Câu Đáp án Điểm Phương trình cho tương đương với: (2sin x + 2cos x − 2)cos x = (1,0 điểm) π kπ (k ∈]) • cos x = ⇔ x = + π • 2sin x + 2cos x − = ⇔ cos x − = 7π π ⇔x= + k 2π x = − + k 2π (k ∈ ]) 12 12 Vậy nghiệm phương trình cho là: π kπ 7π π + k 2π, x = − + k 2π (k ∈ ]) x= + , x= 12 12 ⎧⎪ xy + x − = (1) Hệ cho tương đương với: ⎨ (1,0 điểm) ⎪⎩(2 x − y + 1)( x − y ) = (2) 0,25 0,25 ( ) 0,25 0,25 0,25 −1 ± ⎛ −1 + ⎞ ⎛ −1 − ⎞ Do ta nghiệm ( x; y ) = ⎜ ; ⎟ ( x; y ) = ⎜ ; − ⎟ ⎜ ⎟ ⎜ ⎟ 2 ⎝ ⎠ ⎝ ⎠ 0,25 • x − y = ⇔ y = x Thay vào (1) ta x3 + x − = ⇔ ( x − 1)( x + x + 2) = 0,25 ⇔ x = Do ta nghiệm ( x; y ) = (1; 1) Vậy hệ phương trình cho có nghiệm là: ⎛ −1 + ⎞ ⎛ −1 − ⎞ ( x; y ) = (1; 1), ( x; y ) = ⎜ ; ⎟ , ( x; y ) = ⎜ ; − ⎟ ⎜ ⎟ ⎜ ⎟ 2 ⎝ ⎠ ⎝ ⎠ 0,25 • x − y + = ⇔ y = x + Thay vào (1) ta x + x − = ⇔ x = (1,0 điểm) π π ∫ ∫ I = xdx + x sin xdx = 0 π x2 π ∫ + x sin xdx = 0 π π + x sin xdx 32 ∫ 0,25 Đặt u = x;dv = sin xdx, suy du = dx; v = − cos x π Khi π 1 π 0,25 π ∫ x sin xdx = − x cos x + ∫ cos xdx = ∫ cos xdx 0 0,25 π π2 1 + = sin x = Do I = 32 4 (1,0 điểm) D' C' B' A' D H C A B 0,25 Tam giác A′AC vuông cân A a A′A = AC = Do AB = B′C ′ = A′C = a nên a 0,25 1 a3 V ABB′C ′ = B ' C '.S ∆ABB ' = B ' C ' AB.BB ' = 48 0,25 Gọi H chân đường cao kẻ từ A ∆A′AB Ta có AH ⊥ A ' B AH ⊥ BC nên AH ⊥ ( A ' BC ), nghĩa AH ⊥ ( BCD ') Do AH = d ( A,( BCD ')) 0,25 = + = a2 a Do d ( A,( BCD ')) = AH = Ta có AH Trang 2/4 AB 2 AA' 0,25 Câu Đáp án Ta có ( x − 4)2 + ( y − 4)2 + xy ≤ 32 ⇔ ( x + y ) − 8( x + y ) ≤ ⇔ ≤ x + y ≤ (1,0 điểm) A = ( x + y )3 − 3( x + y ) − xy + ≥ ( x + y )3 − ( x + y )2 − 3( x + y ) + Xét hàm số: f (t ) = t − t − 3t + đoạn [0; 8] Ta có f ′(t ) = 3t − 3t − 3, f ′(t ) = ⇔ t = 1+ 17 − 5 dấu xảy Vậy giá trị nhỏ A 4 7.a (1,0 điểm) A B N K I M D C 0,25 0,25 1+ 1− t = (loại) 2 ⎛ + ⎞ 17 − 5 17 − 5 Ta có f (0) = 6, f ⎜ = , f (8) = 398 Suy A ≥ ⎜ ⎟⎟ 4 ⎝ ⎠ Khi x = y = Điểm 0,25 0,25 ⎧x + 3y = Tọa độ điểm A thỏa mãn hệ ⎨ ⇒ A( −3;1) ⎩x − y + = 0,25 Gọi N điểm thuộc AC cho MN//AD Suy MN có phương trình x − y + = Vì N thuộc AC, nên tọa ⎧ ⎪x − y + = ⎛ 1⎞ ⇒ N ⎜ −1; ⎟ độ điểm N thỏa mãn hệ ⎨ 3⎠ ⎝ ⎪⎩ x + y = 0,25 Đường trung trực ∆ MN qua trung điểm MN vuông góc với AD, nên có phương trình x + y = Gọi I K giao điểm ∆ với AC AD ⎧x + y = Suy tọa độ điểm I thỏa mãn hệ ⎨ ⎩ x + y = 0, ⎧x + y = tọa độ điểm K thỏa mãn hệ ⎨ ⎩ x − y + = Do I(0; 0) K(−2;2) JJJG JJG JJJG JJJG AC = AI ⇒C (3;−1); AD = AK ⇒ D(−1;3); JJJG JJJG BC = AD ⇒ B(1;−3) Gọi H hình chiếu vuông góc I (P) Suy H tâm đường tròn giao tuyến 8.a (1,0 điểm) mặt phẳng (P) mặt cầu (S) cần viết phương trình 0,25 0,25 0,25 Ta có IH = d ( I ;( P )) = 0,25 Bán kính mặt cầu (S) là: R = 32 + = 0,25 Phương trình mặt cầu (S) là: ( x − 2) + ( y − 1) + ( z − 3)2 = 25 0,25 2(1 + 2i ) 9.a = + 8i ⇔ (2 + i) z = + 7i Ta có: (2 + i) z + (1,0 điểm) 1+ i 0,25 ⇔ z = + 2i 0,25 Do w = + 3i 0,25 Môđun w 42 + 32 = 0,25 Trang 3/4 Câu Đáp án Gọi I tâm đường tròn (C) cần viết phương trình 7.b Do I ∈ d nên tọa độ I có dạng I (t ;2t + 3) (1,0 điểm) AB = CD ⇔ d ( I , Ox) = d ( I , Oy ) ⇔ | t | = | 2t + |⇔ t = −1 t =−3 Điểm 0,25 0,25 • Với t = −1 ta I (−1;1), nên d ( I ; Ox) = Suy ra, bán kính (C) 12 +12 = Do (C ): ( x + 1) + ( y − 1)2 = • Với t = −3 ta I (−3;−3), nên d ( I ;Ox) = Suy ra, bán kính (C) Do (C ): ( x + 3)2 + ( y + 3)2 = 10 Do M ∈ d nên tọa độ điểm M có dạng M (1 + 2t ; −1 − t ; t ) 8.b JJJJG JJJJG (1,0 điểm) Ta có AM = (2t ; −t ; t − 2), BM = (−1 + 2t; −t; t ) JJJJG JJJJG Tam giác AMB vuông M ⇔ AM BM = 32 +12 = 10 0,25 0,25 0,25 0,25 ⇔ 2t (−1 + 2t ) + t + t (t − 2) = ⇔ 6t − 4t = 0,25 ⎛7 2⎞ ⇔ t = t = Do M (1; −1;0 ) M ⎜ ; − ; ⎟ ⎝3 3⎠ 0,25 Phương trình bậc hai z + 3(1+ i ) z + 5i = có biệt thức ∆ = −2i 9.b (1,0 điểm) = (1 − i ) Do nghiệm phương trình z = z = −3(1 + i) + (1 − i) = −1 − 2i −3(1 + i ) − (1 − i ) = −2 − i 0,25 0,25 0,25 0,25 - HẾT - Trang 4/4 ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO Môn: TOÁN; Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x − mx − 2(3m − 1) x + (1), m tham số thực 3 a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để hàm số (1) có hai điểm cực trị x1 x2 cho x1 x2 + 2( x1 + x2 ) = Câu (2,0 điểm) Cho hàm số y = Câu (1,0 điểm) Giải phương trình sin x + cos 3x − sin x + cos x = cos x ⎧⎪ xy + x − = Câu (1,0 điểm) Giải hệ phương trình ⎨ ( x, y ∈ \ ) 2 ⎪⎩ x − x y + x + y − xy − y = π Câu (1,0 điểm) Tính tích phân I = ∫ x(1 + sin x)dx Câu (1,0 điểm) Cho hình hộp đứng ABCD A' B 'C ' D ' có đáy hình vuông, tam giác A' AC vuông cân, AC ' = a Tính thể tích khối tứ diện ABB'C ' khoảng cách từ điểm A đến mặt phẳng ( BCD ') theo a Câu (1,0 điểm) Cho số thực x, y thỏa mãn ( x − 4)2 + ( y − 4)2 + xy ≤ 32 Tìm giá trị nhỏ biểu thức A = x3 + y3 + 3( xy − 1)( x + y − 2) II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần riêng (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD Các đường thẳng AC AD có phương trình x + y = x − y + = 0; đường thẳng BD qua điểm M − ;1 Tìm tọa độ đỉnh hình chữ nhật ABCD Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ): x + y − z + 10 = điểm I (2;1;3) Viết phương trình mặt cầu tâm I cắt (P) theo đường tròn có bán kính ( ) Câu 9.a (1,0 điểm) Cho số phức z thỏa mãn (2 + i ) z + 2(1 + 2i ) = + 8i Tìm môđun số phức w = z + + i 1+ i B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x − y + = Viết phương trình đường tròn có tâm thuộc d, cắt trục Ox A B, cắt trục Oy C D cho AB = CD = x −1 y +1 z = = hai −1 điểm A(1; −1; 2), B (2; −1;0) Xác định tọa độ điểm M thuộc d cho tam giác AMB vuông M Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : Câu 9.b (1,0 điểm) Giải phương trình z + 3(1 + i) z + 5i = tập hợp số phức HẾT -Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: ... Trang 4/4 ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO Môn: TOÁN; Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0... trình z + 3(1 + i) z + 5i = tập hợp số phức HẾT -Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: ... + (1,0 điểm) 1+ i 0,25 ⇔ z = + 2i 0,25 Do w = + 3i 0,25 Môđun w 42 + 32 = 0,25 Trang 3/4 Câu Đáp án Gọi I tâm đường tròn (C) cần viết phương trình 7.b Do I ∈ d nên tọa độ I có dạng I (t ;2t +
- Xem thêm -

Xem thêm: Đề thi và đáp án tuyển sinh đại học môn toán năm 2012, Đề thi và đáp án tuyển sinh đại học môn toán năm 2012, Đề thi và đáp án tuyển sinh đại học môn toán năm 2012

Từ khóa liên quan

Gợi ý tài liệu liên quan cho bạn