Interfacial effects between the structured nanofillers and nafion matrices on the performance of h2 PEM fuel cell

221 389 0
Interfacial effects between the structured nanofillers and nafion matrices on the performance of h2 PEM fuel cell

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

INTERFACIAL EFFECTS BETWEEN THE STRUCTURED NANOFILLERS AND NAFION MATRICES ON THE PERFORMANCE OF H2-PEM FUEL CELL GUO BING NATIONAL UNIVERSITY OF SINGAPORE 2012 INTERFACIAL EFFECTS BETWEEN THE STRUCTURED NANOFILLERS AND NAFION MATRICES ON THE PERFORMANCE OF H2-PEM FUEL CELL GUO BING (M. ENG., National University of Singapore) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL & BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2012 ACKNOWLEDGEMENT First, I wish to express my deepest appreciation and thanks to my supervisors, associate Professor Hong Liang and Dr. Liu Zhaolin from IMRE, for their guidance and encouragement throughout my candidature as a Ph.D student at the National University of Singapore (NUS). Professor Hong’s comprehensive knowledge and incisive insight on polymer materials, uncompromising attitude toward research as well as the insistence on quality works have deeply influenced me and will benefit my future study. His invaluable advice, patience and painstaking revisions of my manuscripts and this thesis are indispensable to the timely completion of this thesis. I am also grateful to Dr. Liu Zhaolin for his immense background and experience in electrochemical knowledge which enabled me to work through many problems smoothly. I would also like to express my gratitude to my colleagues Mr Chen Xinwei, Chen Fuxiang, Liu Lei, Sun Ming, Zhou Yien, Ms Wang Haizhen, and Dr Tay Siok Wei of IMRE for all the handy helps, invaluable discussion and suggestions. I am grateful for the Research Scholarship from NUS that enables me to pursue my Ph.D. degree. I am also indebted to the Department of Chemical & Biomolecular Engineering of NUS for the research infrastructure support. Last but not least, this thesis is dedicated to my parents, my husband and my lovely daughter for their great understanding and steadily moral support throughout my Ph.D program. i TABLE OF CONTENTS ACKNOWLEDGEMENT i TABLE OF CONTENTS . ii SUMMARY .v ABBREVIATION viii LIST OF FIGURES . xiii LIST OF TABLES .xvii LIST OF SCHEMES xviii CHAPTER INTRODUCTION 1.1 General background 1.2 Objectives and scope of this thesis .4 1.3 Organization of This Thesis .7 CHAPTER LITERATURE REVIEW .10 2.1 Proton exchange membrane Fuel Cell (PEMFC) and current status 10 2.1.1 Basic physical and chemical properties of SPFP-Nafion 16 2.1.2 Proton transport mechanism .23 2.1.3 Contemporary tactics for enhancing the cell performance of Nafion membrane 27 2.2 Nafion-based nanocomposite membranes .30 2.2.1 Nanoparticles dispersed in Nafion membranes .31 2.2.2 Nanotubes dispersed in Nafion membranes 36 2.2.3 Mesoposous materials dispersed in Nafion membranes 43 2.2.4 Other materials dispersed in Nafion membranes 46 2.2.5 Process technology 59 CHAPTER DOPING NAFION  MATRIX BY P-ARAMID FLAKES FOR A PROTON TRANSPORT LESS RELIANT ON MOISTURE .62 3.1 Introduction .62 3.2 Experimental 66 3.2.1 Materials .66 3.2.2 Synthesis and characterizations of oligomeric poly(p-phenylene terephthalamide) 66 3.2.3 Preparation of the Nafion-P105 composite membranes 67 3.2.4 Electron microscopy and 19F-NMR spectroscopy characterizations. 68 3.2.5 Thermal Analysis 69 3.2.6 Measurement of the properties of the colloidal suspensions. 69 3.2.7 Determination of water uptake and contact angle .70 3.2.8 Evaluation of electrochemical properties .71 ii 3.3 Results and discussion 72 3.3.1 Colloidal evidences for the interaction between P105 and Nafion molecule .72 3.3.2 Properties of the composite membrane composed of Nafion-P105 clusters 83 3.3.3 Proton transport in the composite matrix .89 3.4 Conclusions 94 CHAPTER SUBSTITUTED POLY (P-PHENLENE) OLIGOMER AS A PHYSICAL CROSSLINKER IN NAFION  MEMBRANE .95 4.1 Introduction .95 4.2 Experimental 99 4.2.1 Materials .99 4.2.2 Preparation of monomer 1, 4-dibromo-2,5-diacetoxybenzene (DBOAcB) .99 4.2.3 Preparation of poly-p-phenylene-2, 5, diacetoxy (POAc) (scheme 1) .100 4.2.4 Preparation of Nafion-POAc composite membranes 100 4.2.5 Structural characterizations .101 4.2.6 Measurement of intrinsic viscosity 101 4.2.7 The morphologies of membranes .102 4.2.8 Thermal analysis of the cast membranes 103 4.2.9 Determination of water uptake and ionic exchange capacity (IEC). .103 4.2.10 Evaluation of electrochemical properties .104 4.3 Results and Discussion .104 4.3.1 Synthesis of POAc and examination of the interactions between POAc and Nafion in a dilute colloidal suspension .104 4.3.2 Characterizations of the Nafion-POAc composite membranes .109 4.3.3 Electrochemical evaluation of the Nafion-POAc membranes .114 4.4 Conclusions. .118 CHAPTER ASSIMILATION OF HIGHLY POROUS SULFONATED CARBON NANOSPHERES INTO NAFION MATRIX AS PROTON AND WATER RESERVOIRS .120 5.1 Introduction .120 5.2 Experimental 122 5.2.1 Preparation of sulfonated porous carbon nanospheres (sPCNs) 122 5.2.2 Preparation of the Nafion-Carbon composite membranes 123 5.2.3 Structure characterization 124 5.2.4 Thermal Analysis of the membranes 124 5.2.5 Determination of water uptake and Ionic Exchange Capacity (IEC) .125 5.2.6 Evaluation of electrochemical properties .125 5.3 Results and discussions 126 5.3.1 Synthesis of sulfonated porous carbon nanospheres (sPCNs) .126 iii 5.3.2 The structure characteristics of the Nafion-sPCN composite membranes .130 5.3.3 Examination of hydrophilic phase in the Nafion-sPCN composite membranes 137 5.3.4 Electrochemical evaluation of the Nafion-Carbon membranes .139 5.4 Conclusions 144 CHAPTER EMBEDDING OF HOLLOW POLYME MICROSPHERES WITH HYDROPHILIC SHELL IN NAFION MATRIX AS PROTON AND WATER MICRO-RESERVIOR .146 6.1 Introduction .146 6.2 Experimental Section .148 6.2.1 Materials .148 6.2.2 Synthesis of SiO2-MPS nanoparticles 148 6.2.3 Synthesis of SiO2/polymer core-shell nanoparticles .149 6.2.4 Synthesis of hollow polymer nanopheres (HPS) 150 6.2.5 Fabrication of the composite membranes .150 6.2.6 Characterization. .151 6.3 Results and Discussion .153 6.3.1 Characteristics of the HPSs .153 6.3.2 Broadening hydrophilic channel of Nafion by hydrophilic HPS .155 6.3.3 Effects of water micro-reservoir in the composite membranes .158 6.3.4 Influence of Moisture Level on Proton Transport in the Composite Membranes 163 6.4 Conclusions. .169 CHAPTER CONCLUSIONS AND RECOMMENDATIONS 170 7.1 Conclusive remarks on my Ph.D work 170 7.2 Recommendations for future work .174 REFERENCES 177 LIST OF PUBLICATIONS .201 iv SUMMARY The development of the proton exchange membrane fuel cell (PEMFC) has been an intense research area of which the goal is clear: to ensure a long service life without compromising performance (power density) and stable energy output at elevated temperatures (70-120oC) so as to meet the demands of commercialization. Since the application of traditional PEM (Nafion) was constrained by the operation temperature (below 80oC) and relative humidity (RH) level (above 80%), the current focus of membrane research is the pursuit of high proton conductivity at elevated temperatures with less reliance on water. Four types of special nanofillers were developed in this thesis with the aim of enhancing proton transport of Nafion. The fillers are: oligomeric poly (p-phenylene terephthalamide) (PPTA) nanoflakes and poly (pphenylene-2, 5, diacetoxy) (POAc) nanorods, sulfonated highly porous carbon nanospheres (sPCNs) and hollow polymeric nanospheres (HPSs) bearing different functional groups. They were assimilated into the Nafion matrix by means of solution dispersion and casting. The elaboration of physicochemical mechanisms behind the electrochemical behaviours, thermal/mechanical properties in the composite matrix constitutes the major part of this thesis. The main accomplishments of this thesis are highlighted below. Oligomeric PPTA Nanoflakes (about 20nm) were designed first. A low dose of such nanoflakes in the Nafion matrix causes a reduction in glass transition temperature and an increase in storage modulus of membrane due to the adsorption of Nafion molecules to PPTA nanoflakes. The contacts between the –SO3H groups of Nafion v and PPTA nanoflakes constitute an alternative proton transfer channel that is less reliant on moisture levels. The 2% PPTA modified matrix sustains a power density of 450 mw/cm2 at 70oC in a dry gas operated single H2 PEM fuel cell (H2-PEMFC), much greater than what a pristine Nafion and Nafion-112 membrane would confer. The oligomeric POAc rigid rod was synthesized as the second type of filler. Both of the acetyl side groups and the π-system of POAc became acceptors of protons. Thereby, the side-chain -SO3H groups of Nafion molecules attached to POAc rods, creating an alternative proton transport channel. This association also led to a physical cross-linking network. It was supported by the variation of glass transition temperature of Nafion with the increase in POAc content, the UV-vis spectroscopic study of diluted colloidal system, the morphology of composite matrix as well as the fusion behaviour of matrix-bound water. The composite membrane with wt% POAc loading resulted in the highest proton conductivity and the superior power density (512 mw/cm2 at 70oC) over the pristine Nafion membrane in the single H2-PEMFC operated by dry H2. With respect to the third type of filler, highly porous sulfonated carbon nanospheres (sPCNs) were prepared from polypyrrole through pyrolysis, alkaline etching and sulfonation. The adsorption of Nafion molecules to the sPCNs generated a physical crosslinking network, which includes free Nafion molecules. As a result, a semiinterpenetrating network (sIPN) was accomplished. However, the sIPN was gradually replaced by a random assembly of Nafion-wrapped sPCN granules with raising the vi sPCN loading to 2wt%. The presence of free Nafion molecules in sIPN is critical to proton transfer. The porous scaffold of sPCN (1300 m2/g) is essential to promote water-capture and proton transport at elevated temperatures. The composite membrane with wt% sPCN loading could sustain a power-density of 571 mW/cm2 in a dry gas operated H2-PEMFC at 70oC, much greater than that of the pristine Nafion membrane. Finally, the hydrophilic hollow polymeric nanospheres (HPSs) carrying sulfonic acid groups or the carboxylic acid groups were synthesized using silica sub-microsphere as template. These HPSs are promising candidates because the hollow cavities act as micro water reservoir and the hydrophilic polymeric largely promotes proton hoping rate. With the exception of these two prominent effects, the adsorption of –SO3H groups of Nafion on HPSs also improved water preservation at elevated temperatures. The substantially low density of HPSs rendered HPSs a very high volume fraction. A loading of 0.2 wt% provided a surface area more than needed for accepting the sulfonic acid groups of Nafion. As a result, the composite matrix also contained HPSs free of adsorption, which contributed continuous proton transport channels. This chapter also scrutinized the freezable bound water and free water in the composite matrix by using DSC. The trend observed is coherent with ion-exchange capacity, proton-conductivity, water retention capability and single H2-PEMFC power density. The composite membrane with 0.5 wt% sHPS loading could give a power-density of 525 mW/cm2 in a dry gas operated H2-PEMFC at 70oC, much greater than that of the pristine Nafion membrane. vii ABBREVIATION 19 F-NMR H NMR 19 F nuclear magnetic resonance H nuclear magnetic resonance AFC Alkaline fuel cell AIBN 2, 2′-Azobisisobutyronitrile ATRP Atom transfer radical polymerization Bpy 2,2'-bipyridyl CNT Carbon nanotubes Cod Cyclo-octa-1,5-diene DBOAcB 1,4-dibromo-2,5-diacetoxybenzene DLS Dynamic light scattering DMA Dynamic mechanical analysis DMF N,N-Dimethylformamide viii Kim J. D., Mori T., Hayashi S., Honma I., Anhydrous Proton-Conducting Properties of Nafion–1,2,4-Triazole and Nafion–Benzimidazole Membranes for Polymer Electrolyte Fuel Cells, J Electrochem Soc 2007, 154, A290. Kim Y. S., Dong L. M., Hickner M. A., GlasT. E. s, Webb V., McGrath J. E., State of Water in Disulfonated Poly(arylene ether sulfone) Copolymers and a Perfluorosulfonic Acid Copolymer (Nafion) and Its Effect on Physical and Electrochemical Properties, Macromolecules, 2003, 36, 6281-6285. Kim, H.; Miura, Y.; Macosko, C. W. Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chem. Mater. 2010, 22, 3441– 3450. Kojo Nishida; Keisuke, kaji; Toshiji, Kanaya; Norbert, Fanjat, Determination of intrinsic viscosity of polyelectrolyte solutions, Polymer 2002, 43, 1295-1300. Kornshev A. A., Kuznetsov A. M., Spohr E., Ulstrup J., Kinetics of proton transport in water, J. Phys. Chem. B 2003, 107, 3351-3366. Kozhevnikov I.V., Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions, Chem. Rev, 1998, 98, 171–198. Kreuer K. D., Fuchs A., Ise M., Sapeth M., Imidazole and pyrazole based proton conducting polymers and liquids. Electrochim Acta 1998, 43, 1281–1288. Kreuer K. D., On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci., 2001, 185, 29. Kreuer K. D., Paddison S.J., Spohr E., Schuster M. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 2004, 104, 4637-4678. Kreuer, K. D., Proton conductivity: materials and applications, Chem. Mater., 1996, 8, 610-641. Krishnan P., Park J. S., Kim C. S., Performance of a poly(2,5- benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide. J. Power Sources, 2006, 159, 817–823. Kuilla T., Bhadrab S., Yaoa D., Kim N. H., Bosed S., Lee J. H., Recent advances in graphene based polymer composites, Prog. Polym. Sci., 2010, 35, 1350–1375. Kumar A. P., Depan D., Tomer N. S. and Singh R., Prog. Polym.Sci., 2009, 34, 479 Kwon K., Yoo D. Y., Park JO. Experimental factors that influence carbon monoxide tolerance of high-temperature proton-exchange membrane fuel cells. J. Power Sources 2008, 185, 202–206. Laberty R. C.; Valle, K., Pereira, F. and Sanchez, C. Design and properties of functional hybrid organic–inorganic membranes for fuel cells, Chem. Soc. Rev., 2011, 40, 961–1005 186 Lafi tte B., Jannasch P., Proton-Conducting Aromatic Polymers Carrying Hypersulfonated Side Chains for Fuel Cell Applications, Adv. Funct. Mater. 2007, 17, 2823-2834. Landi B. J., Raffaelle R. P., Heben M. J., Alleman J. L., VanDerveer W., Gennett T., Single Wall Carbon Nanotube−Nafion Composite Actuators, Nano Lett. 2002, 2, 1329-1332. Langsdorf, B. L.; Maclean, B. J.; Halfyard, J. E.; Hughes, J. A.; Pickup, P. G., Partitioning and Polymerization of Pyrrole into Perfluorosulfonic Acid (Nafion) Membranes, J. Phys. Chem. B, 2003, 107, 2480-2484. Lavorgna M., Gilbert M., Mascia L., Mensitieri G., Scherillo G. and Ercolano G., Hybridization of Nafion membranes with an acid functionalised polysiloxane: Effect of morphology on water sorption and proton conductivity, J. Membr. Sci., 2009, 330, 214-226. Lee C. H., Park H. B., Chung Y. S., Lee Y. M. and Freeman B. D., Water Sorption, Proton Conduction, and Methanol Permeation Properties of sulfonated Polyimide Membranes Cross-Linked with N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic Acid (BES), Macromolecules 2006, 39, 755-764 Lee J. H., Shin H. S., Rhee H. W., Kim Y. T., Song M. K. and M. S. Kim, US 2006116479 (2006). Lee Y. J., Bingol B., Murakhtina T., Sebastiani D., Meyer W., Wegner G., Spiess H., High-Resolution Solid-State NMR Studies of Poly(vinyl phosphonic acid) ProtonConducting Polymer:  Molecular Structure and Proton Dynamics, J. Phys. Chem. B, 2007, 111, 9711–9721. Lee Y. J., Murakhtina T., Sebastiani D., Spiess H., 2H Solid-State NMR of Mobile Protons:  It Is Not Always the Simple Way, J. Am. Chem. Soc. 2007, 129, 12406– 12407. Lepiller C., Gauthier V., Gaudet J., Pereira A., Lefevre M., Guay D. and Hitchcock A., Studies of Nafion–RuO2·xH2O Composite Membranes, J. Electrochem. Soc., 2008, 155, B70–B78 Li Q. F., He R.H., Jensen J. O., Niels J. Bjerrum. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100oC. Chem. Mater. 2003, 15, 4896-4915 Li Q., Li W., Zhang H. N., Pan M., Immobilization of imidazole in polymer electrolyte membranes for elevated temperature anhydrous applications, J. appl. Polym. Sci., 2011, DOI: 10.1002/app.34459 Li S., Zhou Z., Abernathy H., Liu M., Li W., Ukai J., Hase K., Nakanishi M., Synthesis and properties of phosphonic acid-grafted hybrid inorganic–organic polymer membranes, J. Mater. Chem., 2006, 16, 858–864. 187 Li S., Zhou Z., Liu M., Li W., Ukai J., Hase K., Nakanishi M., Synthesis and properties of imidazole-grafted hybrid inorganic–organic polymer membranes, Electrochim Acta 2006, 51, 1351. Li T., Zhong G., Fu R., Y. Yang, Synthesis and characterization of Nafion/crosslinked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell, J. Membr. Sci., 2010, 354, 189–197. Li X., Wang X., Zhang L., Lee S., Dai H., Chemically derived, ultrasmooth graphene nanoribon semiconductor. Science 2008, 319, 1229–1231. Liang W., Li C., Qiu J., Zhou W., Han H., Wei Z., Sun G. and Xin Q., Fabrication of glassy carbon spools for utilization in fiber optic gyroscopes. Carbon, 2002, 40, 787788. Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. MolecularLevel Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of Their Nanocomposites. Adv. Funct. Mater. 2009, 19, 2297–2302 Lichtenhan J. D., Otonari Y.A., Carr M.J., Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers, Macromolecules, 1995, 28, 8435. Lillo-Ro´denas M. A., Cazorla-Amoro´s D., Linares-Solano A Understanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism. Carbon, 2003, 41, 267–275. Lim S. K., Kim J. W., Chin I., Kwon Y. K., Choi H. J., Preparation and Interaction Characteristics of Organically Modified Montmorillonite Nanocomposite with Miscible Polymer Blend of Poly(Ethylene Oxide) and Poly(Methyl Methacrylate), Chem. Mater. 2002, 14, 1989. Lin Y. F., Hsiao Y.H., Yen C.Y., Chiang C.L., Lee C.H., Huang C.C., Ma C.C.M., Sulfonated poly (propylene oxide) oligomers/nafion acid-base blend membranes for DMFC, J. Power Sources, 2007, 172, 570-577. Lin Y. F., Yen C.-Y., Ma C.-C.M., Liao S.-H., Lee C.-H., Hsiao Y.-H., Lin H.-P., High proton-conducting Nafion®/–SO3H functionalized mesoporous silica composite membranes, J. Power Sources, 2007, 171, 388–395. Lin Y., Zhou B., Fernando K. A. S., Liu P., Allard L. F. and Sun Y. P., Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer, Macromolecules, 2003, 36, 7199. Litt M. H., Polym. Prepr., 1997, 38, 80–81 Liu Y. H., Yi B., Shao Z. G., Xing D. and Zhang H., Carbon Nanotubes Reinforced Nafion Composite Membrane for Fuel Cell Applications, Electrochem.Solid-State Lett., 2006, 9, A356. 188 Liu Y. L. and Chen W. H., Modification of Multiwall Carbon Nanotubes with Initiators and Macroinitiators of Atom Transfer Radical Polymerization, Macromolecules, 2007, 40, 8881–8886 Liu Y. L., Su Y. H., Chang C. , SuryanM., i, Wang D. M. and Lai J. Y., Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells, J. Mater. Chem., 2010, 20, 4409–4416 Liu Y. Q., Gao L., Sun J., Wang Y. and Zhang J., Stable Nafion-functionalized grapheme dispersions for transparent conducting films, Nanotechnology, 2009, 465605-465611. Liyanage A. D., Ferraris J. P., Musselman I. H., Yang D. J., Andersson Theodore E., Son David Y., Balkus K. J., Nafion-sulfonated dendrimer composite membranes for fuel cell applications J. Membr. Sci., doi:10.1016/j.memsci.2011.12.018. , Lou L. D., Pu H. T., Preparation and properties of proton exchange membranes based on Nafion and phosphonic acid-functionalized hollow silica spheres. Int. J. Hydro. Energ., 2011, 36, 3123-3130. Lue S. J. and Shieh S. J Water States in Perfluorosulfonic Acid Membranes Using Differential Scanning Calorimetry. J. Macropor. Sci. Part B: Phys., 2009, 48, 114– 127, Malek K.; Eikerling M.; Wang Q. P.; Liu Z. S.; Otsuka S.; Akizuki K. and Abe M., Nanophase segregation and water dynamics in hydrated Nafion: molecular modeling and experimental validation, J. Chem. Phys., 2008, 129, 204702. Malhotra, S., Datta, R., Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells, J. Electrochem. Soc., 1997, 144, L23-L26. March J., in Advanced Organic Chemistry, 4th ed., John Wiley & Sons, New York, 1992, pp 19. Marcolli C., Calzaferri G., Monosubstituted octasilasesquioxanes, Monosubstituted octasilasesquioxanes, Appl. Organomet. Chem., 1999, 13, 213-226. Marschall R., Bannat I., Caro J., Wark M., Proton conductivity of sulfonic acid functionalised mesoporous materials, Micropor. Mesopor. Mater., 2007, 99, 190– 196. Marschall R., Sharifi M., Wark M., Proton conductivity of imidazole functionalized ordered mesoporous silica: Influence of type of anchorage, chain length and humidity, Micropor Mesopor Mater 2009, 123, 21. Matos B. R., Santiago E. I., Fonseca F, Linardi M, Lavayen V, Lacerda R, et al. Nafion titanate nanotube composite membranes for PEMFC operating at high temperature. J Electrochem Soc., 2007; 154:B1358. Matos B. R., Santiago E. I., Rey J. F. Q., Ferlauto A. S., Traversa E., Linardi M., Fonseca F. C., Nafion-based composite electrolytes for proton exchange membrane 189 fuel cells operating above 120oC with titania nanoparticles and nanotubes as fillers, J. Power Sources, 2011, 196, 1061–1068. Matsuguchi M., Takahashi H., Methanol permeability and proton conductivity of a semi IPN membrane composed of Nafion and cross-linked DVB, J. Membr. Sci., 2006, 281, 707–715. Matsumoto K., Fujigaya T., Sasaki K. and Nakashima N., Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells, J. Mater. Chem., 2011, 21, 1187–1190 Mauritz K. A. and Payne J. T., [Perfluorosulfonate ionomer]/silicate hybrid membranes via base-catalyzed in situ sol–gel processes for tetraethylorthosilicate, J. Membr. Sci., 2000, 168, 39–51. Mauritz K. A. and Stefanithis I. D., Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 2. Dielectric relaxation studies, Macromolecules, 1990, 23, 1380–1388. Mauritz K. A. and Warren R. M., Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 1. Infrared spectroscopic studies, Macromolecules, 1989, 22, 1730–1734. Mauritz K. A., R.B. Moore, State of Understanding of Nafion, Chem. Rev., 2004, 104, 4535-4586. McAllister M. J., Li J. L., Adamson D. H., Schniepp H . C., Abdala A. A., Liu J., et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 2007, 19, 4396–4404. Mehdi Amirinejada, Sayed Siavash Madaenia, Ezzat Rafieeb, Sedigheh Amirinejada, J. Membr. Sci., 2011, 377, 89– 98. Meng F., Aieta N. V., Dec D. S. F., Horan J. L., Williamson D., Frey M. H., Pham P., Turner J. A., Yandrasits M. A., Hamrock S. J., and Herring A. M., Structural and transport effects of doping perfluorosulfonic acid polymers with the heteropoly acids, H3PW12O40 or H4SiW12O40, Electrochim. Acta., 2007, 53, 1372–1378. Merlo L., Ghielmi A., Cirillo L., Gebert M. and Arcella V., Resistance to peroxide degradation of Hyflon® Ion membranes, J. Power Sources, 2007, 171, 140–147; Mistry M. K., Choudhury N. R., Dutta N. K., Knott R., Shi Z. Q., Holdcroft S., Novel organic-inorganic hybrids with increased water retention for elevated temperature proton exchange membrane application. Chem. Mater. 2008, 20, 6857-6870. Miyake N., Wainright J. S., Savinell R. F., Evaluation of a Sol-Gel Derived NafionÕSilica Hybrid Membrane for Proton Electrolyte Membrane Fuel Cell Applications I. Proton Conductivity and Water Content, J. Electrochem. Soc., 2001, 148, A898-904. 190 Moilanen D. E., Piletic I. R. and Fayer M. D., Water Dynamics in Nafion Fuel Cell Membranes:  The Effects of Confinement and Structural Changes on the Hydrogen Bond Network, J. Phys. Chem. C, 2007, 111, 8884–8891 Molla S. and Compan V., performance of composite Nafion/PVA membranes for direct methanol fuel cells, J. Power Sources, 2011, 196, 2699–2708. Morgado Jr E, de Abreu M, Moure G, Marinkovic B, Jardim P, Araujo A. Characterization of nanostructured titanates obtained by alkali treatment of TiO2anatases with distinct crystal sizes. Chem Mater 2007, 19, 665-676. Munch, W., Kreuer, K.D., Silvestri, W., Maier, J., Seifert, G., The diffusion mechanism of an excess proton in imidazole molecule chains: first results of an ab initio molecular dynamics study, Solid State Ionics, 2001, 145, 437-443. Navarra M. A., Croce F. and Scrosati B., New, high temperature superacid zirconiadoped Nafion™ composite membranes, J. Mater. Chem., 2007, 17, 3210–3215. Nedstack.com. http://www.nedstack.com/technology/fuel-cell-comparison Nicotera I; Enotiadis A., Angjeli K., Coppola L. and Gournis D., Evaluation of smectite clays as nanofillers for the synthesis of nanocomposite polymer electrolytes for fuel cell applications, Int. J. Hydro. Energ., in press, doi:10.1016/ j.ijhydene.2011.06.041. NIST. http://www.physics.nist.gov/MajResFac/NIF/pemFuelCells.html , PEM Fuel Cells, 2006. Nonhlanhla Cele, Suprakas Sinha Ray, Recent Progress on Nafion-Based Nanocomposite Membranes for Fuel Cell Applications, Macromol. Mater. Eng. 2009, 294, 719–738. O’ Dea J. R. and Buratto S. K., Phase imaging of proton exchange membranes under attractive and repulsive tip-sample interaction forces, J. Phys. Chem. B., 2011, 115, 1014-1020. O’Hayre, R., Cha, S-W., Colella, W., Prinz, F.B., Fuel cell fundamentals, John Wiley & Sons, New York, 2006 Oh S. Y., Yoshida T., Kawamura G., Muto H., Sakai M. and Matsuda A., InorganicOrganic Composite Electrolytes Consisting of Polybenzimidazole and Cs-substituted heteropoly acids and their application for medium temperature fuel cells, J. Mater. Chem., 2010, 20, 6359–6366. Omidian H., J. G. Rocca , K. Park , Advances in superporous hydrogels, J. Controlled Release 2005 , 102 , 3. Ou H, Lo S. Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application, Separ. Purif. Technol., 2007, 58, 179-191. 191 Pan H., Pu H., Wan D., Jin M., Chang Z., Proton exchange membranes based on semi-interpenetrating polymer networks of fluorine-containing polyimide and Nafion®, J. Power Sources, 2010, 195, 3077–3083. Papageorgopoulos D. DOE fuel cell technology program overview and introduction to the 2010 fuel cell pre-solicitation workshop in DOE fuel cell pre-solicitation workshop. Department of Energy, Lakewood, Colorado; 2010 Park H. S., Kim Y.J., Hong W.H., Choi Y.S., Lee H.K., Influence of Morphology on the Transport Properties of Perfluorosulfonate Ionomers/Polypyrrole Composite Membrane, Macromolecules, 2005, 38, 2289-2295. Park M. J., Downing K. H., Jackson A., Increased Water Retention in Polymer Electrolyte Membranes at Elevated Temperatures Assisted by Capillary Condensation, Nano Lett. 2007, 7, 3547-3552. Park S, Yoo J. Peer reviewed: electrochemical impedance spectroscopy for better electrochemical measurements. Anal. Chem., 2003, 75, 455-461. Pavlidou S., Papaspyrides C. D., A review on polymer–layered silicate nanocomposites, Prog. Polym. Sci. 2008, 33, 1119-1198. Peighambardoust S., Rowshanzamir J. S. and Amjadi M., Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy, 2010, 35, 9349-9384. Pereira F., Valle K., Belleville P., Morin A., Lambert S., Sanchez C., Advanced mesostructured hybrid silica-Nafion membranes for high-performance PEM fuel cell, Chem. Mater., 2008, 20, 1710-1718. Petersen M. K.; Wang F.; Blake N. P.; Metiu H. and Voth G. A., Excess proton solvation and delocalization in a hydrophilic pocket of the proton conducting polymer membrane Nafion, J. Phys. Chem. B, 2005, 109, 3727-3730. Petterssona L. J., Westerholm R., State of the art of multi-fuel reformers for fuel cell vehicles: Problem identification and research needs. Int. J. Hydrogen Energy 2001, 26, 243–264. Phillips, S. H.; Haddad, T. S.; Tomczak, S. J., Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers, Curr. Opin. Solid State Mater. Sci. 2004, 8, 21–29. Pierre Aldebert, Gerard Gebelt and Benoit Loppinet, Polyelectrolyte effect in perfluorosulfonated ionomer solutions, Polvmer, 1995, 36, 431-434. Pivovar B. S. An overview of electro-osmosis in fuel cell polymer electrolytes. Polymer 2006, 47, 4194–202. Pourcelly G., Gavach C., Perfluorinated membranes. In: Proton conductors. In: Colomban P, editor. Chemistry of Solid State Materials, vol. 2. Cambridge, UK: Cambridge University Press; 1992. 294–310. 192 Pu H. T., Wang D. and Yang Z. L Towards high water retention of proton exchange membranes at elevated temperature via hollow nanospheres. J. Membr. Sci., 2010, 360, 123-129. Ramaiyan Kannan, Bhalchandra A. Kakade, and Vijayamohanan K. Pillai. Polymer Electrolyte Fuel Cells Using Nafion-Based Composite Membranes with Functionalized Carbon Nanotubes. Angew. Che,m. Int. Ed. 2008, 47, 2653-2656. ® Ramani, V., Kunz, H.R., Fenton, J.M., Investigation of Nafion /HPA composite membranes for high temperature/low relative humidity PEMFC operation, J. Membr. Sci., 2004, 232, 31-44, 2004 Rhee C. H., Kim H. K., Chang H., Lee J. S., Nafion/Sulfonated Montmorillonite Composite:  A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells, Chem. Mater. 2005, 17, 1691-1697. Rockland L. B., Saturated Salt Solutions for Static Control of Relative humidity between 5° and 40° C. Anal. Chem., 1960, 32, 1375-1376. Rollet A. L., Diat O., Gebel G., A New Insight into Nafion Structure, J. Phys. Chem. B, 2002, 106, 3033. Rubatat L., Gebel G., Diat O., Fibrillar Structure of Nafion: Matching Fourier and Real Space Studies of Corresponding Films and Solutions, Macromolecules, 2004, 37, 7772. Rubatat, L.; Rollet, A.-L.; Gebel, G.; Diat, O. Evidence of Elongated Polymeric Aggregates in Nafion. Macromolecules 2002, 35, 4050-4055. Sahu A. K., Bhat S. D., Pitchumani S., Sridhar P., Vimalan V., George C., Chandrakumar N., Shukla A. K., Novel organic–inorganic composite polymerelectrolyte membranes for DMFCs, J. Membr. Sci. 2009, 345, 305-314. Sahu A. K., Pitchumani S., Sridhar P. and Shukla A. K., Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview. Bull. Mater. Sci., 2009, 32, 285–294. Sahu A. K., Selvarani G., Pitchumani S., Sridhar P. and Shukla A. K., A Sol-Gel Modified Alternative Nafion-Silica Composite Membrane for Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 2007, 154, B123. Saito M., Hayamizu K., Okada T., Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells. J. Phys. Chem. B 2005, 109, 3112– 3119. Sakai Y., Kuroki S., Satoh M., Water Properties in the Super-Salt-Resistive Gel Probed by NMR and DSC, Langmuir 2008, 24, 6981. Sambandam S., Ramani V., SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells, J. Power Sources 2007, 170, 259–267. 193 Santiago E. I., Isidoro R.A., Dresch M.A., Matos B.R., Linardi M., Fonseca F.C., Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature, Electrochim. Acta, 2009, 54, 4111-4117. Sapurina I.Y., Kompan M.E., Malyshkin V.V., Rosanov V.V., Stejskal J., Properties of proton-conducting Nafion-type membranes with nanometer-thick polyaniline surface layers, Russ. J. Electrochem., 2009, 45, 697. Sarkar, N.; Kershner, L. D. Rigid rod water-soluble polymers, J. Appl. Polym. Sci. 1996, 62, 393-408. Saswata Bose, Tapas Kuila, Thi Xuan Hien Nguyen, Nam Hoon Kim, Kin-tak Lau, Joong Hee Lee, Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges, Prog. Polym. Sci., 2011, 36, 813–843. Sauk J., Byun J., Kim H., Composite Nafion/polyphenylene oxide (PPO) membranes with phosphomolybdic acid (PMA) for direct methanol fuel cells, J. Power Sources 2005, 143, 136–141. Saverio RUSSO and Albert Mariani. High Molecular Weight Aromatic Polyamides by Direct Polycondensation, Macromolecules 1993, 26, 4984-4985. Savinell R, Yeager E, Tryk D, Landau U, Wainright J, Weng D, Lux K, Litt M, Rogers C., A polymer electrolyte for operation at temperatures up to 200 ◦C. J. Electrochem. Soc., 1994, 141, L46–48. Scharfenberger G., Meyer W. H., Wegner G., Schuster M., Kreuer K. D., Maier J., Anhydrous Polymeric Proton Conductors Based on Imidazole Functionalized Polysiloxane, Fuel Cells 2006, 6, 237. Schmidt-Rohr Klaus and Chen Q Parallel cylindrical water nanochannels in Nafion fuel-cell membranes, Nat. Mater., 2008, 7, 75–83. Schmittinger W., Vahidi A. A review of the main parameters influencing longterm performance and durability of PEM fuel cells, J. Power Sources 2008, 180, 1–14. Schuster M., Rager T., Noda A., Kreuer K. D., J. Maier, About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds, Fuel Cells, 2005, 3, 355–365. Schwenzer B.; Kim S.; Vijayakumar M.; Yang Z. G. and Liu J., correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties, J. Membr. Sci., 2011, 372, 11–19. Semmelhack M. F., Helquist P.M., Jones L. D., Synthesis with zerovalent nickel. Coupling of aryl halides with bis(1, 5-cyclooctadiene) nickel (0), J. Am. Chem. Soc. 1971, 93, 5908. Sergio Mollá, Vicente Compan, polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications, J. Membr. Sci., 2011, 372, 191–200. 194 Shao Z. G., Xu H.F., Li M.Q. and Hsing I. M., Hybrid Nafion–inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell, Solid State Ionics, 2006, 177, 779–785. Sinha Ray S., M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 2003, 28, 1539-1641. Sirajuddin, M. I. Bhanger, A. Niaz, A. Shah, A. Rauf, Ultra-trace level determination of hydroquinone in waste photographic solutions by UV–vis spectrophotometry, Talanta, 2007, 72, 546. Siu A., Schmeisser J., Holdcroft S., Effect of water on the low temperature conductivity of polymer electrolytes. J. Phys. Chem. B 2006, 110, 6072–6080. Smitha B., Sridhar S., Khan A. A. Solid polymer electrolyte membranes for fuel cell applications – a review. J Membrane Sci 2005, 259, 10–26. Smitha B., Sridhar S., Khan A. A Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells, Macromolecules 2004, 37, 2233. Smitha B., Sridhar S., Khan A.A., Proton conducting composite membranes from polysulfone and heteropolyacid for fuel cell applications, J. Polym. Sci. B: Polym. Phys., 2005, 43, 1538–1547. Socrates G., Infrared and Raman characteristic group frequencies: tables and charts, 3rd ed., John Wiley & Sons, New York, 2004, 115-116. Sone Y., Ekdunge P, Simonsson D. Proton conductivity of Nafion 117 as measured by a four-electrode ac impedance method. J. Electrochem Soc 1996, 143, 1254–1259. Sperling L.H., Interpenetrating polymer networks, in: Sperling L.H., Klempner D., Utracki L.A. (Eds.), Advances in Chemistry Series, vol. 239, 1994, 3–38. Spohr E., Commer P., Kornyshev A. A., Enhancing Proton Mobility in Polymer Electrolyte Membranes:  Lessons from Molecular Dynamics Simulations, J. Phys. Chem. B 2002, 106, 10560-10569. Stefanithis I. D. and Mauritz K. A., Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 3. Thermal analysis studies, Macromolecules, 1990, 23, 2397–2402. Steigerwalt E. S., Deluga G. A. and Lukehart C. M., Pt-Ru/carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cell: A search for exceptional performance. J. Phys. Chem. B, 2002, 106, 760-766. Steininger H., Schuster M., Kreuer K. D., Kaltbeitzel A., Bingol B., Meyer W. H., Schauff S., Brunklaus G., Maier J., Spiess H. W., Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: A progress report, Phys. Chem. Chem. Phys. 2007, 9, 1764–1741. 195 Sto¨ber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 1968, 26, 62–69. Stones, C., Morrison, A. E., From curiosity to “power to change the world®”, Solid State Ionics, 2002, 152–153, 1–13. Su F. B., Tian Z. Q., Poh C. K., Wang Z., Lim S. H., Liu Z. L. and Lin J. Y Pt Nanoparticles Supported on Nitrogen-Doped Porous Carbon Nanospheres as an Electrocatalyst for Fuel Cells. Chem. Mater. 2010, 22, 832–839. Su Y. H., Liu Y. L., Sun Y. M., Lai J. Y., Wang D. M., Gao Y., Liu B., Guiver M. D., Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells, J. Membr. Sci. 2007, 296, 21 Su Y. H., Liu Y. L., Wang D. M., Lai J. Y., Guiver M. D., Liu B., Increases in the proton conductivity and selectivity of proton exchange membranes for direct methanol fuel cells by formation of nanocomposites having proton conducting channels, J. Power Sources 2009, 194, 206-213. Subianto S., Mistry M.K., Choudhury N.R., Dutta N.K., Knott R., Composite Polymer Electrolyte Containing Ionic Liquid and Functionalized Polyhedral Oligomeric Silsesquioxanes for Anhydrous PEM Application, ACS Appl. Mater. Inter. (2009) 1173-1182. Sungpet A., Reduction of alcohol permeation through Nafion by polypyrrole, J. Membr. Sci., 2003, 226, 131. Takasaki, M.; Kimura, K.; Kawaguchi, K.; Abe, A.; Katagiri, G. Macromolecules 2005, 38, 6031-6037. Tang H. L., Pan M., Synthesis and Characterization of a Self-Assembled Nafion/Silica Nanocomposite Membrane for Polymer Electrolyte Membrane Fuel Cells, J. Phys.Chem.C, 2008, 112, 11556-11568. Tay S. W., Zhang X.H., Liu Z.L., Hong L., Composite Nafion membrane embedded with hybrid nanofillers for promoting direct methanol fuel cell performance, J. Membr. Sci., 2008, 32, 139. Tazi B., Savadogo O., Parameters of PEM fuel-cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene, Electrochim. Acta, 2000, 45, 4329. Thijs H. M. L., Becer C. R., Guerrero-Sanchez C., Fournier D., Hoogenboom R., Schubert U. S., Water uptake of hydrophilic polymers determined by a thermal gravimetric analyzer with a controlled humidity chamber, J. Mater. Chem., 2007, 17, 4864-4871. Thomassin J. M., Koller J., Caldarella G., Germain A., Je´roˆme R. and Detrembleur C., Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications. J. Membr. Sci., 2007, 303, 252. 196 Thompson C. H., Merrington A., Carver Peter I., Keeley D. L., Rousseau J. L., Hucul D., Bruza K. J., Thomas Lowell S., Keinath S. E., Nowak R. M., Katona D. M. and Santurri P. R., Proton-conducting polyhedral oligosilsesquioxane nanoadditives for sulfonated polyphenylsulfone hydrogen fuel cell proton exchange membranes, J. Appl.Polym. Sci., 2008, 110, 958–974. Thompson E. L., Capehart T. W., Fuller T. J. and Jorne J., Investigation of LowTemperature Proton Transport in Nafion Using Direct Current Conductivity and Differential Scanning Calorimetry, J. Electrochem. Soc., 2006, 153, A2351–A2362 Tian H., Savadogo O., Silicotungstic acid Nafion composite membrane for protonexchange membrane fuel cell operation at high temperature, Journal of new materials for electrochemical system, 2006, 9, 61-71. Tominaga Y., Hong I. C., Asai S., Sumita M., Proton conduction in Nafion composite membranes filled with mesoporous silica, J. Power Sources, 2007, 171, 530–534. Truffier-Boutry D., De Geyer A., Guetaz L., Diat O., Gebel G., Structural Study of Zirconium Phosphate−Nafion Hybrid Membranes for High-Temperature Proton Exchange Membrane Fuel Cell Applications, Macromolecules, 2007, 40, 8259–8264. Tsang E. M. W., Zhang Z., Shi Z., Soboleva T., Holdcroft S., Considerations of Macromolecular Structure in the Design of Proton Conducting Polymer Membranes:  Graft versus Diblock Polyelectrolytes, J. Am. Chem. Soc. 2007, 129, 15106. Uchida H., Ueno Y., Hagihara H. and Watanabe M., Self-Humidifying Electrolyte Membranes for Fuel Cells Preparation of Highly Dispersed TiO2 Particles in Nafion 112, J. Electrochem. Soc., 2003, 150, A57-A62. Unal Sen, Ayhan Bozkurt, Ali Ata, Nafion/poly(1-vinyl-1,2,4-triazole) blends as proton conducting membranes for polymer electrolyte membrane fuel cells, J. Power Sources, 2010, 195, 7720–7726. Verma A, Scott K. Development of high-temperature PEMFC based on heteropolyacids and polybenzimidazole. J. Solid State Electrochem., 2010;14:213–9. Vickery L., Patil A. J., Mann S., Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater., 2009, 21, 2180–2184. Wang C. H., Chen C. C., Hsu H. C., Du H.-Y., Chen C.-P., Hwang J.-Y., Chen L.C., Shih H.-C., Stejskal J., Chen K.H., Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells, J. Power Sources, 2009, 190, 279. Wang G., Yang J., Park J., Gou X., Wang B., Liu H., et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192–8195. Wang J. N., Zhang L., Niu J. J., Yu F., Sheng Z. M., Zhao Y. Z., Chang H., Pak C., Synthesis of High Surface Area, Water-Dispersible Graphitic Carbon Nanocages by an in Situ Template Approach, Chem. Mater., 2007, 19, 453–459. 197 Wang J. N., Zhao Y. Z. and Niu J. J., Preparation of graphitic carbon with high surface area and its application as an electrode material for fuel cells. J. Mater. Chem., 2007, 17, 2251–2256. Wang J. T., Zhang H., Yang X. L., Jiang S., Lv W. J., Jiang Z. Y. and Qiao S. Z Enhanced Water Retention by Using Polymeric Microcapsules to Confer High Proton Conductivity on Membranes at Low Humidity, Adv. Funct. Mater., 2011, 21, 971– 978 Wang L., Yi B. L., Zhang H. M., Liu Y. H., Xing D. M., Shao Z. G., Cai Y. H., Novel multilayer Nafion/SPI/Nafion composite membrane for PEMFCs, J. Power Sources, 2007, 164, 80. Wang Y., Chen Ken S, Jeffrey Mishler, Sung C. C., Adroher X. C., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energ., 2011, 88, 981–1007. Wang Z. B.; Tang H. L. and Pan Mu, self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells, J. Membr. Sci., 2011, 369, 250–257. Wang, J.; Musameh, M.; Lin Y., Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors, J. Am. Chem. Soc. 2003, 125, 2408. Watanabe M. Uchida, H. and Emori M., Polymer Electrolyte Membranes Incorporated with Nanometer-Size Particles of Pt and/or Metal-Oxides:  Experimental Analysis of the Self-Humidification and Suppression of Gas-Crossover in Fuel Cells, J. Phys. Chem. B, 1998, 102, 3129-3137. Watanabe M., Uchida H. and Emori M., Analyses of Self-Humidification and Suppression of Gas Crossover in Pt-Dispersed Polymer Electrolyte Membranes for Fuel Cells, J. Electrochem. Soc., 1998, 145, 1137-1141. Watanabe M., Uchida H., Seki Y., Emori M. and Stonehart P., Self-Humidifying Polymer Electrolyte Membranes for Fuel Cells, J. Electrochem. Soc., 1996, 143, 3847-3852. Weber A.Z., Breslau J.B.R., Miller IF. A hydrodynamic model for electroosmosis, Ind. Eng. Chem. Fundam. 1971, 10, 554-565. Wood D. L., Borup R. L. In: Buchi MIFN, Schmidt TJ, editors. Polymer electrolyte fuel cell durability. New York: Springer; 2009. 159. Wright M. E., Schorzman D. A., Feher F. J., Jin R. Z., Synthesis and thermal curing of aryl-ethynyl-terminated coPOSS imide oligomers: new inorganic/organic hybrid resins, Chem. Mater., 2003, 15, 264. Wu D. S., Paddison S. J. and Elliott J. A., Effect of Molecular Weight on Hydrated Morphologies of the Short-Side-Chain Perfluorosulfonic Acid Membrane, Macromolecules 2009, 42, 3358-3367. 198 Wu D. S.; Paddison S. J. and Elliott J. A., a comparative study of the hydrated morphologies of perfluorosulfonic acid fuel cell membranes with mesoscopic simulations., Energy Environ. Sci., 2008, 1, 284-293. Wu D. S.; Paddison S. J. and Elliott J. A., effect of molecular weight on hydrated morphologies of the short-side-chain perfluorosulfonic acid membrane, Macromolecules, 2009, 42, 3358-3367 Wu D. S.; Paddison S. J., Elliott J. A. and Hamroc S. J., mesoscale modeling of hydrated morphologies of 3M perfluorosulfonic acid-based fuel cell electrolytes, Langmuir, 2010, 26, 14308–14315 Wycisk R. , Chisholm J., Lee J., Lin J., Pintauro P. N., Direct methanol fuel cell membranes from Nafion–polybenzimidazole blends, J. Power Sources 2006, 163, 9– 17. Xu H., Yang B., Wang J., Guang S., Li C., Preparation, Tg improvement, and thermal stability enhancement mechanism of soluble poly(methyl methacrylate) nanocomposites by incorporating octavinyl polyhedral oligomeric silsesquioxanes, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 5308–5317. Xu K., Chanthad C., Gadinski M.R., Hickner M.A., and Q. Wang, AcidFunctionalized Polysilsesquioxane-Nafion Composite Membranes with High Proton Conductivity and Enhanced Selectivity, ACS appl. Mater. Interf., 2009, 1, 2573– 2579. Yamada M., Honma I., Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)-heterocycle composite material, Polymer 2005, 46, 2986– 2992. Yamamoto T., Kimura T., Shiraishi K., Preparation of π-conjugated polymers composed of hydroquinone, p-benzoquinone, and p-diacetoxyphenylene units. Optical and redox properties of the polymers, Macromolecules, 1999, 32, 8886. Yan X. M., Mei P., Mi Y., Gao L., Qin S., Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells, Electrochem. Comm., 2009, 11, 71–74. Yang J. Y., Pei K. S., Varcoe J. and Wei Z. D., Nafion/ polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity. J. Power Sources, 2009, 189, 1016-1019. Yang, C.; Costamagna, P.; Srinivisan, S.; Benziger, J.; Bocarsly, A. B., Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells, J. Power Sources 2001, 103, 1. Ye G., Hayden C. A. and Goward G. R., Proton Dynamics of Nafion and Nafion/SiO2 Composites by Solid State NMR and Pulse Field Gradient NMR, Macromolecules, 2007, 40, 1529-1537. Yeo S. C., Eisenberg A., Physical-properties and supermolecular structure of perfluorinated ion-containing (Nafion) polymers, J. Appl. Polym. Sci., 1977, 21, 875. 199 Yu J., Hadis Z., Michael F., Chen Z. W., Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells, Int. J. hydro. Energy., 2011, 36, 6073-6081. Yuan J. J., Zhou G. B. and Pu H. T. Preparation and properties of Nafion®/hollow silica spheres composite membranes. J. Membr. Sci., 2008, 325, 742–748. Zarrin H., D., Higgins D., Jun Y., Chen Z. W., Fowler M., Functionalized graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane, Fuel Cells, J. Phys. Chem. C, 2011, 115, 20774-20781. Zawodzinski T., Springer TUribe., F. and Gottesfeld S., Characterization of polymer electrolytes for fuel cell applications, Solid State Ionics, 1993, 60, 199. Zawodzinski T.A., Derouin C., Radzinski S., Sherman R.J., Smith V.T., Springer T.E., Gottesfeld S., Water uptake by and transport through Nafion® 117 Membranes, J. Electrochem. Soc., 1993, 140, 1041. Zhang H. N., Pan J. J., He X. and Pan M., Zeta potential of Nafion molecules in isopropanol-water mixture solvent, J. Appl. Polym. Sci., 2008, 107, 3306-3309. Zhang J., Gao L., Sun J., Liu Y. Q., Wang Y., Wang J. P., Kajiura H., Li Y. M. and Noda K., Dispersion of single-walled carbon nanotubes by nafion in water/ethanol for preparing transparent conducting films, J. Phys. Chem. C, 2008, 112 16370-16376. Zhang L. M.; Xu, J.; Hou, G. J.; Tang, H. R.; Deng, F., Interactions between Nafion resin and protonated dodecylamine modified montmorillonite: A solid state NMR study, J. Colloid. Interf. Sci., 2007, 311, 38-44. Zhang S. et al. A review of accelerated stress tests of MEA durability in PEM fuel cells. Int J Hydrogen Energy, 2009, 34, 388-404. Zhang W. J., Li M. K. S., Yue P. L., Gao P., Exfoliated Pt-Clay/ Nafion Nanocomposite Membrane for Self-Humidifying Polymer Electrolyte fuel cells, Langmuir, 2008, 24, 2663-2670. Zhang W. Z., Satoh M., Komiyama J., A differential scanning calorimetry study of the states of water in swollen poly(vinyl alcohol) membranes containing nonvolatile additives. J. Membr. Sci. 1989, 42, 303–314. Zhang X. H., Tay S. W., Hong L. and Liu Z. L., In situ implantation of PolyPOSS blocks in Nafion® matrix to promote its performance in direct methanol fuel cell, J. Membr. Sci., 2008, 320, 310-318. Zhang X. H., Tay S.W., Liu Z.L., Hong L., Restructure proton conducting channels by embedding starbust POSS-g-arylonitrile oligomer in sulfonic perfluoro polymer matrix, J. Membr. Sci. 2009, 329, 228-235. Zhang Y., Zhang H. M., Zhu X. B. and Bi C., Promotion of PEM Self-Humidifying Effect by Nanometer-Sized Sulfated Zirconia-Supported Pt Catalyst Hybrid with Sulfonated Poly(Ether Ether Ketone), J. Phys. Chem. B, 2007, 111, 6391-6399. 200 LIST OF PUBLICATIONS 1. Bing Guo, Zhaolin Liu, Liang Hong. Doping Nafion® Matrix by p-Aramid Flakes for a Proton Transport Less Reliant on Moisture, Journal of materials chemistry, 2011, 21, 12414 – 12421. 2. Bing Guo, Zhaolin Liu, Liang Hong. Substituted Poly (p-phenylene) Oligomer as a Physical Crosslinker in Nafion® Membrane, Journal of membrane science, 2011, 379, 279-286. 3. Bing Guo, Siok Wei Tay, Zhaolin Liu, Liang Hong. Assimilation of highl porous sulfonated carbon nanospheres into Nafion matrix as proton and water reservoirs. International Journal of Hydrogen Energy, 2012, 37, 14482-14491. 4. Bing Guo, Siok Wei Tay, Zhaolin Liu, Liang Hong. Embedding of hollow polymer microspheres with hydrophilic shell in Nafion matrix as proton and water reservior. Polymers 2012, 4(3), 1499-1516. 201 [...]... 106 Figure 4.3 Change of the UV-visible spectrum (300nm to 450nm) of a POAc-DMF solution (2mg/ml) on addition of various content of Nafion (based on the weight% of POAc) The insert shows the entire spectrum of POAc-1 %Nafion in DMF 107 Figure 4.4 FTIR spectra of POAc and the association of POAc-1 %Nafion colloidal dispersion 108 Figure 4.5 FETEM of Nafion (a) and Nafion/ 1P (b) membranes... conjugation between two adjacent benzene rings takes place through an amide bond The dispersion of a low dose of the PPTA nanoflakes in the Nafion matrix causes a reduction in glass transition temperature and storage modulus of membrane This matrix-softening phenomenon is attributed to the association of Nafion molecules to PPTA nanoflakes via the adsorption of the sulfonic acid groups of Nafion onto the hydrophilic... adsorption of Nafion molecules on P105 nanoflakes 79 Figure 3.9 19 F-NMR spectra of Nafion (A) and Nafion- 2%P105 (B) 80 Figure 3.10 Changes in the reduced viscosity (ηred ) of the colloidal suspensions consisting of Nafion, P105 (wt.% based on Nafion) and IPAH2O solvent (v/v=7/5, pH=3) with the increase in concentration of Nafion 82 Figure 3.11 Dynamic light scattering test that shows the. .. image of a P105 particle as synthesized 76 Figure 3.6 Zeta potential scanning with the variation of pH of two colloidal suspensions: P105 in H2O and Nafion in IAP/H2O (v/v=7/5) 77 Figure 3.7 Zeta potential scanning with the variation of pH of the colloidal suspensions containing Nafion (5.46mg/ml) and P105 (wt.% based on Nafion) 77 Figure 3.8 Schematic illustration of the Nafion – P105... Nafion and Nafion- 2%P105 membranes 87 Figure 3.15 FE-SEM images of the cryofractured cross-section of the Nafion membrane (a) and the Nafion- 2%P105 composite membrane (b) 88 Figure 3.16 Evaluation of temperature effect on proton conductivity of the two membranes: measured in water (RH 100%) (a), and in the saturated vapor of the saturated LiCl(aq) (b), which has a narrow range of RH (10-11%) over the. .. Figure 5 5 The evolution of the structure of the Nafion- Carbon composite membrane from sIPN to random structure 131 Figure 5 6 DSC (a) and DMA (b) of various membranes The temperatures marked in (a) represent the temperatures of the lowest concave points 133 Figure 5 7 The cross-sectional FESEM of Nafion (a), Nafion- 0.5%%sPCN (b), Nafion- 1%sPCN (c), Nafion- 1.5%sPCN (d) and 2%sPCN (e) composite... and a quiet operation Fuel cells have been used for stationary power generation as well as for mobile power generation to power cars, trucks, and buses Research and development on fuel cells have been ongoing ever since the first th fuel cell was demonstrated in the mid 19 century Proton exchange membrane fuel cell (PEMFC) is one of the most promising options for fuel cells due to the high power density,... Figure 3.17 Examination of proton conductivity of the two memberanes at 115oC under a controlled humidity environment (10% RH) 91 Figure 3.18 The polarization curves and power outputs of H2 fuel cell at 25 oC (a) and 70oC (b) 93 Figure 4.1 Cross-sectional FESEM of Nafion membrane 96 Figure 4.2 The composition dependence of the intrinsic viscosity of the Nafion- POAc diluted mixture... the primary proton transport channel A specific pattern of the variation of glass transition temperatures of Nafion with an increase in POAc content in the Nafion matrix supports the occurrence of physical crosslinking Different from the PPTA nanofillers which need an intense 5 dispersing into the Nafion system because of the difficulty to fully utilize the πsystem of PPTA due to strong hydrogen bonding... voltages and then a power density that ranges from 10 W to 1 MW in order for them to be used in various domains, including portable, stationary and transportation uses Fuel cell includes proton exchange membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), phosphoric acid fuel cell (PAFC), alkaline fuel cell (AFC) and molten carbonate fuel cell (MCFC) Compared to other types of fuel cells, PEMFCs . INTERFACIAL EFFECTS BETWEEN THE STRUCTURED NANOFILLERS AND NAFION MATRICES ON THE PERFORMANCE OF H 2 -PEM FUEL CELL GUO BING NATIONAL UNIVERSITY OF SINGAPORE 2012 INTERFACIAL. INTERFACIAL EFFECTS BETWEEN THE STRUCTURED NANOFILLERS AND NAFION MATRICES ON THE PERFORMANCE OF H 2 -PEM FUEL CELL GUO BING (M. ENG., National University of Singapore) A THESIS SUBMITTED. solution (2mg/ml) on addition of various content of Nafion (based on the weight% of POAc). The insert shows the entire spectrum of POAc-1 %Nafion in DMF 107 Figure 4.4 FTIR spectra of POAc and the

Ngày đăng: 09/09/2015, 18:51

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan