Electrical conductivity switching behavior and memory effects in electroactive polymers and nanocomposites

206 255 0
Electrical conductivity switching behavior and memory effects in electroactive polymers and nanocomposites

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ELECTRICAL CONDUCTIVITY SWITCHING BEHAVIOR AND MEMORY EFFECTS IN ELECTROACTIVE POLYMERS AND NANOCOMPOSITES LIU GANG (M. Sci., Singapore-MIT Alliance, NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE, JULY 2010 i ACKNOWLEDGEMENT First and foremost, I would like to express my sincerest and deepest appreciation to my supervisors, Professor Kang En-Tang and Professor Neoh Koon-Gee, at National University of Singapore, for their invaluable guidance, suggestion, and discussion throughout this work. I was especially fortunate to be able to work under the supervision of Professor Kang En-Tang, who leads me into the great world of polymer electronics. Professor Kang and Professor Neoh’s abundant knowledge in polymer related areas is always a source of inspiration to me in carrying out this project. Whenever I came across a problem, I knew for sure that I could turn myself to my supervisors, Professor Kang and Professor Neoh, for their sincere and unreserved suggestion and help. Their enthusiasm, diligence, patience, and preciseness enlighten me on the road of scientific research, and even my future road of life, no matter in academic or industrial area, regardless of the country in which I stay. I have benefited greatly from the collaboration with Professor Liaw Der-Jang and Dr. Chang Feng-Chyuan, from National Taiwan University of Science and Technology, and Dr. Chen Yu and Mr. Zhuang Xiaodong, from East China University of Science and Technology. I acknowledge with gratitude for the materials used in this project, provided by Professor Liaw, Dr. Chen, and their research staffs and students. I am also indebted to Dr. Zhu Chuxiang, Dr. Ling Qidan, Dr. Tong Shy Wun, Dr. Lim Siew Lay, Dr. Zhang Zhiguo, Mr. Eric Teo Yeow Hwee, Mr. Liu Yiliang, Mr. Zhang Chunfu, and Ms. Wan Dong, for their fruitful discussion and comments during this ii work. I would like to express my particular gratitude to Dr. Ling Qidan, from whose generous consultation and invaluable experience I learnt heavily for my own work. In addition, I wish to thank the laboratory technologists, Ms. Novel Chew Su Mei, Ms. Alyssa Tay Kai Si, Ms. Xu Yanfang, and Mr. Ng Kim Poi, for their time and assistance during this work. Fully as important as the scientific guidance of my supervisors and the help of my colleagues have been the love and encouragement of my devoted parents, Mr. Liu Zhiran and Ms. Zhang Guiying, and my devoted wife, Ms. Zhou Jinjia. The unconditional love and sacrifice of my family during this four-year project made me fully concentrate on my research work without concerning too much about the daily issues. Their consistent care and support enable me healthy enough, both mentally and physically, to finish this work. Nevertheless, my uncles, Professor Wang Erlin and Professor Gu Yaoxin, helped me to clarify my aspiration when I was hesitating and wandering in doubt. The continuous love, support, and encouragement of my family are always the power of advancing in my profession. Last but not least, I appreciate the financial support provided by the National University of Singapore in the form of research scholarship to carry out this work. iii TABLE OF CONTENTS ACKNOWLEDGEMENT ii TABLE OF CONTENTS . iv SUMMARY vii NOMENCLATURE . xi LIST OF FIGURES . xiv LIST OF TABLES .xx CHAPTER INTRODUCTION .1 CHAPTER LITERATURE SURVEY 2.1 Current Status of Electronic Memories . 2.2 Basic Concepts of Electronic Memories . 10 2.3 Brief History of Polymer Electronic Memories 14 2.4 Classification of Polymer Electronic Memories . 19 2.4.1 Transistor-type polymer memories 19 2.4.2 Capacitor-type polymer memories 23 2.4.3 Resistor-type polymer memories . 25 2.5 Conduction Mechanisms of Polymer Memories . 28 2.5.1 Filament conduction 28 2.5.2 Space charges and traps . 31 2.5.3 Charge transfer effects 32 2.5.4 Tunneling effects . 33 2.5.5 Conformational change effects 35 CHAPTER FLUORENE POLYMERS 36 3.1 Introduction . 37 3.2 Experimental Section 39 3.3 Results and Discussion 48 3.3.1 Bistable conductivity switching and WORM memory effects of PFPTPA . 48 3.3.2 Tristable conductivity switching and WORM memory effects of PFPCz . 55 3.3.3 Electrical properties of PFPPy 67 iv 3.4 Conclusion 71 CHAPTER IMIDE POLYMERS 72 4.1 Introduction . 73 4.2 Experimental Section 75 4.3 Results and Discussion 80 4.3.1 Bistable conductivity switching and WORM memory effects of PCz6FDA 80 4.3.2 Electrical properties of PNa6FDA 91 4.4 Conclusion 93 CHAPTER (POLY(VINYLCARBZOLE-AZOBENZENE-ACCEPTOR) COMPL EX 94 5.1 Introduction . 95 5.2 Experimental Section 98 5.3 Results and Discussion 100 5.3.1 Bistable conductivity switching and WORM memory effects of PVK-AZO-NO2 100 5.3.2 Bistable conductivity switching and WORM memory effects of PVK-AZO-2CN 109 5.4 Conclusion 111 CHAPTER POLYMER-CARBON NANOTUBE COMPOSITES 112 6.1 Introduction . 113 6.2 Experimental Section 115 6.3 Results and Discussion 118 6.3.1 Enhancement of the PFPTPA memory device performance via CNT doping 118 6.3.2 Tuning of the electrical properties and controlling of the conductivity switching behavior and memory effects of PVK-CNT composites 124 6.4 Conclusion 137 CHAPTER POLY(N-VINYLCARBAZOLE)-GRAPHENE OXIDE COMPLEX 138 7.1 Introduction . 139 7.2 Experimental Section 141 7.3 Results and Discussion 143 7.3.1 Material characterization . 143 v 7.3.2 Bistable conductivity switching and rewritable memory effects of GO-PVK 150 7.4 Conclusion 156 CHAPTER CONCLUSION 157 CHAPTER RECOMMENDATIONS FOR FUTURE WORK .162 REFERENCES 166 LIST OF PUBLICATIONS 185 vi SUMMARY Organic and polymeric materials can exhibit electric-field-induced electrical conductivity switching behavior and resistor-type electronic memory effects. The field-induced electrical bistability, together with the low-cost potential, light weight, mechanical flexibility, and the most important of all, tunable electronic properties via molecular design, make organic and polymer materials promising alternatives or supplements to inorganic semiconductors in data storage technologies. In this work, a series of polymers and polymer composite materials were explored for electronic memory applications. The focus of this work is concentrated on studying the electrical properties and the underlying switching and conduction mechanisms of the electroactive polymers and nanocomposites. Conjugated fluorene copolymers of poly(2,6-diphenyl-4-((9-ethyl)-9H-carbazole)-pyridinyl-alt-2,7-(9,9-didodecyl)-9H-fluorenyl) (PFPCz), poly(2,6-diphenyl-4-triphenylamine-pyridinyl-alt-2,7-(9,9-didodecyl)-9H-fluorenyl) (PFPTPA), and poly(2,6-diphenyl-4-pyrene-pyridinyl-alt-2,7-(9,9-didodecyl)-9H-fluorenyl) (PFPPy) (structures shown in Figure 3.3, 3.4 and 3.5, respectively) were first synthesized via Suzuki coupling polymerization reaction. The electrical behavior of these polymers was found to be dependant on the molecular structure of the macromolecules. Both write-once read-many-times (WORM) memory effects (PFPCz and PFPTPA) and insulator (PFPPy) behavior are demonstrated in the current density-voltage (J-V) characteristics of the devices with aluminium (Al)/polymer/indium-tin oxide (ITO) vii sandwich structure. The electrical conductivity switching behavior of these fluorene polymers is ascribed to electric field-induced conformational ordering and/or charge transfer (CT) interaction of the polymer film in the devices. To achieve a higher ON/OFF state current ratio and thus a lower misreading rate of the polymer electronic memories, two non-conjugated imide polymers, poly(2,6-diphenyl-4-((9-ethyl)-9H-carbazole)-pyridinyl-alt-hexafluoroisopropylidene diphthal-imide) or PCz6FDA, and poly(2,6-diphenyl-4-napathalene)-pyridinyl-alt-hexafluoroisopropylidenediphthal-imide) or PNa6FDA (structures shown in Figure 4.2 and 4.3, respectively), were synthesized via a two-step polymerization reaction, involving a ring-opening poly-addition reaction and the subsequent chemical imidization reaction. The incorporation of a stronger electron withdrawing group (as compared to the pyridine electron acceptor), hexafluoroisopropylidenediphthalimide (or 6FDA), can significantly enhance the field-induced CT characteristics of the imide polymers. The Al/PCz6FDA/ITO device exhibits electrical bistability and WORM memory effects with an ON/OFF state current ratio of 105, while the PNa6FDA device behaves as an electrical insulator. The electrical bistability of PCz6FDA device is well maintained at elevated temperatures and thermally stable electronic memory device is thus demonstrated. The bistable switching behavior of PCz6FDA is attributed to intra-molecular CT interaction under an electric field, while the lack of electrical bistability in PFPPy and PNa6FDA are ascribed to the absence of effective electron donating species in the pendant groups. viii Capitalizing on the charge trapping ability of azobenzene chromophores, electrical bistability with enhanced ON/OFF state current ratios in excess of ~ 105 were demonstrated in two donor-trap-acceptor (D-T-A) structure carbazole-azobenzene polymers. Synthesized via a post azo-coupling reaction, poly(3-(4-nitrophenyl)-diazenyl-9-vinylcarbazole-alt-9-vinylcarbazole) (PVK-AZO-NO2), and poly(3-(3,4-dicyanophenyl)-diazenyl-9-vinylcarbazole-alt-9-vinylcarbazole) (structures shown in Figure 5.3) possess pendant (PVK-AZO-2CN) electron D-A pair (carbazole-nitro/cyano) and charge trapping center (azobenzene) at the same time, allowing effective stabilizing of the intra-molecular CT state, and leading to WORM memory effects with low switching voltages and high ON/OFF state current ratios. In addition to molecular design and organic chemistry, the electronic properties of polymers can also be controlled by forming composites with other electroactive materials. The bistable switching behavior and memory effect of the fluorene polymer PFPTPA can be enhanced upon mixing the polymer with carbon nanotubes (CNTs) Furthermore, by varying the carbon nanotube content in poly(N-vinylcarbazole) (PVK) composite films, the electrical conductivity of the PVK-CNT doping system can be tuned deliberately. The Al/PVK-CNT/ITO sandwich structure exhibits insulator, bistable electrical conductivity switching (WORM memory and flash memory effects), and conductor behaviors, when the CNT content in the composite film is increased from to 3%. The conductivity switching effects of the PVK-CNT composite films are ascribed to electron trapping in the CNTs of the hole-transporting PVK matrix. ix Similar to its consanguinity of C60 and carbon nanotube, the large numbers of hexagonal aryl make graphene material a good electron acceptor. The atomic nanosheets of graphene enhance its potential application in ultrathin electronic devices. A solution-processable and electroactive complex of poly(N-vinylcarbazole)-derivatized graphene oxide (GO-PVK) was prepared via amidation of end-functionalized PVK, from reversible addition fragmentation chain transfer (RAFT) polymerization, with tolylene-2,5-diisocyanate-functionalized graphene oxide (GO-TDI). The Al/GO-PVK/ITO device exhibits bistable electrical conductivity switching and non-volatile rewritable memory effects. Both the OFF and ON states of the memory device are stable under a constant voltage stress of -1 V for up to h, or under a pulse voltage stress of -1 V for up to 108 read cycles, with an ON/OFF state current ratio in excess of 103. x References Gergel-Hackett, N., Majumdar, N., Martin, Z., Swami, N., Harriott, L. R., Bean, J. C., Pattanaik, G., Zangari, G., Zhu, Y., Pu, I., Yao, Y. and Tour, J. M. Effects of Molecular Environments on the Electrical Switching with Memory of Nitro-Containing OPEs J. Vac. Sci. Techno. A, 24, pp.1243-1248. 2006. Ghosh, M. K. and Mittal, K. L. Polyimides: Fundamentals and Applications; Marcel Dekker: New York, 1996. Gibbs, H. H. Long-Term Properties of Polymers and Polymeric Materials J. Polym. Sci. Appl. Polym. Symp., 5, pp.207-222. 1979. Gilje, S., Han, S., Wang, M., Wang, K. and Kaner, R. A Chemical Route to Graphene for Device Applications. Nano Lett., 7, pp.3394-3398. 2007. Girlanda, M., Cacelli, I., Ferretti, A. and Macucci, M. Conductance Modulation in Molecular Devices via Field-induced Conformational Change. In: 4th IEEE Conference on Nanotechnology, pp.131-133. 2004. Gohel, A., Chin, K. C., Zhu, Y. W., Chow, C. H. and Wee, A. T. S. Field Emission Properties of N2 and Ar Plasma-Treated Multi-Wall Carbon Nanotubes. Carbon, 43, pp.2530-2535. 2005. Gomes, H. L., Benvenho, A. R. V., de Leeuw, D. M., Cölle, M., Stallinga, P., Verbakel, F. and Taylor, D. M. Switching in Polymeric Resistance Random-Access Memories (RRAMS). Org. Electro., 9, pp.119-128. 2008. Gong, J. P. and Osada, Y. Preparation of Polymeric Metal-Tetracyanoquinodimethane Film and Its Bistable Switching. Appl. Phys. Lett., 61, pp.2787-2789. 1992. Gordon, D. G., Montemerlo, M. S., Love, J. C., Opiteck, G. J. and Ellenbogen, J. C. Overview of Nanoelectronic Devices. Proc. of the IEEE, 85, pp.521- 540.1997. Grazulevicius, J. V., Strohriegl, P., Pielichowski, J. and Pielichowski, K. Carbazole-Containing Polymers: Synthesis, Properties, and Applications. Prog. Polym. Sci., 28, 1297-1353. 2003. Greenfield, S. R., Svec, W. A., Gosztola, D. and Wasielewski, M. R. Multistep Photochemical Charge Separation in Rod-like Molecules Based on Aromatic Imides and Diimides J. Am. Chem. Soc., 118, pp.6767-6777. 1996. Guizzo, E. Organic Memory Gains Momentum. IEEE Spectr., 41, pp.17-18. 2004. Hagen, R. and Bieringer, T. Photoaddressable Polymers for Optical Data Storage. Adv. Mater., 13, pp.1805-1810. 2001. Hagiri, M., Ichinose, N., Zhao, C., Horiuchi, H., Hiratsuka, H. and Nakayama, T. Sub-Picosecond Time-Resolved Absorption Spectroscopy of a Push–Pull Type p,p’-Substituted Trans-Azobenzene. Chem. Phys. Lett., 391, pp.297-301. 2004. Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Dehm, C. and Schutz, M. Low-Voltage Organic Transistors with an Amorphous Molecular Gate Dielectric. Nature, 431, pp.963-966. 2004. 171 References Hamada, N., Sawada, S. I. and Oshiyama, A. New One-Dimensional Conductors: Graphitic Microtubules. Phys. Rev. Lett., 68, pp. 1579-1581. 1992. Hamed, A., Sun, Y. Y., Tao, Y. K., Meng, R. L. and Hor, P. H. Effects of Oxygen and Illumination on the in situ Conductivity of C60 Thin Films. Phys. Rev. B, 47, pp.10873-10880. 1993. Han, M. Y., Özyilmaz, B., Zhang, Y. B. and Kim, P. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys. Rev. Lett., 98, Art. No. 206805. 2007. Hatke, W., Schmidt, H. W. and Heitz, W. Substituted Rod-Like Aromatic Polyamides: Synthesis and Structure-Property Relations. J. Polym. Sci. Part A: Polym. Chem., 29, pp.1387-1398. 1991. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. and Morpurgo, A. F. Bipolar Super Current in Graphene. Nature, 446, pp.56-59. 2007. Henisch, H. K. and Smith, W. R. Switching in Organic Polymer Films, Appl. Phys. Lett., 24, pp.589-591 (1974). Hiroshiba, N., Tanigaki, K., Kumashiro, R., Ohashi, H., Wakahara, T. and Akasaka, T. C60 Field Effect Transistor With Electrodes Modified By La@C82. Chem. Phys. Lett., 400, pp.235-238. 2004. Hoegl, H. On the Photoelectric Effects in Polymers and Their Sensitization by Dopants. J. Phys. Chem., 69, pp. 755-766. 1965. Hovel, H. J. and Urgell, J. J. Switching and Memory Characteristics of ZnSe-Ge Heterojunctions. J. Appl. Phys., 42, pp.5076-5083. 1971. Hummers, W. S., Jr. and Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc., 80, pp.1339-1339. 1958. Hungens, S. and Johnson, B. Overview of Phase-Change Chalcogenide Non-Volatile Memory Technology. MRS Bull., 29, pp.829-832. 2004. Hwang, E. H., Adam, S. and Sarma, S. D. Carrier Transport in Two-Terminal Graphene Layers. Phys. Rev. Lett., 98, Art. No. 186806. 2007. Hwang, W. and Kao, K. C. On the Theory of Filamentary Double Injection and Electroluminuscence in Molecular Crystals. J. Chem. Phys., 60, pp.3845-3855. 1974. Iijima, S. Helical Microtubes of Graphitic Carbon. Nature, 354, pp.56-58. 1991. International Technology Roadmap for Semiconductors (ITRS) 2000 Update. pp.1-36. 2000. Ishiwara, H., Okuyama, M. and Arimoto, Y. Ferroelectric Random Access Memories. Berlin: Springer-Verlag. 2004. 172 References Jakobsson, F. L. E., Crispin, X., Cölle, M., Büchel, M.,de Leeuw, D. M. and Berggren, M. On the Switching Mechanism in Rose Bengal-Based Memory Devices. Org. Electro., 8, pp.559-565. 2007. Jensen, K. L. Electron Emission Theory and Its Applications: Fowler-Nordheim Equation and Beyond. J. Vac. Sci. Technol. B, 21, pp.1528-1541. 2003. Johansson, Å. and Stafström, S. Modeling of the Dynamics of Charge Separation in An Excited Poly(phenylene Vinylene)/C60 system. Phys. Rev. B, 68, Art. No. 035206. 2003. Joo, W. J., Choi, T. L., Lee, J., Lee, S. K., Jung, M. S., Kim, N. and Kim J. M. Metal Filament Growth in Electrically Conductive Polymers for Nonvolatile Memory Application. J. Phys. Chem. B, 110, pp.23812-23816. 2006. Kanwal, A. and Chhowalla, M. Stable, Three Layered Organic Memory Devices from C60 Molecules and Insulating Polymers. Appl. Phys. Lett., 89, Art. No. 203103. 2006. Karcha, R. J. and Porter, R. S. Miscible Blends of Modified Poly (aryl ether ketones) with Aromatic Polyimides J. Polym. Sci. Part B. Polym. Phys., 31, pp.821-830. 1993. Kawamura, Y., Yanagida, S. and Forrest. S. R. Energy Transfer in Polymer Electrophosphorescent Light Emitting Devices with Single and Multiple Doped Luminescent Layers. J. Appl. Phys., 92, pp.87-93. 2002. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Lim, K. S., Ahn, J. H., Kim, P., Choi, J. Y. and Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature, 457, pp.706-710. 2008. Kinney, W. and Gearly F. D. Memory Applications of Integrated Ferroelectric Technology. In: International Solid-State Circuits Conference, pp.266-267. 1994. Kohlstedt, H., Mustafa., Y., Gerber, A., Petraru, A., Fitsilis, M., Meyer, R., Böttger, U and Waser, R. Current Status and Challenges of Ferroelectric Memory Device. Microelectron. Eng., 80, pp.296-304. 2005. Kugler, T., Lögdlund, M. and Salaneck, W. R. Polymer Surfaces and Interfaces in Light-Emitting Devices. IEEE J. Sel. Top. Quant. Electron., 4, pp.14-23. 1998. Lai, Y. S., Tu, C. H., Kwong, D. L. and Chen, J. S. Bistable Resistance Switching of Poly(N-vinylcarbazole) Films for Nonvolatile Memory Applications. Appl. Phys. Lett., 87, Art. No. 122101. 2005. Lampert, M. A. Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Phys. Rev., 103, pp.1648-1656.1956. Leclerc, M. Polyfluorenes: Twenty Years of Progress. J. Polym. Sci. Part A: Polym. Chem., 29, pp.2867-2873. Lednev, I. K., Ye, T. Q., Hester, R. E. and Moore, J. N. Femtosecond Time-Resolved UV-Visible Absorption Spectroscopy of trans-Azobenzene in Solution. J. Phys. Chem., 100, pp.13338-13341. 1996. 173 References Lee, C., Wei, X., Kysar, J. W. and Hone, J. Measurement on the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, pp.385-388. 2008. Lee, M. J., Jung, D. H. and Han, Y. K. Photo-Responsive Polymers and Their Applications to Optical Memory. Mol. Cryst. Liq. Cryst., 444, pp.41-50. 2006. Lee, S. and Kim, K. Current Development Status and Future Challenges of Ferroelectric Random Access Memory Technologies. Jpn. J. Appl. Phys., 45. pp.3189-3193. 2006. Lee, Y. Z., Chen, X. W., Chen, S. A., Wei, P. K. and Fann, W. S. Soluble Electroluminescent Poly(phenylene vinylene)s with Balanced Electron- and Hole Injection. J. Am. Chem. Soc., 123, pp.2296-2307. 2001. Lem, D. J. and Spruth, W. G. Switching Logic for A Two-Dimensional Memory: 3271591. 1996. Lew, D. W. Bistable Resistance Memory Devices. US patent: 3359521. 1967. Li, C., Fan, W. D., Lei, B., Zhang, D. H., Han, S. and Tang, T. Multilevel Memory Based on Molecular Devices. Appl. Phys. Lett., 84, pp.1949-1951. 2004. Li, F. S., Son, D. I., Cha. H. M., Seo, S. M., Kim, B. J., Kim, H. J. Jung, J. H. and Kim, T. W. Memory Effect of CdSe/ZnS Nanoparticles Embedded in A Conducting Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] Polymer Layer. Appl. Phys. Lett., 90, Art. No. 222109. 2007. Li, L., Ryohei, K., Masa-Aki, K., Mitsutoshi, J. and Akio, T. Synthesis and Characterization of New Polyimides Containing Nitrile Groups. High. Perf. Polym., 17, pp.135-148. 2005. Li, L., Ling, Q. D., Lim, S. L., Tan, Y. P., Zhu, C. X., Chan, D. S. H., Kang, E. T. and Neoh, K. G. A Flexible Polymer Memory Device. Org. Electron., 8, pp. 401-406. 2007. Li, S. P., Qin, Y., Shi, J. H., Guo, Z. X., Li, Y. F. and Zhu, D. B. Electrical Properties of Soluble Carbon Nanotube/Polymer Composite Films. Chem. Mater., 17, pp.130-135. 2005. Liaw, D. J., Chen, W. H. and Huang, C. C. In Polyimides and Other High Temperature Polymers. Mittal, K. L., Ed. Vol. 2, pp.47–70. 2003. Liaw, D. J., Wang, K. L., Chang, F. C., Lee, K. R. and Lai, J. Y. Novel Poly(pyridine imide) with Pendent Naphthalene Groups: Synthesis and Thermal, Optical, Electrochemical, Electrochromic, and Protonation Characterization. J. Polym. Sci. Part A. 45, pp.2367-2374. 2007. Liaw, D. J., Wang, K. L., Kang, E. T., Pujari, S. P., Chen, M. H., Huang, Y. C., Tao, B. C., Lee, K. R. and Lai, J. Y. Optical Properties of A Novel Fluorene-Based Thermally Stable Conjugated Polymer Containing Pyridine and Unsymmetric Carbazole Groups. J. Polym. Sci. Part A, 47, pp.991-1002. 2009. 174 References Lim, S. L. Ling, Q. D., Teo, E. Y. H., Zhu, C. X. Chan, D. S. H., Kang, E. T. and Neoh, K. G Conformation-Induced Electrical Bistability in Non-Conjugated Polymers with Pendant Carbazole Moieties. Chem Mater., 19, pp.5148-5157. 2007. Lim, S. L., Li, N. J., Lu, J. M., Ling, Q. D., Zhu, C. X., Kang, E. T. and Neoh, K. G. Conductivity Switching and Electronic Memory Effect in Polymers with Pendant Azobenzene Chromophores. Appl. Mater. Inter., 1, pp.60-71. 2009. Ling, M. M. and Bao, Z. Thin Film Deposition, Patterning, and Printing in Organic Thin Film Transistors. Chem. Mater., 16, pp.4824-4840. 2004. Ling, Q. D., Song, Y., Ding, S. J., Zhu, C. X., Chan, D. S. H., Kwong, D. L., Kang, E. T. and Neoh, K. G. Nonvolatile Polymer Memory Device based on a Novel Copolymer of N-vinylcarbazole and Eu-Complexes Vinylbenzoate. Adv. Mater., 17, pp.455-459. 2005. Ling, Q. D., Song, Y., Lim, S. L., Teo, T. H., Tan, Y. P., Zhu, C. X., Chan, D. S. H., Neoh, K. G. and Kang, E. T. A Dynamic Random Access Memory Based on a Conjugated Copolymer Containing Electron-Donor and -Acceptor Moieties. Angew. Chem. Int. Ed., 45, pp.2947-2951. 2006. Ling, Q. D., Chang, F. C., Song, Y., Zhu, C. X., Liaw, D. J., Chan, D. S. H., Kang, E. T. and Neoh, K. G. Synthesis and Dynamic Random Access Memory Behavior of a Functional Polyimide. J. Am. Chem. Soc., 128, pp.8732-8733. 2006. Ling, Q. D., Zhu, C. X., Chan, D. S. H., Kang, E. T. and Neoh, K. G. Molecular and Polymer Memories. In: Nalwa H. S. editor. Encyclopedia of Nanoscience and Nanotechnology. 2nd Ed. American Scientific Publishers. 2007. Ling, Q. D., Lim, S. L., Song, Y., Zhu, C. X., Chan, D. S. H., Kang, E. T. and Neoh, K. G. Nonvolatile Polymer Memory Device Based on Bistable Electrical Switching in a Thin Film of Poly(N-vinylcarbazole) with Covalently Bonded C60. Langmuir, 23, pp.312-319. 2007. Ling, Q. D., Liaw, D. J., Zhu, C. X., Chan, D. S. H., Kang, E. T. and Neoh. K. G. Polymer Electronic Memories: Materials, Devices and Mechanisms. Prog. polym. Sci., 33, pp.917-978. 2008. Liu, C. Y. and Bard, A. J. Optoelectric Charge Trapping/Detrapping in Thin Solid Films of Organic Azo Dyes: Application of Scanning Tunneling Microscopic Tip Contact to Photoconductive Films for Data Storage. Chem. Mater., 10, pp.840-846. 1998. Liu, G., Ling, Q. D., Kang, E. T., Neoh, K. G., Liaw, D. J., Chang, F. C., Zhu, C. X. and Chan, D. S. H. Bistable Electrical Switching and Write-Once Read-Many-Times Memory Effect in A Donor-Acceptor Containing Polyfluorene Derivative and Its Carbon Nanotube Composites. J. Appl. Phys., 102, Art. No. 204502. 2007 Liu, G., Ling, Q. D., Teo, E. Y. H., Zhu, C. X., Chan, D. S. H., Neoh, K. G. and Kang, E. T. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films. ACS Nano, 3, pp.1929-1937. 2009. 175 References Liu, G., Liaw, D. J., Lee, W. Y., Ling, Q. D., Zhu, C. X., Chan, D. S. H., Kang, E. T. and Neoh, K. G. Tristable Electrical Conductivity Switching in A Polyfluorene-Diphenylpyridine Copolymer with Pendant Carbazole Groups. Philos. Trans. R. Soc. A, 2009 (in press). Liu, J., Rinzler, A. G., Dai, H. , Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Shon, Y. S., Lee, T. R., Colbert, D. T. and Smalley, R. E. Fullerene Pipes. Science, 280, pp.1253-1256. 1998. Liu, Y. L., Wang, K. L., Huang, G. S., Zhu, C. X., Tok, E. S., Neoh, K. G. and Kang, E. T. Volatile Electrical Switching and Static Random Access Memory Effect in A Functional Polyimide Containing Oxidiazole Moieties. Chem. Mater., 21, pp.3391-3399. 2009. Loveringer, A. J. Poly(vinylidene fluoride). In: Bassett IDC, editor. Developments in Crystalline Polymers, Vol 1, pp.195-273. London, UK: Applied Science Publishers, 1982. Ma, D. G., Aguiar, M., Freire, J. A. and Hummelgen I. A. Organic Reversible Switching Devices for Memory Applications. Adv. Mater., 12, pp. 1063-1066. 2000. Ma, L. P., Liu, J. and Yang, Y. Organic Electrical Bistable Devices and Rewritable Memory Cell. Appl. Phys. Lett., 80, pp.2997-2999. 2002. Ma, L. P., Xu, Q. F. and Yang, Y. Organic Nonvolatile Memory By Controlling the Dynamic Copper-Ion Concentration within Organic Layer. Appl. Phys. Lett., 84, pp.4908-4910. 2004. Martin, I. and Blanter, Y. M. Transport in Disordered Graphene Nanoribbons. Phys. Rev. B, 79, Art. No. 235132. 2009. McClure, D. S. Energy Transfer in Molecular Crystals and in Double Molecules. Can. J. Chem., 36, pp.59-71. 1958. Majumdar, H. S., Bandyopadhyay, A., Bolognesi, A. and Pal, A. J. Memory Device Applications of a Conjugated Polymer: Role of Space Charges. J. Appl, Phys., 91, pp.2433-2437. 2002. Majumdar, H. S., Bandyopadhyay, A. and Pal, A. J. Data-Storage Devices Based on Layer-by-Layer Self-Assembled Films of a Phthalocyanine Derivative. Org. Electron., 4, pp.39-44. 2003. Majumdar, H. S., Bolognesi, A. and Pal, A. J. Memory Applications of a Thiophene-Based Conjugated Polymers: Capacitance Measurements. J. Phys. D, 36, pp.211-215. 2003. Mal’tsev E. I., Brusentseva, M. A., Lypenko, D. A., Berendyaev, V. I., Kolesnikov, V. A., Kotov, B. V. and Vannikov, A. V. Electroluminescent Properties of Anthracene-Containing Polyimides. Polym. Adv. Technol., 11, pp.325-329. 2000. Marsh, G. Data Storage Gets to the Point. Mater. Today, 6, pp.38-43. 2003. 176 References Meador, M. A. Recent Advances in the Development of Processable High-Temperature Polymers. Annu. Rev. Mater. Sci., 28, pp.599-630. 1998. Meindl, J. D., Chen, Q. and Davis, J. A. Limits on Silicon Nanoelectronics for Terascale Integration. Science, 293, pp.2044-2049. 2001. Mikolajick, T. Ferroelectric Nonvolatile Memories. In: Encyclopedia of Materials: Science and Technology. Oxford, UK: Elesevier, pp.1-5. 2002. Mikolajick, T., Nagel, N., Riedel, S., Muller, T. and Kuster, K. H. Scaling of Nonvolatile Memories to Nanoscale Feature Sizes. Mater. Sci. Porland, 25, pp.33-43. 2007. Moller, S., Perlov, C., Jackson, W., Taussig, C. and Forrest, S. R. A Polymer/Semiconductor Write-Once Read-Many-Times Memory. Nature, 426, pp.166-169. 2003. Moller, S., Forrest, S. R., Perlov, C., Jackson, W. and Taussig, C. Electrochromic Conductive Polymer Fuses for Hybrid Organic/Inorganic Semiconductor Memories. J. Appl. Phys., 94, pp.7811-7819. 2003. Morin, J. F., Leclerc, M., Ades, D. and Siove, A. Polycarbazoles: 25 Years of Progress. Macromol. Rapid Comm., 26, pp.761-778. 2005. Mott, N. F. Electrons in Disordered Structures. Adv. Phys., 16, pp. 49-144. 1967 Mrozowski, S. Semiconductivity and Diamagnetism of Polycrystalline Graphite and Condensed Ring Systems. Phys. Rev., 85, pp.609-620. 1952. Mühlbacher, D., Brabec, C. J., Sariciftci, N. S., Kotov, B. V., Berendyaev, V. I., Rumyantsev, B. M. and Hummelen, J. C. Sensitization of Photoconductive Polyimides for Photovoltaic Applications. Synth. Met., 121, pp.1609-1610. 2001. Mukherjee, B. and Pal, A. J. Write-Once-Read-Many-Times (WORM) Memory Applications in A Monolayer of Donor/Acceptor Supramolecule. Chem. Mater., 19, pp.1382-1387. 2007. Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K. and Timp, G. The Electronic Structure at the Atomic Scale of Ultra Thin Oxides. Nature, 399, pp.758-761. 1999. Murgatroyd, P. N. Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect. J. Phys. D, 3, pp.151-156. 1970. Murov, S. L, Carmichael, I. and Hug, G. L. Handbook of Photochemistry, 2nd Ed. Marcel Dekker: New York, pp 56-57 & pp-278. 1993. Mushrush, M., Facchetti, A., Lefenfeld, M., Katz, H. E. and Marks, T. J. Easily Processable Phenylene-Thiophene-Based Organic Field-Effect Transistors and Solution-Fabricated Nonvolatile Transistor Memory Elements. J. Am. Chem. Soc., 125, pp.9414-9423. 2003. 177 References Naber, R. C. G., Tanase, C., Blom, P. W. M., Gelinck, G. H., Marsman, A. W. and Touwslager, F. J. High-Performance Solution-Processed Polymer Ferroelectric Field-Effect Transistors. Nat. Mater., 4, pp.243-248. 2005. Naga, N., Tagaya, N., Noda, H., Imai, T. and Tomoda, H. Synthesis and Properties of Fluorene or Carbazole-Based Alternating Copolymers Containing Si and Vinylene Units in the Main Chain. J. Polym. Sci. Part A: Polym. Chem., 46, pp.4513–4521. 2008. Najechalski, P., Morel, Y., Stéphan, O. and Baldeck, P. L. Two-Photon Absorption Spectrum of Poly(fluorene). Chem. Phys. Lett., 343, pp.44-48. 2001. Nalwa, H. S. Ferroelectric Polymers: Chemistry, Physics, and Applications. New York: Marcel Dekker. 1995. Newman, C. R., Daniel, F. C., da Silva Filho, D. A., Bredas, J. L., Ewbank, P. C. and Mann, K. R. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chem. Mater., 16, pp.4436-4451. 2004. Novoselov, K.S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I, V. and Firsov. A. A. Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. 2004. Ohmori, Y., Uchida, M., Muro, K. and Yoshino, K. Blue Electroluminescent Diodes Utilizing Poly(alkylfuorene). Jpn. J. Appl. Phys., 30, pp.1941-1943. 1991. Ouisse T. and Stephan O. Electrical Bistability of Polyfluorene Devices. Org. Electron., 5, pp.251-256. 2004. Ouyang, J. Y., Chu, C. W., Szmanda, C. R. Ma, L. P. and Yang, Y. Programmable Polymer Thin Film and Non-volatile Memory Device. Nat. Mater., 3, pp.918-922. 2004. Ovshinsky, S. R. Reversible Electrical Switching Phenomena in Disordered Structures. Phys. Rev. Lett., 21, pp.1450-1453. 1968. Park, K. D., Piao, A. Z., Jacobs, H., Okane, T. and Kim, S. W. Synthesis and Characterization of SPUU-PEO-Heparin Graft Copolymers. J. Polym. Sci Part A, 29, pp.1725-1737. 1991. Pederson, M. R. and Broughton, J. Q. Nanocapillarity in Fullerene Tubules. Phys. Rev. Lett., 69, pp.2689-2692. 1992. Pei, J., Liu, X. L., Chen, Z. K., Zhang, X. H., Lai, Y. H. and Huang, W. First Hydrogen-Bonding-Induced Self-Assembled Aggregates of a Polyfluorene Derivative. Macromolecules, 36, pp.323-327. 2003. Pei, Q. and Yang, Y. Efficient Photoluminescence and Electroluminescence from a Soluble Polyfluorene. J. Am. Chem. Soc., 118, pp.7416-7417. 1996. Pender, L. F. and Fleming, R. J. Memory Switching in Glow Discharge Polymerized Thin Films. J. Appl. Phys. 46, pp.3426-3431 (1975). 178 References Pillai, P. K. C. Polymer Electrets. In: Ferroelectric Polymers: Chemistry, Physics, and Applications. New York: Marcel Dekker, pp.1-62. 1995. Ping, S., Abeles, B. and Arie, Y. Hopping Conductivity in Granular Metals. Phys. Rev. Lett., 31, pp.44-47. 1973. Pinnow, C. U. and Mikolajick, T. Material Aspects in Emerging Nonvolatile Memories. J. Electrochem. Soc., 151, Art. No. K13-9. 2004. PolyIC. Pictures for the Press. Http://www.polyic.com/en/press-images.php. 2009. Pope, M. and Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers. 2nd ed. New York: Oxford University Press. 1999. Potember, R. S., Poehler, T. O. and Cowan, D. O. Electrical Switching and Memory Phenomena in Cu-TCNQ Thin Films. Appl. Phys. Lett., 34, pp.405-407. 1979. Pradhan, B., Batabyal, S. K. and Pal, A. J. Electrical Bistability and Memory Phenomenon in Carbon Nanotube-Conjugated Polymer Matrixes. J. Phys. Chem. B, 110, pp.8274-8277. 2006. Prakash A., Ouyang, J. Y., Lin, J. L. and Yang, Y. Polymer Memory Device Based on Conjugated Polymer and Gold Nanoparticles. J. Appl. Phys., 100, Art. No. 054309. 2006. Prince, B. Semiconductor Memories: A Handbook of Design, Manufacture, and Application. New York: Wiley. 1991. Qin, Y. J., Shi, J. H., Wu, W., Li, X. L., Guo, Z. X. and Zhu, D. B. Concise Route to Functionalized Carbon Nanotubes. J. Phys. Chem. B, 107, 12899-12901. 2003. Ranger, M., Rondeau, D. and Leclerc, M. New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping. Macromolecules, 30, pp.7686-7691. 1997. Ranger M. and Leclerc, M. Novel Base-Dopable Poly(2,7-fluorene) Derivatives. J. Chem. Soc. Chem. Commn., 17, 1597-1598. 1997. Rau, H. and Lüddecke, E. On the Rotation-Inversion Controversy on Photoisomerization of Azobenzenes. Experimental Proof of Inversion. J. Am. Chem. Soc., 104, pp.1616-1620. 1982. Raymo, F. M. Digital Processing and Communication with Molecular Switches. Adv. Mater., 14, pp.401-414. 2002. Reese, C., Roberts, M., Ling, M. and Bao, Z. Organic Thin Film Transistors. Mater. Today, 7, pp.20-27. 2004. Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z. and Sheehan, P. E. Reduced Graphene Oxide Molecular Sensors, 8, pp.3137-3140. 2008. 179 References Rozenberg, M. J., Inoue, I. H. and Sanchez, M. J. Nonvolatile Memory with Multilevel Switching: A Basic Model. Phys. Rev. Lett., 92, Art. No. 178302. 2004. Sadaoka, Y and Sakai, Y. Switching in Poly(N-vinylcarbazole) Thin Films. J. Chem. Soc. Faraday Trans. II, 72, pp.1911-1915. 1976 Safoula, G., Napo, K., Bernède, J. C., Touihri, S. and Alimi, K. Electrical Conductivity of Halogen Doped Poly(N-vinylcarbazole) Films. Eur. Polym. J., 37, pp.843-849. 2001. Sakai, K., Kawada, H., Takamatsu, O., Matsuda, H., Eguchi, K. and Nakagiri, T. Electrical Memory Switching in Langmuir-Blodgett Films. Thin Solid Films, 179, pp.137-142. 1989. Saxena, V. and Malhotra, B. D. Prospects of Conducting Polymers in Molecular Electronics. Current Appl. Phys., 3, pp.293-305. 2003. Sberveglieri, G., Faglia, G., Perego, C., Nelli, P., Marks, R. N., Virgili, T., Taliani, C. and Zambonia, R. Hydrogen and Humidity Sensing Properties of C60 Thin Films. Synt. Met., 77, pp.273-275. 1996. Schaffert, R. M. A New High-sensitivity Organic Electrophotography. IBM. J. Res. Dev., 15, pp.75-89. 1971. Photoconductor for Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I. and Novoselov, K. S. Detection of Individual Gas Molecules Absorbed on Graphene. Nat. Mater., 6, pp.652-655. 2007. Schlatmann, A. R., Floet, D. M., Hilberer, A., Garten, F., Smulders, P. J. M., Kalpwijk, T. M. and Hadziioannou, G. Indium Contamination from the Indium-Tin-Oxide Electrode in Polymer Light-Emiting Diodes. Appl. Phys. Lett., 69, PP.1764-1766. 1996. Schroeder, R., Majewski, L. A., Voigt, M. and Grell, M. All-Organic Permanent Memory Transsitor Using An Amorphous, Spin-Cast Ferroelectric-Like Gate Insulator. Adv. Mater. 16, pp.633-636. 2004. Schulz, M. The End of the Road for Silicon? Nature, 399, pp.729-730. 1999. Scherf, U. and List, E. J. W. Semiconducting Polyfluorenes-Towards Reliable Structure-Property Relationship. Adv. Mater., 14, pp.477-487. 2002. Scott, J. C. Is There An Immortal Memory? Science, 304, pp.62-63. 2004. Scott, J. C. and Bozano, L. D. Nonvolatile Memory Elements Based on Organic Materials. Adv. Mater., 19, pp.1452-1463. 2007 Scott, J. C., Kaufman, J. H., Brock, P. J., DiPietro, R., Salem, J. and Goitia, J. A. Degradation and Failure of MEH-PPV Light Emitting Diodes. J. Appl. Phys., 79, pp.2745-2751. 1996. 180 References Scott, J. F. Nanoferroelectrics: Statics and Dynamics. J. Phys. Condens. Matter, 18, pp.361-386. 2006. Seanor, D. A. Electrical Properties of Polymers. New York: Academic Press. 1982. Segui, Y., Ai, B. and Carchano, H. Switching in Polystyrene Films: Transition from On to Off State. J. Appl. Phys., 47, pp. 140-143. 1976. Service, R. F. Organic Device Bids to Make Memory Cheaper. Science, 293, pp.1746-1746. 2001. Service, R. F. Next-Generation Technology Hits An Early Midlife Crisis. Science, 302, pp.556-557. 2003. Service R. F. Carbon Sheets An Atom Thick Give Rise to Graphene Dreams. Science, 324, 875-877. 2009 Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgia, S. and Hong, S. Ferroelectric Thin Films: Review of Materials, Properties, and Applications. J. Appl. Phys., 100, Art. No. 051606. 2006. Sharma, A. K. Advanced Semiconductor Memories: Architectures. In: Design and Applications. Piscataway, NJ: Wiley-IEEE. 2003. Shi, J., Jiang, Z. W. and Cao, S. K. Synthesis of Carbazole-Based Photorefractive Polymers via Post-Azo-Coupling Reaction. React. Func. Polym., 59, pp.87-91. 2004. Sliva, P. O., Dir, G. and Griffiths, C. Bistable Switching and Memory Devices. J. Non-Cryst. Solids, 2, pp.316-333 (1970). Smith S. and Forrest, S. R. A Low Switching Voltage Organic-on-Inorganic Heterojunction Memory Element Utilizing a Conductive Polymer Fuse on A Doped Silicon Substrate. Appl. Phys. Lett., 84, pp.5019-5021. 2004. Son, Y. W., Cohen, M. L. and Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett., 97, Art. No. 216803. 2006. Song, Y., Ling, Q. D., Zhu, C. X., Kang, E. T., Chan, D. S. H., Wang, Y. H. and Kwong, D. L. Memory Performance of A Thin-Film Device Based on A Conjugated Copolymer Containing Fluorene and Chelated Europium Complex. IEEE Electron. Dev. Lett., 27, pp.154-156. 2006. Song, Y., Ling, Q. D., Lim, S. L., Teo, E. Y. H., Tan, Y, P., Li, L., Kang, E. T. Chan, D. S. H. and Zhu, C. X. Electrically Bistable Thin-Film Device Based on PVK and GNPs Polymer Material. IEEE Electron. Dev. Lett., 28, pp.107-110. 2007. Song, Y., Tan, Y. P., Teo, E. Y. H., Zhu, C. X., Chan, D. S. H. Ling, Q. D. Neoh, K. G. and Kang, E. T. Synthesis and Memory Properties of A Conjugated Copolymer of Fluorene and Benzoate with Chelated Europium Complex. J. Appl. Phys., 100, Art. No. 084508. 2006. 181 References Spiesshoefer, S., Rahman, Z., Vangara, G., Polamreddy, S., Burkett, S. and Schaper, L. Process integration for Through-Silicon Vias. J. Vac. Sci. Technol. A, 23, pp.824-829. 2005. Spiliopoulos, I. K. and Mikroyannidis, J. A. Rigid-Rod Polyamides and Polyimides Derived from 4,3’’-Diamino-2’,6’-diphenyl- or Di(4-biphenylyl)-p-terphenyl and 4-Amino-4’’-carboxy-2’,6’-diphenyl-p-terphenyl. Macromolecules, 31, pp.522-529. 1998. Stankovich, S. Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T. and Ruoff, R. S. Graphene-Based Composite Materials. Nature, 442, pp.282-286. 2006. Stankovich, S., Piner, R. D., Nguyen, S. T. and Ruoff, R. S. Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets. Carbon, 44, 3342-3347 (2006). Star, A., Lu, Y., Bradley, K. and Grüner, G. Nanotube Optoelectronic Memory Devices. Nano Lett., 4, pp.1587-1591. 2004. Stikeman, A. Upstream-Spotlight on A Hot Technology to Watch-Polymer Memory-The Plastic Path to Better Data Storage, Techno. Rev., 105(31), pp.31-31. 2002. Sun, Y. M., Liu Y. Q. and Zhu, D. B. Advances in Organic Field-Effect Transistors. J. Mater. Chem., 15, pp.53-65. 2005. Svensson, M., Zhang, F., Veenstra, S. C., Verhees, W. J. H., Hummelen, J. C., Kroon, J. M., Inganäs, O. and Anderson. M .R. Adv. Mater., 15, pp. 988-991. 2003. Sze, S. M. and Ng, K. K. Physics of Semiconductor Devices, pp. 47-47. 2007. Taylor, D. M. Space Charges and Traps in Polymer Electronics. IEEE Trans. Dielect. Electr. Insulation, 13, pp. 1063-1073. 2006. Taylor, D. M. and Mills, C. A. Memory Effect in the Current-Voltage Characteristics of A Low-Band Gap Conjugated Polymer. J. Appl. Phys., 90, pp. 306-309. 2001. Teo, E. Y. H., Ling, Q. D., Song, Y., Tan, Y. P., Wang, W., Kang, E. T., Chan, D. S. H. and Zhu, C. X. Non-Volatile WORM Memory Device Based on An Acrylate Polymer with Electron Donating Carbazole Pendant Groups. Org. Electron., 7, pp.173-180. 2006. Torrance, J. B. The Difference between Metallic and Insulating Salts of Tetracyanoquinodimethane (TCNQ): How to Design An Organic Metal. Acc. Chem. Rev., 12, pp.79-86. 1979. Tseng, R. J., Huang, J. X., Ouyang, J. Y., Kaner, R. B. and Yang, Y. Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory. Nano. Lett., pp.1077-1080. 2005. Tyczkowski, J. Bistable Switching in Plasma-Polymerized Acrylonitrile Films. Thin Solid Films, 199, pp.335-342. 1991. 182 References van Dijken, A., Bastiaansen, J. J. A. M., Kiggen, N. M. M., Langereld, B. M. W., Rothe, C., Monkman, A., Bach, I., Stossel, P. and Brunner, K. Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes: Polymer Hosts for High-Efficiency Light-Emitting Diodes. J. Am. Chem. Soc., 126, pp.7718-7727. 2004. Verbakel, F., Meskers, S. C. J., Jansen, R. A. J., Gomes, H. L., Cölle, M., Büchel, M. and de Leeuw, D. M. Reproducible Resistive Switching in Nonvolatile Organic Memories. Appl. Phys. Lett., 91, Art. No. 192103. 2007. Viswanathan, N. K., Kim, D. Y., Bian, S. P., Williams, J., Liu, W., Li, L; Samuelson, L., Kumar, J. and Tripathy, S. K. Surface Relief Structures on Azo Polymer Films. J. Mater. Chem., 9, pp.1941-1955. 1999. Wainwright, M., Griffiths, J., Guthrie, J. T., Gates, A. P. and Murray, D. E. Copolymers of N-vinylcarbazole with Monomers Containing Carboxylic Acid Groups or Carboxylic Anhydrate Groups. I. J. Appl. Polym. Sci., 44, pp.1179-1186. 1992. Walsh, C. A., Burland, D. M. Picosecond Photoionization and Geminate Recombination in An Organic Donor-Accpetor Complex. Chem. Phys. Lett., 192, pp.309-315. 1992. Wang, B., Shen, F., Lu, P., Tang, S., Zhang, W., Pan, S., Liu, M., Liu, L., Qiu, S. and Ma, Y. New Ladder-Type Conjugated Polymer Containing Carbazole and Fluorene Units in Backbone: Synthesis, Optical, and Electrochemical Properties. J. Polym. Sci. Part A: Polym. Chem., 46, pp.3120–3127. 2008. Wang, C. C., Guo, Z. X., Fu, S. K., Wu, W. and Zhu, D. B. Polymers Containing Fullerene and Carbon Nanotube Structures. Prog. Polym. Sci., 29, 1079-1141. 2004. Wang, T. T., Herbert, J. M. and Glass A. M. The Applications of Ferroelectric Polymers. Glasgow, UK:Blackie. 1998. Wang, X., Zhi, L. and Müller, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett., 8, pp.323-327. 2008. Wang, Z. Y., Qi, Y., Gao, J. P., Sacripante, G. G., Sundararajan, P. R. and Duff, J. D. Synthesis, Characterization, and Xerographic Electrical Characteristics of Perylene-Containing Polyimides. Macromolecules, 31, pp.2075-2079. 1998. Waser, R. Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices. 2nd Ed. Weinheim: Wiley-VCH. 2005. Weast, R. C. and Astle, M. J. CRC Handbook of Chemistry and Physics; 63rd Eds.; Florida: CRC Press Inc., pp E-78. 1982. Weiss, M. Acetic Acid-Ammonium Acetate Reactions. An Improved Chichibabin Pyridine Synthesis1. J. Am. Chem. Soc., 74, pp.200-202. 1952. Wilkinson, A. Compendium of Chemical Terminology: IUPAC Recommendations. 2nd ed. Boston: Blackwell Science. 1997. 183 References Winslow, F. H. and Matreyek, W. Pyrolisis of Crosslinked Styrene Polymers. J Polym. Sci., 22, pp.315-324. 1956. Xu, C., Wu, X., Zhu, J. and Wang, X. Synthesis of Amphiphilic Graphite Oxide. Carbon, 46, pp.386-389. 2008. Xu, X., Register, R. A. and Forrest, S. R. Mechanisms for Current-Induced Conductivity Changes in A Conductive Polymer. Appl. Phys. Lett., 89, Art. No. 142109. 2006. Xu, Y., Guan, R., Jiang, J., Yang, W., Zhen, H., Peng, J. and Cao, Y. Molecular Design of Efficient White-Light-Emitting Fluorene-Based Copolymers by Mixed Singlet and Triplet Emission. J. Polym. Sci. Part A: Polym. Chem., 46, pp.453–463. 2008. Yagi, T, tatemoto, M. and Sako, J. Transition Behavior and Dielectric Properties in Trifluoroethylene and Vinylene Fluoride Copolymers. Polym. J., 12, pp.209-223. 1980. Yamauchi, N. A Metal-Insulator-Semiconductor (MIS) device using a Ferroelectric Polymer Thin Film in The Gate Insulator. Jpn. J, Appl. Phys., 25, pp.590-594. 1986. Yang, Y., Ouyang, J. Y., Ma., L. P., Tseng, R. J. and Chu, C. W. Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devies. Adv. Func. Mater., 16, pp.1001-1014. 2006. Yano, K., Kuroda, R., Shimada, Y., Shido, S., Kyogaku, M., Matsuda, H., Takimoto, K., Eguchi, K. and Nakagiri, T. Information Storage Using Conductance Change of Langmuir-Blodgett Film and Atomic Force Microscope/Scanning Tunneling Microscope. J. Vac. Sci. Technol. B, 14, pp.1353-1355. 1996. Yesodha, S. K., Pillai, C. K. S. and Tsutsumi, N. Stable Polymeric Materials for Nonlinear Optics: A Review Based on Azobenzene Systems. Prog. Polym. Sci., 29, pp.45-74. 2004. Yu, W. L., Pei, J., Cao, Y., Huang, W. and Heeger, A. J. New Efficient Blue Light Emitting Polymer for Light Emitting Diodes. Chem. Commn., 18, pp.1837-1838. 1999. Zhang B., Chen, Y., Zhuang, X. D., Liu G., Yu, B., Kang, E. T., Zhu, J. H and Li, Y. X. Poly(N-vinylcarbazole) Chemically Modified Graphen Oxide. J. Polym. Sci: Part A, 48, pp.2642-2649. 2010. Zhong, G. L., Kim, K. K. and Jin, J. I. Intermolecular Energy Transfer in Photo- and Electroluminescence Properties of a Europium(III) Complex Dispersed in Poly(vinylcarbazole). Syn. Met., 129, 193-198. 2002. 184 LIST OF PUBLICATIONS 1. Liu G., Li G. L., Li M., Wan D., Neoh. K. G. and Kang E. T., Organo- and Water-Dispersible Graphene Oxide-Polymer Nanosheets for Organic Electronic Memory and Gold Nanocomposites, J. Phys. Chem. C, in press. 2. Liu, G., Zhuang, X. D., Chen, Y., Zhang, B., Zhu, J. H., Zhu, C. X., Neoh, K. G. and Kang, E. T. Bistable Electrical Switching and Electronic Memory Effect in A Solution-Processable Graphene Oxide-Donor Polymer Complex. Appl. Phys. Lett., 95, Art. No. 253301. 2009 3. Liu, G., Liaw, D. J., Lee, W. Y., Ling, Q. D., Zhu, C. X., Chan, D. S. H., Kang, E. T. and Neoh, K. G. Tristable Electrical Conductivity Switching in A Polyfluorene-Diphenylpyridine Copolymer with Pendant Carbazole Groups. Phil. Trans. R. Soc. A, 367, pp.4203-4214. 2009. 4. Liu, G., Ling, Q. D., Teo, E. Y. H., Zhu, C. X., Chan, D. S. H., Neoh, K. G. and Kang, E. T. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films. ACS Nano, 3, pp.1929-1937. 2009. 5. Liu, G., Ling, Q. D., Kang, E. T., Neoh, K. G., Liaw, D. J., Chang, F. C., Zhu, C. X. and Chan, D. S. H. Bistable Electrical Switching and Write-Once Read-Many-Times Memory Effect in A Donor-Acceptor Containing Polyfluorene Derivative and Its Carbon Nanotube Composites. J. Appl. Phys., 102, Art. No. 024502. 2007. 6. Zhuang X. D., Chen Y., Liu G., Zhang B., Neoh K. G., He N., Kang E. T., Zhu C. X., Li Y. X. and Ni L. J., Preparation and Memory Performance of a Nanoaggregated Dispersed Red 1-Functionlized Poly(N-vinylcarbazole) Film via Solution-Phase Self-Assebmly, Adv. Func. Mater., in press. 7. Zhang B., Chen, Y., Zhuang, X. D., Liu, G., Yu, B., Kang E. T., Zhu, J. H. and Li, Y. X. Poly(N-vinylcarbazole) Chemically Modified Graphene Oxide. J. Polym. Sci: Part A, 48, pp.2642-2649. 2010. 8. Chen, Y., Zhuang X. D., Liu, G., Li, P. P., Zhu, C. X., Kang, E. T. Neoh, K. G., Zhang, B. and Zhu, J. H. Conjugated Polymer Functionalized Graphene Oxide: Synthesis and Non-volatile Rewritable Memory Effect. Adv. Mater.,22, pp.1731-1735. 2010. 9. Zhang, Z. G., Zhang, K. L., Liu, G., Zhu, C. X., Neoh, K. G. and Kang, E. T. Triphenylamine-Fluorene Alternating Conjugated Copolymers with Pendant Acceptor Groups: Synthesis, Structure-Property Relationship, and Photovoltaic Application. Macromolecules, 42, pp.3104-3111. 2009. 10. Li, G. L., Liu, G., Kang, E. T., Neoh, K. G. and Yang, X. L. pH-Responsive Hollow Polymeric Microspheres and Concentric Hollow Silica Microspheres from Silica-Polymer Core-Shell Microspheres. Langmuir, 24, pp.9050-9055. 2008. 11. Tong, S. W., Zhang, C. F., Jiang, C. Y., Liu G., Ling, Q. D., Kang, E. T., Chan, D. 185 S. H. and Zhu, C. X. Improvement in the Hole Collection of Polymer Solar Cells by Utilizing Gold Nanoparticle Buffer Layer. Chem. Phys. Lett., 453, pp.73-76. 2008. 186 [...]... reported in 1974 (Henisch and Smith, 1974) Memory switching effects in polystyrene, polyethylmethacrylate and polybutylmethacrylate films were ascribed to a field-controlled polymer chain ordering and disordering Memory switching in poly(N-vinylcarbazole) (PVK) thin films was also reported, attributed to the trapping-detrapping processes associated with absorbed O2 impurities-hole traps (Sadaoka and Sakai,... been invented since 1940s So far, no practical universal storage medium exists, and all forms of storage have some drawbacks Therefore a computer system usually contains several kinds of storage, each with an individual purpose The main emphasis in this field has been placed on studying the electrical switching memory effects of inorganic materials (Lew, 1967; Ovshinsky, 1968; Lem and Spruth, 1969), and. .. mechanical characteristics, was carried out The bistable and even tristable electrical conductivity switching behavior and resistor-type electronic memory effects of these polymers and nanocomposites were explored It is the objective of this work to study the electrical switching properties and the underlying mechanisms of these polymer-based electroactive materials Through this work, the design-cum-synthesis... chloride) and polystyrene) exhibited bistable switching behavior Reproducible bistable switching was soon demonstrated in polymer thin films prepared by glow-discharge polymerization (Carchno et al., 1971) Inspired by the pioneering works, a wide variety of organic and polymer materials have been reported to show threshold or memory switching effects (Antonowicz et al, 1973; Gazso, 1974; Pender and Fleming,... transistors and capacitors The ever increasing demand of personal mobile electronic devices provides a significant incentive for renovation in memory technology with higher capacity and system performance, smaller form factor, and lower power consumption and system cost (Marsh, 2003; Pinnow and Mikolajich, 2004) However, the continuous shrinking of current Si, Ge, and GaAs semiconductors based memory devices... convert information between optical/magnetic and electrical signals (Prince, 1991), an electronic memory is a form of semiconductor storage compact in size, fast in response, and may be temporary in nature When coupled with a central processing unit (CPU, a processor), an electronic memory implements the basic Von Neumann computer model used since the 1940s, that can store the operating instructions and. .. and other digital products, as well as used in memory cards and USB flash drives for transfer of data between computers and portable electronics 12 Chapter 2 Literature Survey Dynamic-random-access memory (DRAM) is a volatile random access memory that stores each bit of data in a separate capacitor within an integrated circuit Since real-world capacitors have charge-leaking tendencies, the stored-information... memories in (a) linear scale (Ling et al., 2005) and (b) log scale (Ling et al., 2007) (c) Stability under continuous voltage stress and ON/OFF ratio (inset, Ling et al., 2007) (d) Effects of number of read cycles (Ling et al., 2007) (e) Write-read-erase-read (WRER) cycles (Tseng et al., 2005) (f) Switching time measurement (Ling et al., 2005) Figure 2.8 Schematic diagram of (a) a 3 × 3 polymer memory. .. employing these innovative technologies, the amazing fabrication cost arising from the preparation and processing of high purity silicon wafer is still inevitable, especially true when utilizing ultrahigh vacuum techniques Thus, exploiting alternative concepts and materials that are running on entirely different operation mechanisms is becoming imperative for IT industry in this concern Regarding the... stacking, and in particular, low cost solution-based techniques of spin-coating, spray-coating, dip-coating, roller-coating and ink-jet printing (Scott, 2004; Guizzo, 2004; Li et al., 2004; Fu et al., 2004; Yang et al., 2006) Other than the more elaborated vacuum evaporation and deposition techniques, organic and polymer materials can be deposited on a variety of substrates such as glass, plastic and . i ELECTRICAL CONDUCTIVITY SWITCHING BEHAVIOR AND MEMORY EFFECTS IN ELECTROACTIVE POLYMERS AND NANOCOMPOSITES LIU GANG (M. Sci., Singapore-MIT Alliance, NUS). Results and Discussion 48 3.3.1 Bistable conductivity switching and WORM memory effects of PFPTPA 48 3.3.2 Tristable conductivity switching and WORM memory effects of PFPCz 55 3.3.3 Electrical. structure exhibits insulator, bistable electrical conductivity switching (WORM memory and flash memory effects) , and conductor behaviors, when the CNT content in the composite film is increased from

Ngày đăng: 11/09/2015, 09:59

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan