In vitro study of surface functionalization of titanium substrates for potential enhancement of osseointegration and reduction of bacterial infection

179 403 0
In vitro study of surface functionalization of titanium substrates for potential enhancement of osseointegration and reduction of bacterial infection

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

IN VITRO STUDY OF SURFACE FUNCTIONALIZATION OF TITANIUM SUBSTRATES FOR POTENTIAL ENHANCEMENT OF OSSEOINTEGRATION AND REDUCTION OF BACTERIAL INFECTION HU XUEFENG NATIONAL UNIVERSITY OF SINGAPORE 2013 IN VITRO STUDY OF SURFACE FUNCTIONALIZATION OF TITANIUM SUBSTRATES FOR POTENTIAL ENHANCEMENT OF OSSEOINTEGRATION AND REDUCTION OF BACTERIAL INFECTION HU XUEFENG (B.Eng., M.Sci., BUCT) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2013 DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. Hu Xuefeng 11 June 2014  ACKNOWLEGEMENT Firstly, I would like to express my sincere gratitude to my supervisor, Prof. Neoh Koon Gee, for her thorough guidance and continuous support throughout this work. Her critical way of thinking and enthusiastic attitude towards work has been of great value for me. This thesis would not have been completed without her invaluable suggestions and profound discussion. I owe my deep gratitude to my co-supervisor, Assoc. Prof. Wilson Wang, for his constructive comments and important support throughout this project. I am also grateful to Prof. Kang En-Tang for his permission to access the equipment in his lab. I would like to thank Dr. Yuan Ze Liang for his help in XPS and SEM training and operation. I appreciate all my colleagues, Dr. Shi Zhilong, Dr. Wang Liang, Rusdianto Budiraharjo, Tan Lihan, Yang Wenjing, Huang Chao, Wang Rong, Lu Shengjie, Zheng Dong, Li Min and Xu Liqun, for their warm encouragement and kind help. I am also grateful to the lab officers Ms. Li Fengmei, Ms. Li Xiang, and Dr. Yang Liming for their assistance in my study. Last but not least, I would like to thank my deeply beloved wife, Zhang Jieyu, for her understanding and support. I would also like to show my gratitude to my family for their unconditional support and love. i  TABLE OF CONTENTS ACKNOWLEGEMENT TABLE OF CONTENTS i ii SUMMARY vi LIST OF TABLES viii LIST OF FIGURES ix NOMENCLATURE xvi CHAPTER INTRODUCTION 1.1 Background 1.2 Research objective and scope CHAPTER LITERATURE REVIEW 2.1 Introduction 2.2 Bone healing processes at bone-implant interface 2.2.1 Human bodys initial responses to an implant 2.2.2 Woven bone formation 10 2.2.3 Bone remodeling 11 2.3 Ti and its alloys as implant materials 12 2.3.1 Requirements for implant materials 12 2.3.2 Ti and its alloys 13 2.4 Surface modification of Ti to enhance osseointegration 14 2.4.1 Enhancement of osseointegration by surface topography 15 2.4.2 Enhancement of osseointegration by surface chemistry 16 2.5 Surface modification of Ti to reduce infections 22 2.5.1 Surface topographical modification 23 2.5.2 Surface modification with bactericidal agents 24 2.5.3 Surface modification with anti-adhesive agents 27 CHAPTER BACTERIAL AND OSTEOBLAST BEHAVIOR ON Ti, Co-Cr AND SS TREATED WITH ALKALI AND HEAT: A COMPARATIVE STUDY FOR POTENTIAL ORTHOPEDIC APPLICATIONS 29 3.1 Introduction 30 3.2 Materials and methods 30 ii 3.3 3.2.1 Materials 30 3.2.2 Substrate preparation 31 3.2.3 Characterization 31 3.2.4 Measurement of surface ROS density 32 3.2.5 Bacterial culture and adhesion assay 32 3.2.6 Cell culture and cytotoxic assay 33 3.2.7 Statistical analysis 34 Results and discussion 34 3.3.1 Surface characterization of the pristine and treated Ti substrates 34 3.3.2 ROS generation on the pristine and treated Ti substrates 37 3.3.3 Bacterial adhesion on the pristine and treated Ti substrates 38 3.3.4 Mammalian cell behavior on the pristine and treated Ti 41 substrates 3.3.5 Comparison with alkali and heat-treated Co-Cr and SS 44 substrates 3.4 Conclusion 50 CHAPTER AN IN VITRO ASSESSMENT OF Ti FUNCTIONALIZED WITH POLYSACCHARIDES CONJUGATED WITH VEGF FOR ENHANCED OSSEOINTEGRATION AND INHIBITION OF BACTERIAL ADHESION 51 4.1 Introduction 51 4.2 Materials and methods 52 4.2.1 Materials 52 4.2.2 Synthesis of CMCS and HAC 53 4.2.3 Preparation of substrates 54 4.2.4 Characterization 54 4.2.5 Bacterial adhesion assay 55 4.2.6 Cell culture 55 4.2.7 Cell attachment and proliferation 55 4.2.8 ALP activity and calcium deposition (mineralization) assay 56 4.2.9 Statistical analysis 56 Results and discussion 57 4.3.1 Surface characterization 57 4.3.2 Antibacterial properties 59 4.3 iii 4.4 4.3.3 Cell attachment and proliferation 64 4.3.4 ALP activity and calcium deposition 66 4.3.5 Stability of immobilized VEGF 69 Conclusion 71 CHAPTER STRATEGY FOR IMMOBILIZING VEGF ON IMPLANT SURFACES TO OPTIMIZE ITS CONCURRENT BIOACTIVITY TOWARDS ENDOTHELIAL CELLS AND OSTEOBLASTS 72 5.1 Introduction 73 5.2 Materials and methods 73 5.2.1 Materials 73 5.2.2 Synthesis of HAC and HepC 74 5.2.3 Preparation of substrates 74 5.2.4 Characterization 74 5.2.5 Cell culture 75 5.2.6 Endothelial cell metabolic activity 75 5.2.7 CD31 and vWF expression 75 5.2.8 In vitro angiogenesis assay 76 5.2.9 Calcium deposition assay 77 5.2.10 Bacterial culture and adhesion assay 77 5.2.11 Statistical analysis 77 Results and discussion 78 5.3.1 HepC synthesis and substrate surface characterization 78 5.3.2 Bioactivity of the immobilized VEGF 82 5.3.3 Osteoblast mineralization 88 5.3.4 Antibacterial properties 93 Conclusion 97 5.3 5.4 CHAPTER AN IN VITRO ASSESSMENT OF FIBROBLAST AND OSTEOBLAST RESPONSE TO ALENDRONATE-MODIFIED Ti AND THE POTENTIAL FOR DECREASING FIBROUS ENCAPSULATION 98 6.1 Introduction 99 6.2 Materials and methods 99 6.2.1 Materials 99 6.2.2 Substrate preparation 99 6.2.3 Surface characterization and alendronate release test 100 iv 6.3 6.2.4 Cell culture 101 6.2.5 Cell attachment and proliferation 101 6.2.6 ALP activity assay 101 6.2.7 Apoptosis assay 101 6.2.8 Co-culture of fibroblasts and osteoblasts 102 6.2.9 Statistical analysis 102 Results and discussion 102 6.3.1 Surface characterization and alendronate release test 102 6.3.2 Fibroblast attachment, proliferation and apoptosis 106 6.3.3 Osteoblast attachment, proliferation, differentiation and 111 apoptosis 6.4 6.3.4 Co-culture of fibroblasts and osteoblasts 117 Conclusion 120 CHAPTER CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 121 7.1 Conclusions 122 7.2 Recommendations for further study 124 REFERENCES 127 LIST OF PUBLICATION 158 v SUMMARY The main reasons for implant failure are defective osseointegration and bacterial infections. Surface modification is a promising strategy to overcome these problems since it can endow the implant surface with the desired functions while simultaneously retaining the implants intrinsic mechanical properties. Since titanium (Ti) and its alloys are the most commonly used biomaterials for implants, different strategies for Ti surface modification to enhance osseointegration and reduce bacterial infection have been investigated, and are reported in this thesis. Firstly, Ti was treated with alkali and heat to convert the amorphous titanium dioxide into anatase since anatase has been shown to exhibit antibacterial effect. The anatase-functionalized Ti significantly reduced bacterial adhesion due to reactive oxygen species (ROS) generated by the anatase. Unfortunately, the ROS exhibited cytotoxicity towards osteoblasts. Cobalt-chrome (Co-Cr) alloys and stainless steel (SS) treated in a similar fashion did not generate ROS, and exhibited no cytotoxicity towards osteoblasts. The treated Co-Cr and SS reduced bacterial adhesion due to their hydrophilic surfaces, which is a different mechanism from that of the alkali and heat-treated Ti. Thus, while this strategy for Ti surface modification may be useful for antibacterial applications, it is not deemed suitable for orthopedic applications. A second strategy was then developed, involving covalent immobilization of a growth factor on Ti via a pre-coated antibacterial polysaccharide layer. Vascular endothelial growth factor (VEGF) was chosen as the target growth factor with the aim of investigating its direct effect on osteoblasts. Antibacterial assay showed that the polysaccharide-modified substrates significantly decreased bacterial adhesion. Osteoblast behavior on the different substrates was also assessed, and the results showed that osteoblast functions were enhanced by the immobilized VEGF on the polysaccharide-grafted Ti. Since the bioactivity of covalently immobilized VEGF may be compromised due to adverse conformational changes and possible interference with the functional region in the immobilization process, the possibility of bioactivity changes upon vi immobilization was investigated. VEGF was immobilized on Ti surfaces via either covalent binding or heparin-VEGF interaction. The bioactivity of the covalently immobilized VEGF on endothelial cell functions was found to be significantly lower than that of the heparin-bound VEGF. The heparin-bound VEGF also enhanced mineralization in an osteoblast/endothelial cell co-culture to a much greater extent than in an osteoblast monoculture, illustrating the importance of crosstalk between osteoblasts and endothelial cells. In addition, the surfaces of the heparin-modified substrates are highly hydrophilic and negatively charged, which significantly inhibit bacterial adhesion. Lastly to address the issue of fibrous encapsulation which can impede osseointegration, alendronate, a drug that can induce fibroblast apoptosis, was loaded on Ti surfaces via a hydroxyapatite coating. With a surface density of loaded alendronate of 0.05 mg/cm2 or higher, fibroblast proliferation was suppressed due to increased apoptosis, while osteoblast functions increased with minimal apoptosis. In a co-culture of fibroblasts and osteoblasts in a 1:1 ratio, ~75% of the cells on these alendronate-loaded substrates were osteoblasts four days after cell seeding. These results suggest that the strategy of loading alendronate on Ti can potentially be capitalized to reduce fibrous encapsulation. vii References Liu, C. X., Zhang, D. R., He, Y., Zhao, X. S., & Bai, R. 2010. Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and antibacteria approaches. J Membr Sci, 346(1): 121-130. Liu, S., Yu, J., & Jaroniec, M. 2011. Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications. Chem Mater, 23(18): 4085-4093. Liu, X., Chu, P. K., & Ding, C. 2004. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R, 47(3-4): 49-121. Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z., & Yao, K. D. 2001. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci, 79(7): 1324-1335. Liu, Y., de Groot, K., & Hunziker, E. B. 2005. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone, 36(5): 745-757. Liu, Y., Enggist, L., Kuffer, A. F., Buser, D., & Hunziker, E. B. 2007. The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials, 28(16): 2677-2686. Liu, Y., Hunziker, E. B., Randall, N. X., de Groot, K., & Layrolle, P. 2003. Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate. Biomaterials, 24(1): 65-70. Liu, Y., Wang, D., Cao, L., & Chen, S. 2012. Structural engineering of highly ordered TiO2 nanotube array by periodic anodization of titanium. Electrochem Commun, 23: 68-71. Long, M., & Rack, H. J. 1998. Titanium alloys in total joint replacement--a materials science perspective. Biomaterials, 19(18): 1621-1639. Loosdrecht, M. C. M., Norde, W., Lyklema, J., & Zehnder, A. J. B. 1990. Hydrophobic and electrostatic parameters in bacterial adhesion. Aquat Sci, 52(1): 103-114. Lopez-Heredia, M. A., Sohier, J., Gaillard, C., Quillard, S., Dorget, M., & Layrolle, P. 2008. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials, 29(17): 2608-2615. Lúpez-Lacomba, J. L., Garcớa-Cantalejo, J. M., Sanz Casado, J. V. Abarrategi, A., Correas Magaủa, V., & Ramos, V. 2006. Use of rhBMP-2 activated chitosan films to improve osseointegration. Biomacromolecules, 7(3): 792-798. Lovmand, J., Justesen, J., Foss, M., Lauridsen, R. H., Lovmand, M., Modin, C., Besenbacher, F., Pedersen, F. S., & Duch, M. 2009. The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralization. Biomaterials, 30(11): 2015-2022. Eriksen, M. L., & Bunger, C. 1996. Bone morphogenetic protein-2 but not bone morphogenetic protein-4 and -6 stimulates chemotactic migration of human osteoblasts, human marrow osteoblasts, and U2-OS cells. Bone, 18(1): 53-57. 143 References Mỹller, S., Koenig, G., Charpiot, A., Debry, C., Voegel, J. C., Lavalle, P., & Vautier, D. 2008. VEGF-functionalized polyelectrolyte multilayers as proangiogenic prosthetic coatings. Adv Funct Mater, 18(12): 1767-1775. Magnani, A., Barbucci, R., Montanaro, L., Arciola, C. R., & Lamponi, S. 2000. In vitro study of blood-contacting properties and effect on bacterial adhesion of a polymeric surface with immobilized heparin and sulphated hyaluronic acid. J Biomater Sci Polym Ed, 11(8): 801-815. Mah, T. F. 2012. Biofilm-specific antibiotic resistance. Future Microbiol, 7(9):10611072. Mallory, T. H., Head, W. C., Lombardi Jr, A. V., Emerson Jr, R. H., Eberle, R.W. Mitchell, M. B. 1996. Clinical and radiographic outcome of a cementless, titanium, plasma spray-coated total hip arthroplasty femoral component: Justification for continuance of use. J Arthroplasty, 11(6): 653660.Mane, R. S., Joo, O. S., Min, S. K., Lokhande, C. D., & Han, S. H. 2006. A simple and low temperature process for super-hydrophilic rutile TiO2 thin films growth. Appl Surf Sci, 253(2): 581-585. Maness, P. C., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., & Jacoby, W. A. 1999. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol, 65(9): 4094-4098. Marculescu, C. E., & Cantey, J. R. 2008. Polymicrobial prosthetic joint infections: risk factors and outcome. Clin Orthop Relat Res, 466(6): 1397-1404. Markel, T. A., Wang, Y., Herrmann, J. L., Crisostomo, P. R., Wang, M., Novotny, N. M., Herring, C. M., Tan, J., Lahm, T., & Meldrum, D. R. 2008.VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol Heart Circ Physiol, 295(6): H2308-H2314. Marolt, D., Cozin, M., Vunjak-Novakovic, G., Cremers, S., & Landesberg, R. 2012. Effects of pamidronate on human alveolar osteoblasts in vitro. J Oral Maxillofac Surg, 70(5): 1081-1092. Martino, A. D., Sittingerc, M., & Risbud, M. V. 2005. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. 26(30): 5983-5990. Matl, F. D., Zlotnyk, J., Obermeier, A., Friess, W., Vogt, S., Buchner, H., Schnabelrauch, H., Stemberger, A., & Kuhn, K. D. 2009. New anti-infective coatings of surgical sutures based on a combination of antiseptics and fatty acids. J Biomater Sci Polym Ed, 20(10): 1439-1449. Matsumoto, T., Bohman, S., Dixelius, J., Berge, T., Dimberg, A., Magnusson, P., Wang, L., Wikner, C., Qi, J. H., Wernstedt, C., Wu, J., Bruheim, S., Mugishima, H., Mukhopadhyay, D., Spurkland, A., & Claesson-Welsh, L. 2005. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J, 24(13): 2342-2353. Mavrogenis, A. F., Dimitriou, R., Parvizi, J., & Babis, G. C. 2009. Biology of implant osseointegration. J Musculoskelet Neuronal Interact, 9(2): 61-71. 144 References Mayr-Wohlfart, U., Waltenberger, J., Hausser, H., Kessler, S., Gunther, K. P., Dehio, C., Puhl, W., & Brenner, R. E. 2002. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone, 30(3): 472-477. Medina, C., Santos-Martinez, M.J., Radomski, A., Corrigan, O.I., & Radomski, M.W. 2007; Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5): 552-558. Meyers, S. R., & Grinstaff, M. W. 2012. Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem Rev, 112(3): 1615-1632. McDevitt, D., Francois, P., Vaudaux, P., & Foster, T. J. 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol, 11(2): 237-248. McLeod, K., Anderson, G. I., Dutta, N. K., Smart, R. S., Voelcker, N. H., Sekel, R., & Kumar, S. 2006a. Adsorption of bisphosphonate onto hydroxyapatite using a novel co-precipitation technique for bone growth enhancement. J Biomed Materials Res-A, 79A(2): 271-281. McLeod, K., Kumar, S., Smart, R. S. C., Dutta, N., Voelcker, N. H., Anderson, G. I., & Sekel, R. 2006b. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings. Appl Surf Sci, 253(5): 26442651. Medina, C., Santos-Martinez, M.J., Radomski, A, orrigan, I, Radomski MW. 2007. Nanoparticles: pharmacological and toxicological significance. British J Pharmacol 150(5): 552-558. Meyer, U., Joos, U., Mythili, J., Stamm, T., Hohoff, A., Fillies, T., Stratmann, U., & Wiesmann, H. P. 2004. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials, 25(10): 1959-1967. Midy, V., & Plouet, J. 1994. Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Commun, 199(1): 380386. Misch, C. E., Perel, M. L., Wang, H.-L., Sammartino, G., Galindo-Moreno, P., Trisi, P., Steigmann, M., Rebaudi, A., Palti, A., Pikos, M. A., Schwartz-Arad, D., Choukroun, J., Gutierrez-Perez, J. L., Marenzi, G., & Valavanis, D. K. 2008. Implant success, survival, and failure. The International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant Dent, 17(1): 5-15. Miura, S., & Takebe, J. 2012. Biological behavior of fibroblast-like cells cultured on anodized-hydrothermally treated titanium with a nanotopographic surface structure. J Prosthodont Res, 56(3): 178-186. Miyagi, Y., Chiu, L. L. Y., Cimini, M., Weisel, R. D., Radisic, M., & Li, R. K. 2011. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials, 32(5): 1280-1290. 145 References Montanaro, L., Campoccia, D., & Arciola, C. R. 2007. Advancements in molecular epidemiology of implant infections and future perspectives. Biomaterials, 28(34): 5155-5168. Montanaro, L., Speziale, P., Campoccia, D., Ravaioli, S., Cangini, I., Pietrocola, G., Giannini, S., & Arciola, C. R. 2011. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol, 6(11): 1329-1349. Moon, H.J., Yun, Y.P., Han, C.W., Kim, M.S., Kim, S.E., Bae, M.S., Kim, G.T., Choi, Y.S., Hwang, E.H., Lee, J.W., Lee, J.M., Lee, C.H., Kim, D.S., & Kwon, I.K. 2011. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function. Biochem Biophys Res Commun, 413(2):194-200. Morelli, S., Bilbao, P.S., Katz, S., Lezcano, V., Roldỏn, E., Boland, R., & Santillan, G. 2011. Protein phosphatases: possible bisphosphonate binding sites mediating stimulation of osteoblast proliferation. Arch Biochem Biophys, 507(2): 248-253. Morra, M., Cassinelli, C., Cascardo, G., Mazzucco, L., Borzini, P., Fini, M., Giavaresi, G., & Giardino, R. 2006. Collagen I-coated titanium surfaces: Mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. J Biomed Mater Res Part A, 78A(3): 449-458. Morris, H. F., & Ochi, S. 1998. Hydroxyapatite-coated implants: A case for their use. J Oral Maxillofac Surg, 56(11):1303-1311. Murakami, A., Arimoto, T., Suzuki, D., Iwai-Yoshida, M., Otsuka, F., Shibata, Y., Igarashi, T., Kamijo, R., & Miyazaki, T. 2012. Antimicrobial and osteogenic properties of a hydrophilic-modified nanoscale hydroxyapatite coating on titanium. Nanomed Nanotechnol, 8(3): 374-382. Murugesan, S., Xie, J., & Linhardt, R. J. 2008. Immobilization of heparin: approaches and applications. Current Top Med Chem, 8(2): 80-100. Nanci, A., Wuest, J. D., Peru, L., Brunet, P., Sharma, V., Zalzal, S., & McKee, M. D. 1998. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res, 40(2): 324-335. Nancollas, G. H., Tang, R., Phipps, R. J., Henneman, Z., Gulde, S., Wu, W., Mangood, A., Russell, R. G. G., & Ebetino, F. H. 2006. Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite. Bone, 38(5): 617-627. National Joint Registry. National Joint Registry for England and Wales 9th Annual Report. 2012. Navarro, M., Michiardi, A., Castaủo, O., & Planell, J. A. 2008. Biomaterials in orthopaedics. J R Soc Interface, 5(27): 1137-1158. Niinomi, M. 2008. Metallic biomaterials. J Artif Organs, 11(3): 105-110. Ochsner, P. E. 2011. Osteointegration of orthopaedic devices. Semin Immunopathol, 33(3): 245-256. 146 References Oh, S.; Daraio, C.; Chen, L. H.; Pisanic, T. R.; Finones, R. R.; & Jin, S. 2006. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A, 78 (1): 97-103. Oh, S., Brammer, K. S., Li, Y. S., Teng, D., Engler, A. J., Chien, S., & Jin, S. 2009. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA, 106(7): 2130-2135. Okazaki, Y., & Gotoh, E. 2005. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26(1): 11-21. Ouasti, S., Kingham, P. J., Terenghi, G., & Tirelli, N. 2012. The CD44/integrins interplay and the significance of receptor binding and re-presentation in the uptake of RGD-functionalized hyaluronic acid. Biomaterials, 33(4): 1120-1134. Pallu, S., Fricain, J. C., Bareille, R., Bourget, C., Dard, M., Sewing, A., & Amộdộe, J. 2009. Cyclo-DfKRG peptide modulates in vitro and in vivo behavior of human osteoprogenitor cells on titanium alloys. Acta Biomaterialia, 5(9): 3581-3592. Park, I. K., Kim, Y. J., Tran, T. H., Huh, K. M., & Lee, Y. K. 2010. Water-soluble heparin-PTX conjugates for cancer targeting. Polymer, 51(15): 3387-3393. Park, J. Y., Gemmell, C. H., & Davies, J. E. 2001. Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials, 22(19): 26712682. Park, Y. J., Kim, K. H., Lee, J. Y., Ku, Y., Lee, S. J., Min, B. M., & Chung, C. P. 2006. Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem, 43(1): 17-24. Patel, V., McLeod, N. M. H., Rogers, S. N., & Brennan, P. A. 2011. Bisphosphonate osteonecrosis of the jaw-a literature review of UK policies versus international policies on bisphosphonates, risk factors and prevention. Brit J of Oral Max Surg, 49(4): 251-257. Patil, A. S., Sable, R. B., & Kothari, R. M. 2012. Occurrence, biochemical profile of vascular endothelial growth factor (VEGF) isoforms and their functions in endochondral ossification. J Cell Physiol, 227(4): 1298-1308. Paul, H., Reginato, A. J., & Ralph Schumacher, H. 1983. Alizarin red s staining as a screening test to detect calcium compounds in synovial fluid. Arthritis Rheum, 26(2): 191-200. Pazianas, M., & Abrahamsen, B. 2011. Safety of bisphosphonates. Bone, 49(1): 103110. Pei, J., Hallb, H., & Spencera, N. D. 2011. The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide. Biomaterials, 32(34): 8968-8978. Peter, B., Pioletti, D. P., Laùb, S., Bujoli, B., Pilet, P., Janvier, P., Guicheux, J., Zambelli, P. Y., Bouler, J. M., & Gauthier, O. 2005. Calcium phosphate drug delivery 147 References system: influence of local zoledronate release on bone implant osteointegration. Bone, 36(1): 52-60. Plecko, M., Sievert, C., Andermatt, D., Frigg, R., Kronen, P., Klein, K., Stubinger, S., Nuss, K., Burki, A., Ferguson, S., Stoeckle, U., & von Rechenberg, B. 2012. Osseointegration and biocompatibility of different metal implants - a comparative experimental investigation in sheep. BMC Musculoskelet Disord, 13(1): 32-44. Plotkin, L. I., Weinstein, R. S., Parfitt, A. M., Roberson, P. K., Manolagas, S. C., & Bellido, T. 1999. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest, 104(10): 1363-1374. Ploux, L., Anselme, K., Dirani, A., Ponche, A., Soppera, O., & Roucoules, V. 2009. Opposite responses of cells and bacteria to micro/nanopatterned surfaces prepared by pulsed plasma polymerization and UV-irradiation. Langmuir, 25(14): 8161-8169. Poh, C. K., Shi, Z., Lim, T. Y., Neoh, K. G., & Wang, W. 2010. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials, 31(7): 15781585. Ponnusamy, M., Ma, L., Gong, R., Pang, M., Chin, Y. E., & Zhuang, S. 2011. P2X7 receptors mediate deleterious renal epithelial-fibroblast cross talk. Am J Physiol Renal Physiol, 300(1): F62-F70. Popat, K. C., Eltgroth, M., Latempa, T. J., Grimes, C. A., & Desai, T. A. 2007. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials, 28(32): 4880-4888. Poulos, N. M., Rodriguez, N. A., Lee, J., Rueggeberg, F. A., Schupbach, P., Hall, J., Susin, C., & Wikesjo, U. M. E. 2011. Evaluation of a novel calcium phosphate-coated titanium porous oxide implant surface: a study in rabbits. Int J Oral Maxillofac Implants, 26(4): 731-738. Proft, T., & Baker, E. N. 2009. Pili in Gram-negative and Gram-positive bacteria structure, assembly, and their role in disease. Cell Mol Life Sci, 66(4): 613-635. Puckett, S. D., Taylor, E., Raimondo, T., & Webster, T. J. 2010. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4): 706-713. Puleo, D. A., & Nanci, A. 1999. Understanding and controlling the bone-implant interface. Biomaterials, 20(23-24): 2311-2321. Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. 2003. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules, 4(6): 1457-1465. Rahman, N., Purpura, K. A., Wylie, R. G., Zandstra, P. W., & Shoichet, M. S. 2010. The use of vascular endothelial growth factor functionalized agarose to guide pluripotent stem cell aggregates toward blood progenitor cells. Biomaterials, 31(32): 8262-8270. 148 References Ramires, P. A., Romito, A., Cosentino, F., & Milella, E. 2001. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials, 22(12): 1467-1474. Ramis, J. M., Taxt-Lamolle, S. F., Lyngstadaas, S. P., Reseland, J. E., Ellingsen, J. E., & Monjo, M. 2012. Identification of early response genes to roughness and fluoride modification of titanium implants in human osteoblasts. Implant Dent, 21(2): 141-149. Ratner, B. D. 1993. New ideas in biomaterials science-a path to engineered biomaterials. J Biomed Mater Res, 27(7): 837-850. Ravosa, M. J., Ning, J., Liu, Y., & Stack, M. S. 2011. Bisphosphonate effects on the behaviour of oral epithelial cells and oral fibroblasts. Arch Oral Biol, 56(5): 491-498. Reeves, J. F., Davies, S. J., Dodd, N. J. F., & Jha, A. N. 2008. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res-Fund Molecular M, 640(1-2): 113122. Renoud, P., Toury, B., Benayoun, S., Attik, G., & Grosgogeat, B. 2012. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances. Plos ONE, 7(7): e39367. Reinholz, G. G., Getz, B., Pederson, L., Sanders, E. S., Subramaniam, M., Ingle, J. N., & Spelsberg, T. C. 2000. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res, 60(21): 60016007. Reszka, A. A., Halasy-Nagy, J., & Rodan, G. A. 2001. Nitrogen-bisphosphonates block retinoblastoma phosphorylation and cell growth by inhibiting the cholesterol biosynthetic pathway in a keratinocyte model for esophageal irritation. Mole Pharmacol, 59(2): 193-202. Richert, L., Vetrone, F., Yi, J. H., Zalzal, S. F., Wuest, J. D., Rosei, F., & Nanci, A. 2008. Surface nanopatterning to control cell growth. Adv Mater, 20(8): 1488-1492. Rinaudo, M. 2008. Main properties and current applications of some polysaccharides as biomaterials. Polym Int, 57(3): 397-430. Rizzello, L., Cingolani, R., & Pompa, P. P. 2013. Nanotechnology tools for antibacterial materials. Nanomedicine, 8(5): 807-821. Robinson, C. J., Mulloy, B., Gallagher, J. T., & Stringer, S. E. 2006. VEGF165binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase. J Biol Chem, 281(3): 1731-1740. Roelofs, A. J., Coxon, F. P., Ebetino, F. H., Lundy, M. W., Henneman, Z. J., Nancollas, G. H., Sun, S., Blazewska, K. M., Bala, J. L. F., Kashemirov, B. A., Khalid, A. B., McKenna, C. E., & Rogers, M. J. 2010. Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. J Bone Miner Res, 25(3): 606-616. Roosjen, A., Norde, W., van der Mei, H., & Busscher, H. 2006. The use of positively charged or low surface free energy coatings versus polymer brushes in controlling 149 References biofilm formation characterization of polymer surfaces and thin films. Colloid Polym Sci, 132: 138-144. Rosales-Leal, J. I., Rodrớguez-Valverde, M. A., Mazzaglia, G., Ramún-Torregrosa, P. J., Dớaz-Rodrớguez, L., Garcớa-Martớnez, O., Vallecillo-Capilla, M., Ruiz, C., & Cabrerizo-Vớlchez, M. A. 2010. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A, 365(13): 222-229. Rosen, A. B., Kelly, D. J., Schuldt, A. J. T., Lu, J., Potapova, I. A., Doronin, S. V., Robichaud, K. J., Robinson, R. B., Rosen, M. R., Brink, P. R., Gaudette, G. R., & Cohen, I. S. 2007. Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells, 25(8): 2128-2138. Rứynesdal, A.K., Ambjứrnsen, E., & Haanaes, H.R. 1999. A comparison of different endosseous nonsubmerged implants in edentulous mandibles: a clinical report. Int J Oral Maxillofac Implants, 14(4): 543-548. Russell, R. G., Watts, N. B., Ebetino, F. H., & Rogers, M. J. 2008. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 19(6):733-759. Sabokbar, A., Itonaga, I., Sun, S. G., Kudo, O., & Athanasou, N. A. 2005. Arthroplasty membrane-derived fibroblasts directly induce osteoclast formation and osteolysis in aseptic loosening. J Orthop Res, 23(3): 511-519. Santos, M. I., Unger, R. E., Sousa, R. A., Reis, R. L., & Kirkpatrick, C. J. 2009. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials, 30(26): 4407-4415. Saraste, A., & Pulkki, K. 2000. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res, 45(3): 528-537. Scarano, A., Piattelli, A., Polimeni, A., Di Iorio, D., & Carinci, F. 2010. Bacterial adhesion on commercially pure titanium and anatase-coated titanium healing screws: an in vivo human study. J Periodontol, 81(10): 1466-1471. Scheper, M. A., Badros, A., Chaisuparat, R., Cullen, K. J., & Meiller, T. F. 2009. Effect of zoledronic acid on oral fibroblasts and epithelial cells: a potential mechanism of bisphosphonate-associated osteonecrosis. Br J Haematol, 144(5): 667676. Schultz, G. S., & Wysocki, A. 2009. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen, 17(2): 153-162. Schultze-Mosgau, S., Blatz, M. B., Wehrhan, F., Schlegel, K. A., Thorwart, M., & Holst, S. 2005. Principles and mechanisms of peri-implant soft tissue healing. Quintessence Int, 36(10): 759-769. Schwartz-Filho, H. O., Morandini, A. C. F., Ramos-Junior, E. S., Jimbo, R., Santos, C. F., Marcantonio, E., Wennerberg, A., & Marcantonio, R. A. C. 2012. Titanium 150 References surfaces with nanotopography modulate cytokine production in cultured human gingival fibroblasts. J Biomed Mater Res Part A, 100A(10): 2629-2636. Schwartz, Z., Nasazky, E., & Boyan, B. D. 2005. Surface microtopography regulates osteointegration: the role of implant surface microtopography in osteointegration. Alpha Omegan, 98(2): 9-19. Scotchford, C. A., Ball, M., Winkelmann, M., Voros, J., Csucs, C., Brunette, D. M., Danuser, G., & Textor, M. 2003. Chemically patterned, metal-oxide-based surfaces produced by photolithographic techniques for studying protein- and cell-interactions. II: Protein adsorption and early cell interactions. Biomaterials, 24(7): 1147-1158. Senger, D., Galli, S., Dvorak, A., Perruzzi, C., Harvey, V., & Dvorak, H. 1983. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219(4587): 983-985. Shanks, R. M. Q., Donegan, N. P., Graber, M. L., Buckingham, S. E., Zegans, M. E., Cheung, A. L., & O'Toole, G. A. 2005. Heparin stimulates Staphylococcus aureus biofilm formation. Infect Immun, 73(8): 4596-4606. Shanks, R. M. Q., Sargent, J. L., Martinez, R. M., Graber, M. L., & O'Toole, G. A. 2006. Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol Dial Transpl, 21(8): 2247-2255. Shen, H., Hu, X., Yang, F., Bei, J., & Wang, S. 2009. The bioactivity of rhBMP-2 immobilized poly(lactide-co-glycolide) scaffolds. Biomaterials, 30(18): 3150-3157. Shen, H., Hu, X., Yang, F., Bei, J., & Wang, S. 2011. Cell affinity for bFGF immobilized heparin-containing poly(lactide-co-glycolide) scaffolds. Biomaterials, 32(13): 3404-3412. Shen, Y., Liu, W., Wen, C., Pan, H., Wang, T., Darvell, B. W., Lu, W. W., & Huang, W. 2012. Bone regeneration: importance of local pH-strontium-doped boroilicate scaffold. J Mater Chem, 22: 8662-8670. Shi, L., Tang, C., & Yin, C. 2012. Glycyrrhizin-modified O-carboxymethyl chitosan nanoparticles as drug vehicles targeting hepatocellular carcinoma. Biomaterials, 33(30): 7594-7604. Shi, Z., Neoh, K. G., Kang, E. T., Poh, C., & Wang, W. 2008. Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J Biomed Mater Res Part A, 86A(4): 865-872. Shi, Z., Neoh, K. G., Kang, E. T., Poh, C. K., & Wang, W. 2009. Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Biomacromolecules, 10(6): 1603-1611. Shi, Z., Neoh, K. G., Kang, E. T., & Wang, W. 2006a. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials, 27(11): 2440-2449. 151 References Shi, Z., Neoh, K. G., Zhong, S. P., Yung, L. Y. L., Kang, E. T., & Wang, W. 2006b. In vitro antibacterial and cytotoxicity assay of multilayered polyelectrolytefunctionalized stainless steel. J Biomed Mater Res Part A, 76A(4): 826-834. Shin, H., Jung, H. S., Hong, K. S., & Lee, J. K. 2005. Crystal phase evolution of TiO2 nanoparticles with reaction time in acidic solutions studied via freeze-drying method. J Solid State Chem, 178(1): 15-21. Shtansky, D.V., Gloushankova, N. A., Sheveiko, A. N., Kharitonova, M. A., Moizhess, T. G., Levashov, E. A., & Rossi, F. 2005. Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications. Biomaterials, 26(16): 2909-2924. Song, D. H., Uhma, S. H., Leea, S. B., Hanc, J. G., & Kima, K. N. 2011. Antimicrobial silver-containing titanium oxide nanocomposite coatings by a reactive magnetron sputtering. Thin Solid Film, 591(20): 7079-7085. Song, Y., Xu, D. S., Yang, R., Li, D., Wu, W. T., & Guo, Z. X. 1999. Theoretical study of the effects of alloying elements on the strength and modulus of -type biotitanium alloys. Mater Sci Eng A, 260(1-2): 269-274. Standinger, B., Pilling, E., Huhle, M., Mai, R., Bierbaum, S., Scharnweber, D., Kuhlisch, E., Loukota, R., & Eckelt, U. 2008. Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: an animal study. Int J Oral Maxillofac Surg, 37(1): 54-59. Stephen, W. G. T., & Douglas, R. G. 2010. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol, 11: 621-632. Stevens, K. N. J., Croes, S., Boersma, R. S., Stobberingh, E. E., van der Marel, C., van der Veen, F. H., Knetsch, M. L. W., & Koole, L. H. 2011. Hydrophilic surface coatings with embedded biocidal silver nanoparticles and sodium heparin for central venous catheters. Biomaterials, 32(5): 1264-1269. Stigter, M., Bezemer, J., de Groot, K., & Layrolle, P. 2004. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Controlled Release, 99(1): 127-137. Street, J., Bao, M., deGuzman, L., Bunting, S., Peale, F. V., Ferrara, N., Steinmetz, H., Hoeffel, J., Cleland, J. L., Daugherty, A., van Bruggen, N., Redmond, H. P., Carano, R. A. D., & Filvaroff, E. H. 2002. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci, 99(15): 9656-9661. Su, K., Shi, X., Varshney, R. R., & Wang, D. A. 2011. Transplantable delivery systems for in situ controlled release of bisphosphonate in orthopedic therapy. Expet Opin Drug Deliv, 8(1): 113-126. Suketa, N., Sawase, T., Kitaura, H., Naito, M., Baba, K., Nakayama, K., Wennerberg, A., & Atsuta, M. 2005. An antibacterial surface on dental implants, based on the photocatalytic bactericidal effect. Clin Implant Dent and R, 7(2): 105-111. 152 References Sumanasinghe, R. D., Bernacki, S. H., & Loboa, E. G. 2006. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng, 12(12): 3459-3465. Sumner, D. R., Turner, T. M., Igloria, R., Urban, R. M., & Galante, J. O. 1998. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J Biomech, 31(10): 909-917. Suzuki, Y., Montagne, K., Nishihara, A., Watabe, T., & Miyazono, K. 2008. BMPs promote proliferation and migration of endothelial cells via stimulation of VEGFA/VEGFR2 and angiopoietin-1/Tie2 signalling. J Biochem, 143(2):199-206. Tan, H., Peng, Z., Li, Q., Xu, X., Guo, S., & Tang, T. 2012. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulenceassociated gene expression of antibiotic-resistant staphylococcus. Biomaterials, 33(2): 365-377. Tang, H., Cao, T., Wang, A., Liang, X., Salley, S. O., McAllister, J. P., & Ng, K. Y. S. 2007. Effect of surface modification of siliconeon Staphylococcus epidermidis adhesion and colonization. J Biomed Mater Res Part A, 80A(4): 885-894. Tang, H., Cao, T., Liang, X., Salley, S. O., McAllister, J. P., & Ng, K. Y. S. 2009. Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. J Biomed Mater Res Part A, 88(2): 454463. Tarquinio, K. M., Kothurkar, N. K., Goswami, D. Y., Sanders, Jr, R. C., Zaritsky, A. L., & LeVine, A. M., 2010. Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on Pseudomonas aeruginosa and Staphylococcus aureus. Int J Nanomedicine, 5: 177-183. Tenke, P., Riedl, C. R., Jones, G. L., Williams, G. J., Stickler, D., & Nagy, E. 2004. Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy. Int J Antimicrob Ag, 23(S1): 67-74. Tiffany, N., Kurtis Kasper, K., & Mikos, A. G. 2012. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliver Rev, 64(12): 1292-1309. Tiller, J. 2011. Antimicrobial surfaces. Adv Polym Sci, 240: 193-217. Tran, N., & Webster, T. J. 2009. Nanotechnology for bone materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol, (3): 336-351. Truong, V. K., Lapovok, R., Estrin, Y. S., Rundell, S., Wang, J. Y., Fluke, C. J., Crawford, R. J., & Ivanova, E. R. 2010. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials, 31(13): 3674-3683. Tsai, Y. J., Lee, R. K. K., Lin, S. P., & Chen, Y. H. 2000. Identification of a novel platelet-derived growth factor-like gene, fallotein, in the human reproductive tract. BBA Gene Structure Expr, 1492(1): 196-202. 153 References Tsukamoto, T., Matsui, T., Fukase, M., & Fujita, T. 1991. Platelet-derived growth factor B chain homodimer enhances chemotaxis and DNA synthesis in normal osteoblast-like cells (MC3T3-E1). Biochem Biophys Res Commun, 175(3): 745-751. Uchida, M., Oyane, A., Kim, H. M., Kokubo, T., & Ito, A. 2004. Biomimetic coating of lamininapatite composite on titanium metal and its excellent cell-adhesive properties. Adv Mater, 16(13): 1071-1074. Urban, R. M., Jacobs, J. J., Tomlinson, M. J., Gavrilovic, J., Black, J., & Peoc'h, M. 2000. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am, 82(4): 457-476. Valdimarsdottir, G., Goumans, M. J., Rosendahl, A., Brugman, M., Itoh, S., Lebrin, F., Sideras, P., & ten Dijke, P. 2002. Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic proteininduced activation of endothelial cells. Circulation, 106(17):2263-2270. van den Beucken, J. J. J. P., Walboomers, X. F., Boerman, O. C., Vos, M. R. J., Sommerdijk, N. A. J. M., Hayakawa, T., Fukushima, T., Okahata, Y., Nolte, R. J. M., & Jansen, J. A. 2006. Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2. J Controlled Release, 113(1): 63-72. Vander Kooi, C. W., Jusino, M. A., Perman, B., Neau, D. B., Bellamy, H. D., & Leahy, D. J. 2007. Structural basis for ligand and heparin binding to neuropilin B domains. Proc Natl Acad Sci, 104(15): 6152-6157. Van Staden, A. D., Dicks, L. M. 2012. Calcium orthophosphate-based bone cements (CPCs): Applications, antibiotic release and alternatives to antibiotics. J Appl Biomater Function Mater, 10(1): e2-e11. Vasilev, K., Sah, V., Anselme, K., Ndi, C., Mateescu, M., Dollmann, B. r., Martinek, P., Ys, H., Ploux, L., & Griesser, H. J. 2009. Tunable antibacterial coatings that support mammalian cell growth. Nano Lett, 10(1): 202-207. Vaudaux, P. E., Franỗois, P., Proctor, R. A., McDevitt, D., Foster, T. J., Albrecht, R. M., Lew, D. P., Wabers, H., & Cooper, S. L. 1995. Use of adhesion-defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shunts. Infect Immun, 63(2): 585-590. Vercaigne, S., Wolke, J. G. C., Naert, I., & Jansen, J. A. 1998. Bone healing capacity of titanium plasma-sprayed and hydroxylapatite-coated oral implants. Clin Oral Impl Res, 9(4): 261271. Verron, E., Gauthier, O., Janvier, P., Pilet, P., Lesoeur, J., Bujoli, B., Guicheux, J., & Bouler, J.-M. 2010. In vivo bone augmentation in an osteoporotic environment using bisphosphonate-loaded calcium deficient apatite. Biomaterials, 31(30): 7776-7784. Viceconti, M., Muccini, R., Bernakiewicz, M., Baleani, M., & Cristofolini, L. 2000. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J Biomech, 33(12): 1611-1618. Villars, F., Guillotin, B., Amộdộe, T., Dutoya, S., Bordenave, L., Bareille, R., & Amộdộe, J. 2002. Effect of HUVEC on human osteoprogenitor cell differentiation 154 References needs heterotypic gap junction communication. Am J Physiol-Cell Physiol, 282(4): C775-C785. Vinovỏ, J., & Vavrớkovỏ, E. 2011. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities - a review. Current Pharmaceutical Design, 2011, 17(32): 3596-3607 Visai, L., De Nardo, L., Punta, C., Melone, L., Cigada, A., Imbriani, M., & Arciola, C. R. 2011. Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs, 34(9): 929-946. Vittadini, A., Selloni, A., Rotzinger, F. P., & Grọtzel, M. 1998. Structure and energetics of water adsorbed at TiO2 anatase [101] and [001] surfaces. Phys Rev Lett, 81(14): 2954-2957. von Knoch, F., Jaquiery, C., Kowalsky, M., Schaeren, S., Alabre, C., Martin, I., Rubash, H. E., & Shanbhag, A. S. 2005. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials, 26(34): 6941-6949. Walter, C., Klein, M. O., Pabst, A., Al-Nawas, B., Duschner, H., & Ziebart, T. 2010. Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin Oral Investig, 14(1): 35-41. Walter, C., Pabst, A., Ziebart, T., Klein, M., & Al-Nawas, B. 2011. Bisphosphonates affect migration ability and cell viability of HUVEC, fibroblasts and osteoblasts in vitro. Oral Dis, 17(2): 194-199. Wan, Y.Z., Ramanb, S., Hea, F., & Huanga, Y. 2007. Surface modification of medical metals by ion implantation of silver and copper. Vacuum, 81(9): 1114-1118. Wang, D. S., Miura, M., Demura, H., & Sato, K. 1997. Anabolic effects of 1,25dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells. Endocrinology, 138(7): 2953-2962. Wang, J., Hu, W., Liu, Q., & Zhang, S. 2011a. Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan. Colloids Surf B: Biointerfaces, 85(2): 241-247. Wang, J., Li, J., Shen, L., Ling, R., Xu, Z., Zhao, A., Leng, Y., & Huang, N. 2007. The biomedical properties of polyethylene terephthalate surface modified by silver ion implantation. Nucl Instrum Meth B, 257(1-2): 141-145. Wang, J. H., Thampatty, B. P., Lin, J. S., & Imc, H. J. 2007. Mechanoregulation of gene expression in fibroblasts. Gene, 391(1-2): 1-15. Wang, Y., Liu, S., Yang, Z., Zhu, Y., Wu, Y., Huang, J., & Mao, J. 2011b. Oxidation of -glucan extracted from Poria Cocos and its physiological activities. Carbohydr Polym, 85(4): 798-802. Waterman, P., Barber, M., Weintrob, A. C., VanBrakle, R., Howard, R., Kozar, M. P., Andersen, & R., Wortmann, G. 2012. The elution of colistimethate sodium from 155 References polymethylmethacrylate and calcium phosphate cement beads. Am J Orthop. 41(6): 256-259. Weinlaender, M., Kenney, E. B., Lekovic, V., Beumer, J. III., Moy, P. K., & Lewis, S. 1992. Histomorphometry of bone apposition around three types of endosseous dental implants. Int J Oral Maxillofac Implants, 7(4): 491-496. Wennerberg, A., Hallgren, C., Johansson, C., & Danelli, S. 1998. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res, 9(1): 11-19. Whitehead, K. A., Colligon, J., & Verran, J. 2005. Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surf B, 41(23): 129-138. Wick, G., Backovic, A., Rabensteiner, E., Plank, N., Schwentner, C., & Sgonc, R. 2010. The immunology of fibrosis: innate and adaptive responses. Trends Immunol, 31(3): 110-119. Widmer, A. F. 2001. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis, 33(S2): S94-106. Wiedel, J. D. 2002. Salvage of infected total knee fusion: the last option. Clin Orthop Relat Res, (404): 139-142. Williams, D. F. 2008. On the mechanisms of biocompatibility. Biomaterials, 29(20): 2941-2953. Wolf-Brandstetter, C., Lode, A., Hanke, T., Scharnweber, D., & Worch, H. 2006. Influence of modified extracellular matrices on Ti6Al4V implants on binding and release of VEGF. J Biomed Mater Res Part A, 79A(4): 882-894. Woodfin, A., Voisin, M. B., & Nourshargh, S. 2007. PECAM-1: A multi-functional molecule in inflammation and vascular biology. Arterioscler, Thromb, Vasc Biol, 27(12): 2514-2523. Wu, P., & Grainger, D. W. 2006. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials, 27(11): 2450-2467. Xiao, F. L., Lin, G. Y., Zhi, D., Li, Z., & De, Y. K. 2001. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci, 79(7): 1324-1335. Yang, T. C., Chou, C. C., & Li, C. F. 2005. Antibacterial activity of N-alkylated disaccharidechitosan derivatives. Int J Food Microb, 97(3): 237-245. Yoon, H. Y., Koo, H., Choi, K. Y., Lee, S. J., Kim, K., Kwon, I. C., Leary, J. F., Park, K., Yuk, S. H., Park, J. H., & Choi, K. 2012. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials, 33(5): 3980-3989. Yoshinari, M., Oda, Y., Ueki, H., & Yokose, S. 2001. Immobilization of bisphosphonates on surface modified titanium. Biomaterials, 22(7): 709-715. 156 References Yuan, J. H., Zhan, Q., Lei, Q., Ding, S. Y., & Li, H. 2012. Fabrication and characterization of hybrid micro/nano-structured hydrophilic titania coatings deposited by suspension flame spraying. Appl Surf Sci, 258(17): 6672-6678. Zankovych, S., Bossert, J., Faucon, M., Finger, U., & Jandt, K. D. 2011. Selectively promoting or preventing osteoblast growth on titanium functionalized with polyelectrolyte multilayers. Adv Biomater, 13(12): B454-B461. Zankovych, S., Diefenbeck, M., Bossert, J., Mỹckley, T., Schrader, C., Schmidt, J., Schubert, H., Bischoff, S., Faucon, M., Finger, U., & Jandt, K. D. 2013. The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rat. Acta Biomater, 9(1): 4926-4934. Zhang, H., & Banfield, J. F. 2000. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B, 104(15): 3481-3487. Zhang, J., Xu, Q., Feng, Z., Li, M., & Li, C. 2008. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Edit, 47(9): 1766-1769. Zhao, L., Chu, P. K., Zhang, Y., & Wu, Z. 2009. Antibacterial coatings on titanium implants. J Biomed Mater Res B: Appl Biomater, 91B(1): 470-480. Zhao, W. J., McCallum, S. A., Xiao, Z. P., Zhang, F. M., & Linhardt, R. J. 2012. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides. Biosci Rep, 32(1): 71-81. Zheng, L. Y., & Zhu, J. F. 2003. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym, 54(4): 527-530. Zhou, G., Li, J., Chen, Y., Zhao, B., Cao, Y., & Duan, X. 2009a. Determination of reactive oxygen species generated in laccase catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) by electron spin resonance spectrometry. Bioresour Technol, 100(1): 505-508. Zhou, M., Liu, Z., Wei, Z., Liu, C., Qiao, T., Ran, F., Bai, Y., Jiang, X., & Ding, Y. 2009b. Development and validation of small-diameter vascular tissue from a decellularized scaffold coated with heparin and vascular endothelial growth factor. Artif Organs, 33(3): 230-239. Zinger, O., Anselme, K., Denzer, A., Habersetzer, P., Wieland, M., Jeanfils, J., Hardouin, P., & Landolt, D. 2004. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials, 25(14): 2695-2711. 157 Appendix LIST OF PUBLICATIONS Hu XF, Neoh KG, Shi ZL, Kang ET, Poh C, Wang W. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials, 2010, 31(34), 8854-63. Neoh KG, Hu XF, Zheng D, Kang ET. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials, 2012, 33(10), 2813-22. Hu XF, Neoh KG, Zhang JY, Kang ET, Wang W. Immobilization strategy for optimizing VEGF's concurrent bioactivity towards endothelial cells and osteoblasts on implant surfaces. Biomaterials, 2012, 33(32), 8082-93. Hu XF, Neoh KG, Shi ZL, Kang ET, Wang W. An in vitro assessment of fibroblast and osteoblast response to alendronate-modified titanium and the potential for decreasing fibrous encapsulation. Tissue Engineering Part A, 19(17-18), 1919-1930. Hu XF, Neoh KG, Zhang JY, Kang ET. Bacterial and osteoblast behavior on titanium, cobalt-chromium alloy and stainless steel treated with alkali and heat: a comparative study for potential orthopedic applications. Journal of Colloid and Interface Science, 2014, 417, 410-419. Zhang JY, Neoh KG, Hu XF, Kang ET, Wang W. Combined effects of direct current stimulation and immobilized BMP-2 for enhancement of osteogenesis. Biotechnology and Bioengineering, 2013, 110(5), 1466-75. 158 [...]...LIST OF TABLES Table 3.1 Surface elemental compositions as determined by XPS, contact angle and surface roughness of the pristine and treated Ti substrates Table 4.1 Elemental composition as determined by XPS and contact angle at the surface of pristine and functionalized Ti substrates Table 4.2 Elemental composition as determined by XPS at the surface of the Ti-CMCS-VEGF and Ti-HAC-VEGF substrates before... wide-scan spectra of the Ti-CMCS-VEGF and Ti-HAC-VEGF substrates before and after aging in PBS Figure 5.1 Scheme showing the conversion of heparin to HepC Figure 5.2 FT-IR spectra of heparin and HepC Figure 5.3 XPS wide-scan spectra of the pristine Ti, Ti-HAC, Ti-HAC-VEGF, Ti-HepC, and Ti-HepC-VEGF substrates The concentration of VEGF in the loading solution was 1 g/ml Figure 5.4 Surface density of immobilized... objective of this thesis is to formulate surface modification strategies to enhance osseointegration and reduce bacterial infections for Ti substrates This thesis consists of seven Chapters Chapter 1 presents a general introduction and the research objective and scope, while Chapter 2 provides a detailed literature review In Chapter 3, a strategy of alkali and heat treatment for forming anatase on Ti, and. .. topography and chemical composition (Ratner, 1993) The adsorbed proteins are important for successful bone healing For example, fibronectin and vitronectin can interact with the integrins on mesenchymal stem cells (MSCs) and enhance their attachment on the implant surface, and fibrinogen, von Willebrand factor (vWF) and immunoglobulin G are important for platelet activation, coagulation, and inflammation... failure are: defective osseointegration at the bone-implant interface and bacterial infections For ideal orthopedic implants, the materials must be habitable by bone-forming cells (favoring adhesion of osteoblasts), and be anti-infective (discouraging bacterial adhesion) Orthopedic implants can be integrated in bone by mechanical fit such as using screws to fix the device, or by osseointegration (i.e bone... functional coatings on implant surfaces to enhance osseointegration or inhibit bacterial infections (Chen et al., 2012a; Liu et al., 2004; Zhao et al., 2009), few studies have focused on achieving these dual functions simultaneously Enhancement of osseointegration and prevention of infection are sometimes contradictory For example, a surface that can prevent bacterial adhesion may be unfavorable for the attachment... 2.3 Chemical structure of BPs R1 and R2 indicate the different side chains Figure 2.4 Interaction of cells with soluble and immobilized growth factors Figure 3.1 Surface characterization of the pristine and treated Ti substrates a-b: XPS wide-scan spectra (a) and XRD spectra (b) of the pristine Ti, TiS, TiH, TiSH, TiH-10 and TiSH-10 substrates and indicate the presence of anatase and rutile, respectively... substrates before and after aging in PBS Table 5.1 Elemental composition as determined by XPS, contact angle, and zeta potential at the surface of pristine and functionalized Ti substrates Table 5.2 Elemental composition as determined by XPS at the surface of the Ti-HepC-VEGF substrate before and after immersion in PBS for 7 days Table 6.1 Elemental composition as determined by XPS, surface density of loaded... Biocompatibility and osseointegration The implantation of artificial implants induces a cascade of reactions in biological 12 Chapter 2 micro-environment due to the interaction of the device with body fluid, proteins, and cells, which often result in the formation of fibrous tissue on the implant surface as a result of wound healing Therefore, biocompatibility which reflects host response to a foreign material and. .. 1999) Therefore, an implant with osteoactive surface would be helpful in shortening the healing process since it can encourage bone growth from the implant surface 2.2.3 Bone remodeling Bone remodeling refers to the processes of pre-existing bone removal and new bone formation, which occurs throughout the healing process and continues during the lifetime of the implant It includes five sequences of events: . UNIVERSITY OF SINGAPORE 2013 IN VITRO STUDY OF SURFACE FUNCTIONALIZATION OF TITANIUM SUBSTRATES FOR POTENTIAL ENHANCEMENT OF OSSEOINTEGRATION AND REDUCTION OF BACTERIAL INFECTION. IN VITRO STUDY OF SURFACE FUNCTIONALIZATION OF TITANIUM SUBSTRATES FOR POTENTIAL ENHANCEMENT OF OSSEOINTEGRATION AND REDUCTION OF BACTERIAL INFECTION . Ti and its alloys 13 2.4 Surface modification of Ti to enhance osseointegration 14 2.4.1 Enhancement of osseointegration by surface topography 15 2.4.2 Enhancement of osseointegration by surface

Ngày đăng: 10/09/2015, 09:13

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan