Application of micro cantilevers in characterization of crystallization induced stresses and mechanical properties of amorphous thin films

236 467 0
Application of micro cantilevers in characterization of crystallization induced stresses and mechanical properties of amorphous thin films

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

APPLICATION OF MICRO-CANTILEVERS IN CHARACTERIZATION OF CRYSTALLIZATION-INDUCED STRESSES AND MECHANICAL PROPERTIES OF AMORPHOUS THIN FILMS GUO QIANG (B.Sc PEKING UNIVERSITY) (M.Eng MASSACHUSETTS INSTITUTE OF TECHNOLOGY) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ADVANCED MATERIALS FOR MICRO- AND NANO- SYSTEMS (AMM&NS) SINGAPORE-MIT ALLIANCE NATIONAL UNIVERSITY OF SINGAPORE 2010 ACKNOWLEDGEMENT I feel it a great fortune to work with Prof Li Yi and Prof Carl V Thompson during the past years of my PhD endeavor Both professors are distinguished scientists in their respective fields of expertise and I have learnt from them the rigorous way in which scientific research should be conducted Furthermore, their highly motivated working spirits and serious attitudes towards research have deeply impressed and enlightened me, and will continue to inspire me in my future academic career The two postdocs involved in my PhD project, Dr Johannes Kalb and Dr Zhang Xiaoqiang, are greatly appreciated They had taught me a great deal of hands-on skills in doing experiments and data analysis Additionally, I am indebted to the people who have provided critical help for my research: Prof Sow Chorng Haur from the National University of Singapore (NUS) Department of Physics, for his help in the construction of scanning-laser systems, Mr Chen Gin Seng from NUS Department of Physics for my access to the vacuum annealing equipment, Prof Chua Soo Jin from the Institute of Materials Research and Engineering (IMRE) for my access to the sputter equipment, and Dr Yu Hongbin from the NUS Department of Mechanical Engineering for the use of ZYGO optical interferometer i Special thanks should be given to the Singapore-MIT Alliance (SMA) program Their generous financial support enabled me to obtain an MIT Master’s degree and spend one and half years at MIT to conduct research In particular, I would like to thank the program chairs, Prof Choi Wee Kiong and Prof Carl Thompson, and the administrative executives in charge of the AMMNS program, Ms Juliana Chai and Ms Hong Yanling Last but not least, I would like to thank my wife and my parents This work would not be possible without their constant support and love ii TABLE OF CONTENTS Acknowledgement - i Summary xi List of Tables - xvi List of Figures - xvii List of Symbols xxiii Chapter Background and motivations - 1.1 The definition of glasses and the glass transition behavior - 1.1.1 The definition of glasses 1.1.2 The glass transition behavior - 1.1.3 Kinetic theory of glass formation 1.1.3.1 Crystal nucleation - 1.1.3.1.1 Homogeneous nucleation - 1.1.3.1.2 Heterogeneous nucleation - 11 1.1.3.2 Crystal growth 12 1.1.3.3 Overall transformation kinetics 14 1.1.3.4 The temperature dependence of viscosity 17 1.1.4 Structure of glasses 19 iii 1.2 Metallic glasses - 20 1.2.1 Glass-forming abilities of metallic glasses - 21 1.2.1.1 Qualitative criteria - 23 1.2.1.1.1 The confusion principle 23 1.2.1.1.2 The three empirical rules - 23 1.2.1.2 Quantitative criteria 25 1.2.1.2.1 The Trg criterion - 25 1.2.1.2.2 The ∆Tx criterion 27 1.2.1.2.3 The driving force for crystallization 29 1.2.1.2.4 The density change upon crystallization - 30 1.2.1.3 Summary of glass-forming abilities of metallic glasses - 35 1.2.2 Structure of metallic glasses 35 1.2.2.1 Dense random packing model 36 1.2.2.2 Egami-Waseda model 38 1.2.2.3 Ma model 40 1.2.2.4 Efficient-cluster-packing (Miracle) model 42 1.2.3 Mechanical properties of metallic glasses 45 1.3 Phase-change materials - 47 1.3.1 General introduction - 47 1.3.2 Stresses upon reversible phase changes of phase-change materials 49 iv 1.3.2.1 Crystallization-induced stresses in phase-change thin films characterized by wafer curvature measurements 49 1.3.2.2 Limitations of wafer curvature measurements 51 1.3.3 Comparisons between phase-change materials and metallic glasses 52 1.3.3.1 Glass-forming abilities and the corresponding density changes upon crystallization - 52 1.3.3.2 Mechanical properties 53 1.3.4 Summary of Chapter and motivation of this research project 54 Chapter Background: mechanical properties of materials and beam mechanics for analysis of thin film stresses - 57 2.1 The elastic and plastic responses of materials 57 2.1.1 The definitions of stress and strain - 57 2.1.1.1 Stress 57 2.1.1.2 Strain 58 2.1.2 The elastic response of materials and Hooke’s law 61 2.1.3 The plastic response of materials - 62 2.2 The stresses in thin films 64 2.2.1 The origins of stresses in thin films 64 v 2.2.1.1 The mismatch of lattice parameters of the film and substrate - 64 2.2.1.2 The thermal mismatch between the film and substrate -65 2.2.1.3 The volume change in the film due to phase transformations - 65 2.2.1.4 The residual stress due to sputter deposition 65 2.2.2 The determination of thin film stresses with the simple and extended Stoney formulae 66 2.2.2.1 Constitutive relations between the mismatch strain and the film stress 66 2.2.2.2 The simple Stoney formula 68 2.2.2.3 The extended Stoney formula for films of arbitrary thickness 73 2.2.2.4 The substrate curvature for non-uniform mismatch strains and elastic properties through layer thickness 75 2.3 Experimental techniques to characterize thin film stresses - 76 2.3.1 Diffraction-based methods 77 2.3.2 Spectroscopy-based methods - 78 2.3.3 Curvature-based methods - 79 2.4 Thin film stress measurement using micro-fabricated cantilevers 80 Chapter The fabrication of SiN micro-cantilevers and the supplementary experimental methods 84 vi 3.1 The fabrication of SiN cantilevers - 84 3.1.1 The deposition of low stress, silicon-rich SiN film on single-crystalline (100) Si wafers - 84 3.1.2 Pattern transfer 86 3.1.3 Undercut SiN using potassium hydroxide (KOH) etch 88 3.2 Supplementary experimental methods and equipments - 91 3.2.1 Sputter machines used to deposit the amorphous films - 91 3.2.2 X-ray diffraction (XRD) - 92 3.2.3 Energy dispersive X-ray spectroscopy (EDS) 95 3.2.4 Rutherford Backscattering (RBS) 98 3.2.5 Deflection measurement with Veeco interferometer (NT 2000) - 99 3.2.6 Deflection measurement with conventional optical microscopes - 101 3.2.7 Equipments used to perform furnace annealing of amorphous thin films at elevated temperatures - 102 3.2.7.1 The furnace with a vacuum to crystallize amorphous Cu-Zr thin films - 102 3.2.7.2 The furnace with a vacuum to crystallize amorphous Zr-Cu-Al thin films 103 3.6.7.3 High precision furnace to anneal amorphous phase-change Ge2Te2Sb5 films 103 vii Chapter Crystallization-induced stresses in Ge2Sb2Te5 phase-change thin films 104 4.1 Experimental details - 105 4.2 The analytical model used to calculate the crystallization-induced stresses in phase-change thin films - 106 4.3 Results and discussions 110 4.4 Application: phase-change materials in optically-triggered micro-actuators 115 4.4.1 The analytical model to calculate cantilever tip deflections as a result of crystallization of the phase-change film at the cantilever base 116 4.4.2 The laser setup used to crystallize the phase-change thin films locally at the cantilever base 118 4.4.3 Results - 120 4.4.4 Discussions 123 Chapter Density change upon crystallization of amorphous Cu-Zr thin films 126 5.1 Experimental details - 127 5.1.1 Micro-cantilever experiments - 127 5.1.2 Wedge-casting experiments - 129 viii 5.2 Analytical model for the calculation of density changes 131 5.3 Results and discussions - 134 5.4 Summary 140 Chapter Density change upon crystallization of amorphous Zr-Cu-Al thin films 142 6.1 Sample layout and experimental procedures - 143 6.2 Results and discussions - 149 6.2.1 Global and local trends of density change: individual effects of Zr, Cu, and Al atomic species on the density change upon crystallization of the alloys - 149 6.2.2 Comparison between density change data and particular compositions of high glass-forming ability 155 6.3 Conclusions - 161 Chapter Measurements of Young’s modulus and coefficients of thermal expansion of amorphous Cu-Zr thin films - 162 7.1 Measurement of Young’s modulus of amorphous Cu-Zr thin films - 162 7.1.1 Analytical model for the Young’s modulus measurement - 162 7.1.1.1 Basic equations 162 7.1.1.2 Correction to accommodate the cantilever length uncertainty - 166 ix [50] S Mukherjee, Z Zhou, J Schroers, W L Johnson, Applied Physics Letters, 84, 5010, 2004 [51] G M Dougherty, Y He, G J Shiflet, S J Poon, Scripta Metallurgica et Materialia, 30, 101, 1994 [52] H.S.Chen, J.T Krause, E.A Sigety, Journal of Non-crystalline Solids, 13, 321, 1973/1974 [53] A Inoue, T Negishi, H M Kimura, T Zhang, A R Yavari, Materials Transactions, Japan Institute of Metals, 39, 318, 1998 [54] A Inoue, T Zhang, Materials Transactions, Japan Institute of Metals, 37, 185, 1995 [55] J D Bernal, Nature, 183, 141, 1959 [56] J D Bernal, Nature, 185, 68, 1960 [57] J D Bernal, Nature, 183, 141, 1960 [58] D E Polk, Scripta Metallurgica, 4, 117, 1970 [59] D E Polk, Acta Metallurgica, 20, 485, 1972 [60] T.Egami, Y.Waseda, Journal of Non-Crystalline Solids, 64, 113, 1984 [61] T.Egami, Materials Science and Engineering, A226-228, 261, 1997 [62] D.B Miracle, Acta Materialia, 54, 4317, 2006 [63] D.B Miracle, Journal of Non-Crystalline Solids, 342, 89, 2004 [64] H.W.Sheng, H Z Liu, Y Q Cheng, J Wen, W.K Luo, S D Shastri, E.Ma, Nature Materials, 6, 192 (2007) [65] F Albano, N Lacevic, M.L Falk, S.C.Glotzer, Material Science and Engineering, A375, 671, 2004 [66] J Li, F Spaepen, T.C Hufnagel, Philosophical Magazine, A82, 2623, 2002 197 [67] K.M Flores, Scripta Materialia, A54, 327, 2006 [68] C H Bennett, D E Polk, D Turnbull, Acta Metallurgica, 19, 1295, 1971 [69] W Klemens, R H Willens, P Duwez, Nature, 187, 869, 1960 [70] G S Cargill, Journal of Applied Physics, 41, 12, 1970 [71] P Duwez, R H Willens, R C Crewdson, Journal of Applied Physics, 36, 2267, 1965 [72] I –R Lu, G P Görler, R Willnecker, Applied Physics Letters, 80, 4534, 2002 [73] N Nishiyama, A Inoue, Materials Transactions, Japanese Institute of Metals, 38, 464, 1997 [74] K C Chow, S Wong, H W Kui, Journal of Applied Physics, 74, 5410, 1993 [75] X.Hu, S C Ng, Y P Feng, Y Li, Physical Review B, 64, 172201, 2001 [76] P.H Gaskell, in Topics in Applied Physics,Glassy Metals II, H Beck, H.-J Guntherodt (Editors), Springer, Berlin, 1983 [77] J Sietsma, B.J Thijsse, Journal of Non-Crystalline Solids, 135, 146, 1991 [78] P Lamparter, S Steeb, in Structure of Solids, V Gerold (Editor), VCH Weinheim, 1993 [79] T.C Hufnagel, S Brennan, Physical Review B 67, 014203, 2003 [80] J C Lee, et al., Journal of Materials Research, 22, 3087, 2007 [81] T Egami, Amorphous Metallic Alloys, Edited by F E Luborsky, Butterworth, London, 1983 [82] M B Tang, D Q Zhao, M X Pan, W H Wang, Chinese Physics Letters, 21, 901, 2004 198 [83] A R Yavari, J J Lewandowski, J Eckert, Materails Research Society Bulletin, 32, 635, 2007 [84] A L Greer, Science, 267, 1947, 1995 [85] W L Johnson, Materails Research Society Bulletin, 24, 42, 1999 [86] M F Ashby, A L Greer, Scripta Materialia, 54, 321, 2006 [87] M F Ashby, Materials Selction in Mechanical Design, 3rd Edition, ButterworthHeinemann, Oxford, 2005 [88] L Y Chen, et al Physical Review Letters, 100, 075501, 2008 [89] B Zhang, D Q Zhao, M X Pan, W H Wang, A L Greer, Physical Review Letters, 94, 205502, 2005 [90] J Das, M B Tang, K B Kim, R Theissmann, F Baier, W H Wang, J Eckert, Physical Review Letters, 94, 205501, 2005 [91] J Schroers, W L Johnson, Physical Review Letters, 93, 255506, 2004 [92] G Kumar, T Ohkubo, T Mukai, K Hono, Scripta Materialia, 57, 173, 2007 [93] J J Lewandowski, W H Wang, A L Greer, Philosophical Magazine Letters, 85, 77, 2005 [94] J Q Wang, W H Wang, H B Yu, H Y Bai, Applied Physics Letters, 94, 121904, 2009 [95] A B Seddon, Journal of Non-Crystalline Solids, 184, 44, 1995 [96] N Nobukuni, M Takashima, T Ohno, M Horie, Journal of Applied Physics, 78, 6980, 1995 [97] N Yamada, Materials Research Society Bulletin, 21, 48, 1996 [98] L van Pieterson, M.H.R Lankhorst, M van Schijndel, A.E.T Kuiper, J.H.J 199 Roosen, Journal of Applied Physics, 97, 083520, 2005 [99] W Weidenhof, N Pirch, I Friederich, S Ziegler, M Wuttig, Journal of Applied Physics, 88, 7657, 2000 [100] C Peng, L Cheng, M Mansuripur, Journal of Applied Physics, 82, 4183, 1997 [101] S Hudgens, B Johnson, Materials Research Society Bulletin, 29, 829, 2004 [102] M.H.R Lankhorst, B.W.S.M.M Ketelaars, R.A.M Wolters, Nature Materials, 4, 347, 2005 [103] D Wamwangi, W.K Njoroge, M Wuttig, Thin Solid Films, 408, 310, 2002 [104] I Friedrich, V Weidenhof, W Njoroge, P Franz, M Wuttig, Journal of Applied Physics, 87, 4130, 2000 [105] W.K Njoroge, M Wuttig, Journal of Applied Physics, 90, 3816, 2001 [106] S Privitera, E Rimini, C Bongiorno, R Zonca, A Pirovano, R Bez, Journal of Applied Physics, 94, 4409, 2003 [107] D.-H Kim, F Merget, M Laurenzis, P Haring Bolivar, H Kurz, Journal of Applied Physics, 97, 083538, 2005 [108] http://www.liquidmetal.com/ [109] S H Hong, H Lee, Japanese Journal of Applied Physics, 47, 3372, 2008 [110] T Pedersen, J Kalb, W Njoroge, D Wamwangi, M Wuttig, F Spaepen, Applied Physics Letters, 79, 3597, 2001 [111] W Njoroge, M Wuttig, Journal of Applied Physics, 90, 3816, 2001 [112] W.Njoroge, H Wöltgens, M Wuttig, Journal of Vacuum Science and Technology, A20, 230, 2002 [113] S H Hong, H Lee, Japanese Journal of Applied Physics, 47, 3372, 2008 200 [114] S Suresh, L Freund, “Thin Film Materials – Stress, defect formation and surface evolution”, Chapter 2, Cambridge University Press, 2003 [115] L Freund, J Floro, E Chason, Applied Physics Letters, 74, 1987, 1999 [116] G F Zhou, Materials Science and Engineering, A304, 73, 2001 [117] H J Kim, S K Choi, S H Kang, K H Oh, Applied Physics Letters, 90, 083103, 2007 [118] L Krusin-Elbaum, et al., Applied Physics Letters, 90, 141902, 2007 [119] J Hegedüs, S R Elliott, Nature Materials, 7, 399, 2008 [120] A V Kolobov, P Fons, A I Frenkel, A L Ankudinov, J Tominaga, T Uguga, Nature Materials, 3, 703, 2004 [121] J A Kalb, F Spaepen, T P L Pedersen, M Wuttig, Journal of Applied Physics, 94, 4908, 2003 [122] J A.Thornton, J Tabock, and D W Hoffman, Thin Solid Films, 64, 111, 1979 [123] G.G Stoney, Proc R Soc London, Ser A 82, 172, 1909 [124] T P L Pedersen, diploma thesis, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany, 2003 [125] O Thomas, Zeitschrift für Kristallographie, 223, 569, 2008 [126] S L Toh, K P Loh, C B Boothroyd, K Li, C H Ang, L Chan, Journal of Vacuum Science and Technology, B23, 940, 2005 [127] M Agamalian, E Iolin, H Kaiser, C Rehm, S.A.Werner, Applied Physics, A74, S1686, 2002 [128] K Laurent, B Q Wang, D P Yu, Y L-Wang, Thin Solid Films, 517, 617, 2008 [129] X Xia, Applied Surface Science, 255, 6313, 2009 201 [130] J D Wilcock, D S Campbell, Thin Solid Films, 3, 3, 1969 [131] R Abermann, R Kramer, J Mäser, Thin Solid Films, 52, 215, 1978 [132] R Abermann, Vacuum, 41, 1279, 1990 [133] J A Kalb, Q Guo, X Zhang, Y Li, C Sow, C V Thompson, Journal of Microelectromechanical Systems, 17, 1094, 2008 [134] Q Guo et al Applied Physics Letters, 93, 221907, 2008 [135] Private communication with Veeco engineer, Sept 9th, 2009 [136] Private conversation with Veeco engineer, Jan 3rd, 2007 [137] K P Liew, R A Bernstein, C V Thompson, Journal of Materials Research, 19, 676, 2004 [138] C A Volkert, Journal of Applied Physics, 70, 3521, 1991 [139] M Watanabe, D R Mumm, S Chiras, A G Evans, Scripta Materialia, 46, 67, 2002 [140] Private conversion with Dr Johannes Kalb, July, 2007 [141] X D Xiang, et al Science, 268, 1738, 1995 [142] X D Sun, X D Xiang Applied Physics Letters, 72, 525, 1998 [143] H Chang et al Applied Physics Letters, 72, 2185,1998 [144] Q Wang, J Perkins, H M Branz, J Alleman, C Duncan, D Ginley, Applied Surface Science, 189, 271, 2002 [145] Y P Deng, et al Intermetallics, 15, 1208, 2007 [146] Private communication with Bob J Bicchieri, MTL, MIT [147] M.A Schimidt, Massachusetts Institute of Technology, Course 3.155j, Lecture Notes, 2005 Spring 202 [148] S.D Senturia, Microsystem Design, Boston, MA, Kluwer, 2001 page 61-65 [149] K.R Williams, R.S.Muller, Etch rates for micromachining processing, Journal of Microelectromechanical Systems, 5, 256-269, 1996 [150] K.R Williams, K.Gupta, M.Wasilik, Etch rates for micromachining processingPart II, Journal of Microelectromechanical Systems, 12, 761-778, 2003 [151] J I Goldstein, H Yakowitz, Practical Scanning Electron Microscopy, 1975, Plenum Press, New York and London [152] L C Feldman and J W Mayer, Fundamentals of Surface and Thin Film Analysis, Prentice Hall, 1986 [153] WYKO Surface Profilers Technical Reference Manual, 980-085, June, 1998 [154] WYKO NT2000, Setup Guide, Version 2.2.1, February, 1999 [155] N Ohshima, Journal of Applied Physics, 79, 8357, 1996 [156] E.R Meinders, H.J Borg, M.H.R Lankhorst, J Hellmig, A.V Mijiritskii, Journal of Applied Physics, 91, 9794, 2002 [157] H Guo, A Lal, Journal of Microelectromechanical Systems, 12, 53, 2003 [158] D.V Tsu, T Ohta, Japanese Journal of Applied Physics, 45 , 6294, 2006 [159] J A Kalb, Diploma Thesis, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany, 2002 [160] W Njoroge, H Dieker, M Wuttig, Journal of Applied Physics, 96, 2624, 2004 [161] A Ebina, M Hirasaka, J Isemoto, A Takase,G Fujinawa, I Sugiyama, Japanese Journal of Applied Physics, 40, 1569, 2001 [162] M.D Thouless, J Gupta, J M E Harper, Journal of Materials Research, 8, 1845, 1993 203 [163] R Venkatraman, J Bravman, Journal of Materials Research, 7, 2040, 1992 [164] C.J Lee, J.C Huang, T.G Nieh, Applied Physics Letters, 91, 161913, 2007 [165] B.E Schuster, Q Wei, M Erwin, S Hruszkewycz, M Miller, T Hufnagel, K Ramesh, Scripta Materialia, 57, 517, 2007 [166] M Ashby and D R H Jones, Engineering Materials 2-An Introduction to Microstructures, Processing and Design, Chapter 18, Page 169-170, Pergamon Press, 1986 [167] M Hommel, O Kraft, Acta Materialia, 49, 3935, 2001 [168] W Nix, Metallurgical Transactions, 28A, 2217, 1989 [169] Q Guo, M Eng Thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology, 2006 [170] J A Kalb, F Spaepen, and M Wuttig, Journal of Applied Physics, 98, 054910, 2005 [171] V Weidenhof, I Friedrich, S Ziegler, and M Wuttig, Journal of Applied Physics, 86, 5879, 1999 [172] V Weidenhof, I Friedrich, S Ziegler, and M Wuttig, , Journal of Applied Physics, 89, 3168, 2001 [173] J E Huber, N A Fleck, M F Ashby, Proceedings of Royal Society, London: Mathematical, Physical and Engineering Sciences, 453, 2185, 1965 [174] The Investigation of MEMS-Fabricated Actuators for Use in Optical and Mechanical Applications, JN Mitchell, Southwest research institute: http://www.swri.edu/3pubs/IRD2001/14-9158.htm [175] B Wardle, Lecture notes, MIT course 3.48, Spring semester, 2006 204 [176] J H Coombs, A P J M Jongenelis, W van Es-Spiekman, and B A J Jacobs, Journal of Applied Physics, 78, 4918, 1995 [177] P Muralt, R.G Polcawich, S Trolier-McKinstry, Materials Research Society Bulletin, 34, 658, 2009 [178] K Otsuka, T Kakeshita, Materials Research Society Bulletin, 27, 91, 2002 [179] A.Inoue, W.Zhang, Materials Transactions, Japan Institute of Metals, 45, 584, 2004 [180] W H Wang, Journal of Applied Physics, 99, 093506, 2006 [181] U Laudahn, et al Applied Physics Letters, 74, 647, 1999 [182] Flora, J.A.et al Journal of Applied Physics, 89, 4886, 2001 [183] S.G.Mayr, K.Samwer, Physical Review Letters, 87, 036105, 2001 [184] Z Altounian, G H Tu, J O Strom-Olsen, Journal of Applied Physics, 53, 4755, 1982 [185] D Ma, H Tan, D Wang, Y.Li, E Ma, Appied Physics Letters, 86, 191906, 2005 [186] S Mukherjee, J Schroers, W K Rhim, W L Johnson, Physical Review Letters, 94, 245501, 2005 [187] Y Calvaryrac, J P Chevalier, M Harmelin, A Quivy, J Bigot, Philosophical Magazine, B48, 323, 1983 [188] Z Altounian, J O Strom-Olsen, Physical Review B, 27, 4149, 1983 [189] L A Davis, C -P Chou, L E Tanner, R Ray, Scripta Metallugica, 10, 937, 1976 [190] B C Lu, J H Yao, J Xu, Y Li, Applied Physics Letters, 94, 241913, 2009 [191] P Yu, H Y Bai, W H Wang, Journal of Materials Research, 21, 1674, 2006 205 [192] P Yu, H Y Bai, M B Tang, W L Wang, Journal of Non-Crystalline Solids, 351, 1328, 2005 [193] A Inoue, T Negishi, H M Kimura, T Zhang, A R Yavari, Materials Transactions, 39, 318, 1998 [194] H Schumacher, U Herr, D Oelgeschlaeger, A Traverse, K Samwer, Journal of Applied Physics, 82, 155, 1997 [195] D H Xu, G Duan, W L Johnson, Physical Review Letters, 92, 245502, 2004 [196] A Inoue, W Zhang, Materials Transactions, 11, 2921, 2002 [197] S-I Jun, P D Rack, T E Mcknight, A.V Melechko, M.L Simpson, Journal of Applied Physics, 97, 054906, 2005 [198] J D Fowlkes, J M Fitz-Gerald, P D Rack, Thin Solid Films, 510, 68, 2006 [199] A Inoue, T Zhang, T Masumoto, Journal of Non-Crystalline Solids, 150, 396, 1992 [200] A Inoue, D Kawase, A P Tsai, T Zhang, T Masumoto, Materials Science and Engineering, A178, 255, 1994 [201] Y Q Cheng, E Ma, H W Sheng, Physical Review Letters, 102, 245501, 2009 [202] Y H Liu, C T Liu, W H Wang, A Inoue, T Sakulai, M W Chen, Physical Review Letters, 103, 065504, 2009 [203] Y Q Cheng, Al J Cao, H W Sheng, E Ma, Acta Materialia, 56, 5263, 2008 [204] H Yang, Y Li, unpublished [205] J Menčik, E Quandt, Journal of Materials Research, 14, 2152, 1999 [206] T P Weihs, S Hong, J C Bravman, W D Nix, Journal of Materials Research, 3, 931, 1988 206 [207] S P Baker, W D Nix, Journal of Materials Research, 9, 3131, 1994 [208] Private discussion with Alan Schwartzman, Feb 10th, 2010 [209] C Serre, P Gorostiza, A Rodríguez, F Sanz, J Morante, Sensors and Actuators, A67, 215, 1998 [210] Private discussion with Adam Zeiger, Oct 2009, and the application notes of Asylum Research: http://www.asylumresearch.com/Applications/CombinedAFMOptical/CombinedAFMOp tical.shtml [211] J Menčik, Mechanics of Components with Coated or Treated Surfaces, Kluwer, Dordrecht, 1996 [212] http://www.nanoandmore.com/USA/AFM-Probe-ATEC-FMAu.html [213] Y H Liu, G Wang, R J Wang, D Q Zhao, M X Pan, W H Wang, Science, 315, 1385, 2007 [214] V N Novikov, A P Sokolov, Nature, 431, 961, 2004 [215] V A Khonik, Y P Mitrofanov, S A Lyakhov, A N Vasiliev, S V Khonik, D A Khoviv, Physical Review B, 79, 132204, 2009 [216] R K Wunderlich, M-L Vaillant, A Caron, H-J Fecht, Advanced Engineering Materials, 10, 2010, 2008 [217] Y Yokoyama, T Yamasaki, P K Liaw, A Inoue, Materials Transactions, Japanese Institute of Metals, 48, 1846, 2007 [218] W H Wang, Journal of Non-Crystalline Solids, 351, 1481, 2005 [219] M I Mendelev, D K Rehbein, R T Ott, M J Kramer, D J Sordelet, Journal of Applied Physics, 102, 093518, 2007 207 [220] N Mattern, A Schöps, U Kühn, J Acker, O Khvostikova, J Echert, Journal of Non-Crystalline Solids, 354, 1054, 2008 [221] Y Yokoyama, T Yamasaki, P K Liaw, A Inoue, Journal of Alloys and Compounds, 434-435, 160, 2007 [222] G W Koebrugge, J Sietsma, A v d Beukel, Acta Metallurgica et Materialia, 40, 753, 1992 [223] A Concustell, et al Intermetallics, 13, 1214, 2005 [224] J G Wang, B W Choi, T G Nieh, C T Liu, Journal of Materials Research, 15, 798, 2000 [225] G P Zhang, Y Liu, B Zhang, Scripta Materialia, 54, 897, 2006 [226] S Wang, D Sun, S Hata, J Sakulai, A Shimokohbe, Sensors and Actuators A, 153, 120, 2009 [227] Y Liu, S Hata, K Wada, A Shimokohbe, Japanese Journal of Applied Physics, 40, 5382, 2001 [228] J Guo, X Bian, Y Zhao, S Zhang, T Li, C Wang, Journal of Physics: Condensed Matter, 19, 116103, 2007 [229] G Li, W Wang, X Bian, J Zhang, R Li, J Qin, Materials Chemistry and Physics, 116, 72, 2009 [230] G Li, W Wang, X Bian, J Zhang, R Li, L Wang, Journal of Alloys and Compounds, 478, 745, 2009 [231] Y Yokoyama, T Ishikawa, J Okada, Y Watanabe, S Nanao, A Inoue, Journal of Non-Crystalline Solids, 355, 317, 2009 [232] D V Louzguine-Luzgin, et al Journal of Alloys and Compounds, 431, 136, 2007 208 [233] K Hajlaoui, T Benameur, G Vaughan, A R Yavari, Scripta Materialia, 51, 843, 2004 [234] D V Louzguine, A R Yavari, K Ota, G Vaughan, A Inoue, Journal of NonCrystalline Solids, 351, 1639, 2005 [235] Q Jing, R Liu, G Li, W Wang, Scripta Materialia, 49, 111, 2003 [236] T Komatsu, K Matusita, R Yokota, Journal of Non-Crystalline Solids, 72, 279, 1985 [237] J Steinberg, S Tyagi, A E Lord, Journal of Non-Crystalline Solids, 41, 1639, 1980 [238] CRC Chemistry and Physics Handbook, 84th ed 2003 [239] M C Salvadori, I G Brown, A R Vaz, L L Melo, M Cattani, Physical Review B, 67, 153404, 2003 [241] K Takashima, Y Higo, Fatigue and Fracture of Engineering Materials and Structures, 28, 703, 2005 [242] J Ding, Y Meng, S Wen, Materials Science and Engineering, B83, 42, 2001 [243] D Di Maio, S.G Roberts, Journal of Materials Research, 20, 299, 2005 [244] X Zhao, R M Longford, J Tan, P Xiao, Scripta Materialia, 59, 39, 2008 [245] K Matoy, et al Thin Solid Films, 518, 247, 2009 [246] S Massl, W Thomma, J Keckes, R Pippan, Acta Materialia, 57, 1768, 2009 [247] H Liu, B Lee, P Liu, Sensors and Actuators, A140, 257, 2007 [248] B L Boyce, J R Michael, P G Kotula, Acta Materialia, 52, 160, 2004 [249] X Wang, et al Journal of Micromechanics, and Microengineering, 17, 1307, 2007 209 [250] H S Chou, J C huang, L W Chang, T G Nieh, Applied Physics Letters, 93, 191901, 2008 [251] M F Doerner, W D Nix, Journal of Materials Research, 1, 601, 1986 [252] H Gao, C.-H Chiu, J Lee, International Journal of Solids Structures, 29, 2471, 1992 [253] Y G Jung, B R Lawn, Journal of Materials Research, 19, 3076, 2004 [254] N G Chechenin, J Bøttiger, J P Krog, Thin Solid Films, 304, 70, 1997 [255] M T Kim, Thin Solid Films, 283, 12, 1996 [256] S Bec, A Tonck, J L Loubet, Philosophical Magazine, 86, 5347, 2006 [257] W C Oliver, G M Pharr, Journal of Materials Research, 19, 3, 2004 [258] J Hay, Journal of Materials Research, 24, 667, 2009 [259] R Saha, W D Nix, Acta Materialia, 50, 23, 2002 [260] K Matoy, et al Thin Solid Films, 518, 247, 2009 [261] J J He, PhD thesis, Department of Engineering, University of Cambridge, 2004 [262] A Caron, et al Acta Materialia, 58, 2004, 2010 [263] W C Oliver, G M Pharr, Journal of Materials Research, 6, 1564, 1992 [264] Y H Liu, et.al Science, 315, 1385, 2007 [265] M Ohring, The Materials Science of Thin Films, Academic Press, New York, N Y., 1992 [266] W D Song, L P Shi, X S Miao, T C Chong, Applied Physics Letters, 90, 091904, 2007 210 Appendices: Publication List Johannes Kalb, Qiang Guo, Xiaoqiang Zhang, Yi Li, Chornghaur Sow, Carl V Thompson, IEEE/ASME Journal of Microelectromechanical Systems, 17, 1094 (2008) Qiang Guo, Minghua Li, Yi Li, Luping Shi, Tow Chong Chong, Johannes A Kalb, Carl V Thompson, Applied Physics Letters, 93, 221907 (2008) Yi Li, Qiang Guo, Johannes A Kalb, Carl V Thompson, Science, 322, 1816 (2008) Qiang Guo, Joo Hyon Noh, Peter K Liaw, Philip D Rack, Yi Li, Carl V Thompson, Acta Materialia, 58, 3633 (2010) Qiang Guo, Li Zhang, Adam S Zeiger, Krystyn J Van Vliet, Yi Li, Carl V Thompson, under review, Scripta Materialia 211 ... micro- fabricated cantilevers were used to investigate the stresses and density changes upon crystallization in amorphous thin films Two classes of materials with distinct properties and significant... of Young’s modulus and coefficients of thermal expansion of amorphous Cu-Zr thin films - 162 7.1 Measurement of Young’s modulus of amorphous Cu-Zr thin films - 162 7.1.1... equipment, Prof Chua Soo Jin from the Institute of Materials Research and Engineering (IMRE) for my access to the sputter equipment, and Dr Yu Hongbin from the NUS Department of Mechanical Engineering

Ngày đăng: 11/09/2015, 09:16

Từ khóa liên quan

Mục lục

  • Title page-July 28th, 2010-after Chee Ying

  • Before_main_text-July_28th,2010-after Chee Ying

  • Entire_thesis-July_28th,after_Chee_Ying

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan