Development of ionic liquid based liquid phase microextraction, and zeolite imidazolate frameworks based sorbent phase based microextraction combined with chromatography for applications in environmental analysis

156 469 0
Development of ionic liquid based liquid phase microextraction, and zeolite imidazolate frameworks based sorbent phase based microextraction combined with chromatography for applications in environmental analysis

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

DEVELOPMENT OF IONIC LIQUID BASED LIQUID PHASE MICROEXTRACTION, AND ZEOLITE IMIDAZOLATE FRAMEWORKS BASED SORBENT PHASE BASED MICROEXTRACTION COMBINED WITH CHROMATOGRAPHY FOR APPLICATIONS IN ENVIRONMENTAL ANALYSIS GE DANDAN NATIOANAL UNIVERSITY OF SINGAPORE 2012 DEVELOPMENT OF IONIC LIQUID BASED LIQUID PHASE MICROEXTRACTION, AND ZEOLITE IMIDAZOLATE FRAMEWORKS BASED SORBENT PHASE BASED MICROEXTRACTION COMBINED WITH CHROMATOGRAPHY FOR APPLICATIONS IN ENVIRONMENTAL ANALYSIS by GE DANDAN (M.Sc., NATIONAL UNIVERSITY OF SINGAPORE) A THESIS SUBMITTED FOR THE DEGREE OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIOANAL UNIVERSITY OF SINGAPORE 2012 Thesis Declaration The work in this thesis is the original work of Ge Dandan, performed independently under the supervision of Professor Lee Hian Kee, (in the laboratory of Microscale Analytical Chemistry), Chemistry Department, National University of Singapore, between 03/08/2008 and 03/08/2012. The content of the thesis has been partly published in: 1) D. Ge, H.K. Lee, Water stability of zeolite imidazolate framework and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples, J. Chromatogr. A 1218 (2011) 8490. 2) D. Ge, H.K. Lee, Ionic liquid based hollow fiber supported liquid phase microextraction of ultraviolet filters, J. Chromatogr. A 1229 (2012) 1. 3) D. Ge, H.K. Lee, A new 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ionic liquid based ultrasound-assisted emulsification microextraction for the determination of organic ultraviolet filters in environmental water samples, J. Chromatogr. A 1251 (2012) 27. 4) D. Ge, H.K. Lee, Zeolite imidazolate frameworks8 as sorbent and its application to sonication-assisted emulsification microextraction combined with vortex-assisted porous membrane-protected micro-solid-phase extraction for fast analysis of acidic drugs in environmental water samples, J. Chromatogr. A 1263 (2012) 1. Name Signature Date i Acknowledgements Foremost, I would like to express my sincere gratitude to my supervisor, Professor Lee Hian Kee, for his invaluable suggestions, guidance and encouragement throughout this study. Under his guidance, I gained precious research experience and learnt how to carry out research work independently. I am grateful to my colleagues, Lee Jingyi, Zhang Hong, Lim Tze Han, Zhang Yufeng, Seyed Mohammad Majedi, Xu Ruyi, Nyi Nyi Naing and Huang Zhenzhen who gave me their help and advice during my candidature. I would also thankful to Mdm Lim Guek Choo, Dr Liu Qiping and many other laboratory officers in the Department of Chemistry for their kind help and assistance. I appreciate the National University of Singapore for providing me the financial support during the period of this research. Finally, I would like to appreciate my family for their endless love, support and encouragement. Appreciation is also addressed to my friends. Without their support, my research could not have gone ahead successfully. ii Table of Contents Thesis Declaration.……………………………………………………………………… .і Acknowledgement……………………………………………………………………… .ii Table of Contents…………………………………………………………………………iii Summary………………………………………………………………………………….ix List of Tables……………………………………………………………………………xiii List of Figures………………………………………………………………………… xv List of Abbreviations………………………………………………………………… .xvii Section Introduction………………………………………………………………… .1 Chapter 1. Introduction………………………………………………………………3 1.1 Sample preparation…………………………………………………………… .3 1.2 Liquid phase microextraction (LPME)…………………………………………4 1.2.1 Single drop microextraction (SDME)…………………………………… .5 1.2.1.1 Direct immersion SDME (DI-SDME)……………………………… .5 1.2.1.2 Headspace SDME (HS-SDME)………………………………………7 1.2.1.3 Continuous flow microextraction (CFME)………………………… .7 1.2.2 Hollow fiber-protected LPME (HF-LPME)………………………………8 1.2.2.1 Two-phase HF-LPME……………………………………………… .9 1.2.2.2 Three-phase HF-LPME…………………………………………… 10 1.2.2.3 Solvent-bar microextraction…………………………………… ….11 1.2.3 Dispersive liquid-liquid microextraction…………………………………11 1.2.4 Ionic liquid based LPME…………………………………………………12 1.3 Sorbent phase-based microextraction (SPBME)………………………………14 iii 1.3.1 Solid phase microextraction (SPME)…………………………………….14 1.3.2 In-tube SPME…………………………………………………………….15 1.3.3 Stir bar sorptive extraction (SBSE)………………………………………16 1.3.4 Microextraction in a packed syringe (MEPS)……………………………16 1.3.5 Micro solid-phase-extraction (μ-SPE)……………………………………17 1.3.5.1 μ-SPE……………………………………………………………… 17 1.3.5.2 Materials applicable to μ-SPE………………………………………18 1.3.5.2-1 Silica-based sorbent………………………………………… .18 1.3.5.2-2 Hybrid materials……………………………………………….18 1.3.5.2-3 Carbonaceous materials……………………………………….19 1.4 Objective and scope of the study………………………………………………21 Section Ionic Liquid-based Liquid Phase Microextraction……………………… 25 Chapter 2. Ionic liquid based liquid phase microextraction of UV filters………….31 2.1 Introduction………………………………………………………………… .31 2.2 Experimental………………………………………………………………….34 2.2.1 Materials and chemicals…………………………………………………34 2.2.2 Instrumentation………………………………………………………… .35 2.2.3 Extraction procedure…………………………………………………… 36 2.2.3.1 IL-HF-LPME………………………………………………………36 2.2.3.2 USAEME……………………………………………………… .36 2.2.4 Blank Contamination…………………………………………………… 37 2.2.5 Optimization strategy for USAEME.…………………………………… 37 2.3 Results and discussion…………………………………………………………38 iv 2.3.1 IL-HF-LPME of UV filters…………………………………………….…38 2.3.1.1 Effect of IL solvents………… .………………….…………………39 2.3.1.2 Effect of different pH of the aqueous phase……….…… …………40 2.3.1.3 Effect of stirring rate………… .…… ………….…………………40 2.3.1.4 Effect of extraction time………….…………………………………41 2.3.1.5 Effect of salt concentration……… …………… …………………42 2.3.1.6 Method validation and application…………………………………43 2.3.2 USAEME of UV filters…………………………………………….…… 45 2.3.2.1 Initial experiment……………………………………………………45 2.3.2.2 Further optimization……………………………………………… .48 2.3.2.3 Evaluation of method performance…………………………………51 2.3.2.4 Analysis of environmental samples…………………………………52 2.4 Conclusion remarks……………………………………………………………53 Section Zeolite Imidazolate Frameworks based Micro-solid-phase Extraction……………………………………………………………………………….55 Chapter 3. Water stability of zeolitc imidazolate framework and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples……………………………………61 3.1 Introduction……………………………………………………………………61 3.2 Experimental………………………………………………………………… 62 3.2.1 Chemicals and materials…………………………………………………62 3.2.2 Instrumentation………………………………………………………… 63 3.2.3 Synthesis of ZIF-8……………………………………………………… 63 v 3.2.4 Preparation of µ-SPE Device……………………………………………65 3.2.5 Sample preparation………………………………………………………65 3.2.6 Extraction Procedures……………………………………………………65 3.3 Results and discussion…………………………………………………………66 3.3.1 Characterization of ZIF-8……………………………………………… 66 3.3.2 Extraction optimization………………………………………………… 68 3.3.2.1 Sorbent materials……………………………………………………68 3.3.2.2 Desorption solvent………………………………………………… 69 3.3.2.3 Desorption time…………………………………………………… 70 3.3.2.4 Extraction time………………………………………………………71 3.3.2.5 Salt concentration………………………………………………… .72 3.3.3 Method evaluation……………………………………………………… 73 3.3.4 Analysis of environmental water samples……………………………… 74 3.4 Conclusion remarks……………………………………………………………75 Chapter 4. Zeolitic imidazolate frameworks-8 as sorbent and its application to sonication-assisted emulsification microextraction combined with vortex-assisted porous membrane-protected micro-solid-phase extraction for fast analysis of acidic drugs in environmental water ……………………………………………………… .77 4.1 Introduction……………………………………………………………………77 4.2 Experimental………………………………………………………………… 78 4.2.1 Chemicals and materials…………………………………………………78 4.2.2 GC-MS analysis………………………………………………………….79 4.2.3 Characterization of ZIF-8……………………………………………….80 vi 4.2.4 Extraction procedures……………………………………………………80 4.2.4.1 SAE-VA-μ-SPE …………………………………………………… 80 4.2.4.2 Agitation-assisted µ-SPE (AA-µ-SPE) and sonication-assisted combined with vortex-assisted µ-SPE (SA-VA-µ-SPE)…………………… 81 4.3 Results and discussion…………………………………………………………81 4.3.1 Characterization of ZIF-8……………………………………………… 81 4.3.2 Optimization of the SAE-VA-μ-SPE of acidic drugs …………………….83 4.3.2.1 Comparison of SAE-VA-μ-SPE with AA-µ-SPE and SA-VA-µ-SPE .83 4.3.2.2 Selection of desorption solvent ………………………………………84 4.3.2.3 Volume of extraction solvent……………………………………… .85 4.3.2.4 Emulsification time………………………………………………….86 4.3.2.5 Desorption time………………………………………………… 86 4.3.2.6 Salt effect……………………………………………………………87 4.3.2.7 Adjustment of pH……………………………………………………88 4.3.3 Method evaluation……………………………………………………… 89 4.3.4 Genuine water analysis………………………………………………… 90 4.4 Conclusion remarks……………………………………………………………91 Chapter 5. Ionic liquid based dispersive liquid-liquid microextraction coupled with micro-solid phase-extraction of tricyclic antidepressants drugs from environmental water samples ……………………………………………………………………… .93 5.1 Introduction……………………………………………………………………93 5.2 Experimental………………………………………………………………… 95 5.2.1 Reagents and chemicals………………………………………………….95 vii 5.2.2 Synthesis of ZIF-4……………………………………………………… .95 5.2.3 Apparatus…………………………………………………………………95 5.2.4 Extraction procedures…………………………………………………….96 5.2.4.1 IL-DLLME-VA-μ-SPE……………………………………………….96 5.2.4.2 Direct µ-SPE (D-µ-SPE)……………………………………………98 5.3 Results and discussion…………………………………………………………98 5.3.1 Optimization of IL-DLLME-VA-μ-SPE process………………………….98 5.3.1.1 Comparison of IL-DLLME-VA-μ-SPE with SA-VA-µ-SPE…………98 5.3.1.2 Effect of extraction solvent………………………………………….99 5.3.1.3 Effect of the volume of extractant………………………………….100 5.3.1.4 Effect of sonication time………………………………………… .101 5.3.1.5. Effect of desorption solvent……………………………………….102 5.3.1.6 Effect of pH of aqueous phase………………………………… …103 5.3.1.7 Effect of desorption time…………………………………… .……104 5.3.1.8 Effect of salt concentration……………………………… .105 5.3.2 Method evaluation………………………………………………………106 5.3.3 Analysis of genuine water samples…………………………………… 107 5.4 Conclusion remarks………………………………………………………… 107 Section Conclusions and future work…………………………………………… .109 Chapter 6. Conclusions and future work……………………………………………111 References…………………………………………………………………………… 117 List of Publications……………………………………………………………………133 viii [39] C. Basheer, H.K. Lee, J.P. Obbard, J. Chromatogr. A 1022 (2004) 161. [40] C. Basheer, J.P. Obbard, H.K. Lee, J. Chromatogr. A 1068 (2005) 221. [41] S. King, J.S. Meyer, A.R.J. Andrews, J. Chromatogr. A 982 (2002) 201. [42] L. Zhao, H.K. Lee, Anal. Chem. 74 (2002) 2486. [43] X. Jiang, C. Basheer, J. Zhang, H.K. Lee, J. Chromatogr. A 1087 (2005) 289. [44] M. Marlow, R.J. Hurtubise, Anal. Chim. Acta 526 (2004) 41. [45] S.M. Ramasamy, R.J. Hurtubise, A. Weston, Appl. Spectrosc. 51 (1997) 1377. [46] H. Jiang, B. Hu, B. Chen, W. Zu, Spectrochim. Acta, Part B 63 (2008) 770. [47] T.S. Ho, T.G. Halvorsen, S. Pedersen-Bjergaard, K.E. Rasmussen, J. Chromatogr. A 998 (2003) 61. [48] C. Basheer, H.K. Lee, J. Chromatogr. A 1057 (2004) 163. [49] S. Pedersen-Bjergaard, K.E. Rasmussen, J. Chromatogr. A 1184 (2008) 132. [50] M. Saraji, M.T. Jafari, H. Sherafatmand, J. Chromatogr. A 1217 (2010) 5173. [51] Y. Wu, B. Hu, J. Chromatogr. A 1216 (2009) 7657. [52] J. Zhang, T. Su, H.K. Lee, J. Chromatogr. A 1121 (2006) 10. [53] W. Pan, H. Xu, Y. Cui, D. Song, Y.-Q. Feng, J. Chromatogr. A 1203 (2008) 7. [54] L.Y. Zhu, L. Zhu, H.K. Lee, J. Chromatogr. A 924 (2001) 407. [55] X.J. Wen, C.H. Tu, H.K. Lee, Anal. Chem. 76 (2004) 228. [56] L. Hou, H.K. Lee, Anal. Chem. 75 (2003) 2784. [57] A. Bjorhovde, T.G. Halvorsen, K.E. Rasmussen, S. Pedersen-Bjergaard, Anal. Chim. Acta 491 (2003) 155. [58] T.S. Ho, T.G. Halvorsen, S. Pedersen-Bjergaard, K.E. Rasmussen, J. Chromatogr. A 998 (2003) 61. [59] C. Basheer, A.A. Alnedhary, B.S.M. Rao, R. Balasubramanian, H.K. Lee, J. Chromatogr. 119 A 1210 (2008) 19. [60] X. Jiang, H.K. Lee, Anal. Chem. 76 (2004) 5591. [61] A. Saleh, E. Larsson, Y. Yamini, J.Å. Jönsson, J. Chromatogr. A 1218 (2011) 1331. [62] L. Fotouhi, Y. Yamini, S. Molaei, S. Seidi, J. Chromatogr. A 1218 (2011) 8581. [63] W. Liu, L. Zhang, Z. Wei, S. Chen, G. Chen, J. Chromatogr. A 1216 (2009) 5340. [64] M. Rezaee, Y. Assadi, M.-R. M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116 (2006) 1. [65] Y. Liu, E. Zhao, W. Zhu, H. Gao, Z. Zhou, J. Chromatogr. A 1216 (2009) 885. [66] D. Nagarau, S.-D. Huang, J. Chromatogr. A 1161 (2007) 89. [67] H. Chen, H. Chen, J. Ying, J. Huang, L. Liao, Anal. Chim. Acta 632 (2009) 80. [68] S. Berijani, Y. Assadi, M. Anbia, M.-Reza, Milani Hossreini, E. Aghaee, J. Chromatogr. A 1123 (2006) 1. [69] S.C. Cunha, J.O. Fernandes, M.B.P.P. Oliveira, J. Chromatogr. A 1216 (2009) 8835. [70] R.R. Kozani, Y. Assadi, F. Shemirani, M.-R. M. Hosseini, M.R. Jamali, 72 (2007) 387. [71] H. Farahani, P. Norouzi, R. Dinarvand, M.R. Ganjali, J. Chromatogr. A 1172 (2007) 105. [72] S. Luo, L. Fang, X. Wang, H. Liu, G. Ouyang, C. Lan, T. Luan, J. Chromatogr. A 1217 (2010) 6762. [73] J. Regueiro, M. Lpmpart, C. Garcia-Jares, J.C. Garcia-Montefudo, R. Cela, J. Chromatogr. A 1190 (2008) 27. [74] M.D. Luque de Castro, F. Priego-Capote, Analytical Applications of Ultrasound, Elsevier, Amsterdam, 2006. [75] M.D.L. Castro, F. Priego-Capote, Talanta 72 (2007) 321. 120 [76] E. Psillakis, N. Kalogerakis, Trends Anal. Chem. 22 (2003) 565. [77] J. Wu, H.K. Lee, J. Chromatogr. A 1092 (2005) 182. [78] N. Fontanals, T. Barri, S. Bergström, J. Jönsson, J. Chromatogr. A, 1133 (2006) 41. [79] J. Liu, J.A. Jősson, G. Jian, Trends Anal. Chem. 24 (2005) 20. [80] A. Berthod, S. Carda-Broch, Ann. Marie Curie Fellowships (2004) 1. [81] R. Liu, J.-F. Liu, Y.-G. Yin, X.-L. Hu, G.-B. Jiang, Anal. Bioanal. Chem. 393 (2009) 871. [82] T. Ajioka, S. Oshima, N. Hirayama, Talanta 74 (2008) 903. [83] E. Aguilera-Herrador, R. Lucena, S. Cárdenas, M. Valcárcel, Anal. Chem. 80 (2008) 793. [84] C.L. Arthur, J. Pawliszyn, Anal. Chem. 62 (1990) 2145. [85] P. Dewsbury, S.F. Thornton, D.N. Lerner, Environ. Sci. Technol. 37 (2003) 1392. [86] E.M. Sheehan, M.A. Limmer, P. Mayer, U.G. Karlson, J.G. Burken, Environ. Sci. Technol. 46 (2012) 3319. [87] B.A. Tomkins, R.H. Ilgner, J. Chromatogr. A 972 (2002) 183. [88] J. Beránek, A. Kubátová, J. Chromatogr. A 1209 (2008) 36. [89] C. Pizarro, N. Pérez-del-Notario, J.M. González-Sáiz, J. Chromatogr. A 1143 (2007) 176. [90] W.-L. Liu, B.-H. Hwang, Z.-G. Li, J.-F. Jen, M.-R. Lee, J. Chromatogr. A 1218 (2011) 7857. [91] Y. Wang, B.B. Schneider, T.R. Covey, J. Pawliszyn, Anal. Chem. 77 (2005) 8095, [92] F.S. Mirnaghi, Y. Chen, L.M. Sidisky, J. Pawliszyn, Anal. Chem. 83 (2011) 6018. [93] X. Zhang, K.D. Oakes, D. Luong, J.Z. Wen, C.D. Metcalfe, J. Pawliszyn, M.R. 121 Servos, Anal. Chem. 82 (2010) 9492. [94] G. Ouyang, K.D. Oakes, L. Bragg, S. Wang, H. Liu, S. Cui, M.R. Servos, D.G. Dixon, J. Pawliszyn, Environ. Sci. 45 (2011) 7792. [95] M.N. Sarrión, F.J. Santos, M.T. Galceran, Anal. Chem. 72 (2000) 4865. [96] X. Zhang, J. Cai, K.D. Oakes, F. Breton, M.R. Servos, J. Pawliszyn, Anal. Chem. 81 (2009) 7349. [97] S.A. Ramsey, R.V. Mustacich, P.A. Smith, G.L. Hook, B.A. Eckenrode, Anal. Chem. 81 (2009) 8724. [98] F. Augusto, J. Koziel, J. Pawliszyn, Anal. Chem. 73 (2001) 481. [99] H. Liu, L. Liu, Y. Xiong, X. Yang, T. Luan, J. Chromatogr. A 1217 (2010) 6747. [100] R. Eisert, J. Pawlisyn, Anal. Chem. 69 (1997) 3140. [101] H.L. Lord, J. Chromatogr. A 1152 (2007) 2. [102] M.E. Queiroz, E.B. Oliveira, F. Breton, J. Pawliszyn, J. Chromatogr. A 1174 (2007) 72. [103] H.F. Cueto-Rojas, N.O. Perez, G. Perez-Sanchez, I. Ocampo-Juarez, E. MedinaRivero, J. Chromatogr. B 878 (2010) 1019. [104] E. Baltussen, P. Sandra, F. David, C. Cramers, J. Microcol. Sep. 11 (1999) 737. [105] R.M. Smith, J. Chromatogr. A 1000 (2003) 3. [106] M. Abdel-Rehim, J. Chromatogr. B 801 (2004) 317. [107] M. Abdel-Rehim, Y. Askemark, C. Norsten-Hoeoeg, K.-J. Pettersson, M. Halldin,J. Liq. Chromatogr. Relat. Technol. 29 (2006) 2413. [108] M. Abdel-Rehim, A. Andersson, A. Breitholtz-Emanuelsson, M. Sandberg-Staell, K. Brunfelter, K.-J. Pettersson, C. Norsten-Hoeoeg, J. Chromatogr. Sci. 46 (2008) 518. 122 [109] M. Abdel-Rehim, M. Dahlgren, L. Blomberg, J. Sep. Sci. 29 (2006) 1658. [110] M. Abdel-Rehim, M. Dahlgren, L. Blomberg, S. Claude, R. Tabacchi, J. Liq. Chromatogr. Relat. Technol. 29 (2006) 2537. [111] M. Abdel-Rehim, Z. Hassan, P. Skansem, M. Hassan, J. Liq. Chromatogr. Relat. Technol. 30 (2007) 3029. [112] M. Abdel-Rehim, P. Skansen, M. Vita, Z. Hassan, L. Blomberg, M. Hassan, Anal. Chim. Acta 539 (2005) 35. [113] Z. Altun, M. Abdel-Rehim, Anal. Chim. Acta 630 (2008) 116. [114] A. El-Beqqali, M. Abdel-Rehim, J. Sep. Sci. 30 (2007) 2501. [115] C. Basheer, A.A. Alnedhary, B.S.M. Rao, S. Valliyaveettil, H.K. Lee, Anal. Chem.78 (2006) 2853. [116] C. Basheer, H.G. Chong, T.M. Hii, H.K. Lee, Anal. Chem. 79 (2007) 6845. [117] C. Basheer, S. Pavagadhi, H. Yu, R. Balasubramanian, H.K. Lee, J. Chromatogr. A 1217 (2010) 6366. [118] C. Basheer, A.A. Alnedhary, B.S.M. Rao, H.K. Lee, J. Chromatogr. A. 1126 (2009) 211. [119] S. Vadukumpully, C. Basheer, C.S. Jeng, S. Valiyaveettil, J. Chromatogr. A 1218 (2011) 3581. [120] L. Guo, H.K. Lee, J. Chromatogr. A 1218 (2011) 9321. [121] H. Zhang, W.P. Low, H.K. Lee, J. Chromatogr. A 1233 (2012) 16. [122] F. Augusto, E. Carasek, R. G. C. Silva, S. R. Rivellino, A. D. Batista, E. Martendal, J. Chromatogr. A 1217 (2010) 2533. [123] S. Iijima, Nature 354 (1991) 56. 123 [124] P. Liang, Y. Liu, L. Guo, J. Zeng, H. Lu, J. Anal. At. Spectrom. 19 (2004) 1489. [125] Y.-H. Li, S.Wang, Z. Luan, J. Ding, C. Xu, D.Wu, Carbon 41 (2003) 1057. [126] Y.-H. Li, S.Wang, J.Wei, X. Zhang, C. Xu, Z. Luan, D.Wu, B.Wei, Chem. Phys. Lett. 357 (2002) 263. [127] X.Y. Zhu, S.M. Lee, Y.H. Lee, T. Frauenheim, Phys. Rev. Lett. 85 (2000) 2757. [128] M. Valcárcel, B.M. Simonet, S. Cárdenas, B. Suárez, Anal. Bioanal. Chem. 382 (2005) 1783. [129] Y. Cai, G. Jiang, J. Liu, Q. Zhou, Anal. Chem. 75 (2003) 2517. [130] Y.-Q. Cai, G.-B. Jiang, J.-F. Liu, Q.-X. Zhou, Anal. Chim. Acta 494 (2003) 149. [131] Q. Zhou, J. Xiao, W. Wang, J. Chromatogr. A 1125 (2006) 152. [132] J.J. Davis, M.L. Green, H. Hao, Y.C. Keung, P.J. Sadler, J. Sloan, A.V. Xavier, S.C. Tsang, Inorg. Chim. Acta 272 (1998) 261. [133] J.R. Baena, M. Gallego, M. Valcárcel, Trends Anal. Chem. 21 (2002) 187. [134] P. Liang, Y. Liu, L. Guo, Spectrochimica Acta B 60 (2005) 125. [135] C. Saridara, R. Brukh, Z. Iqbal, S. Mitra, Anal. Chem. 77 (2005) 1183. [136] R.Q. Long, R.T. Yang, J. Am. Chem. Soc. 123 (2001) 2058. [137] R.S. Zhao, C.P. Diao, Q.F. Chen, X. Wang, J. Sep. Sci. 32 (2009) 1069. [138] M. Asensio-Ramos, J. Hernández-Borges, T.M. Borges-Miquel, M.A. RodríguezDelgado, Anal. Chim. Acta 647 (2009) 167. [139] M.F. Dong, Y.Q. Ma, E.C. Zhao, C. Qian, L. Han, S. Jiang, Microchim. Acta 165 (2009) 123. [140] L. Wang, H. Zhao, Y. Qiu, Z. Zhou, J. Chromatogr. A 1136 (2006) 99. [141] G.Z. Fang, J.X. He, S. Wang, J. Chromatogr. A 1127 (2006) 12. 124 [142] H.Y. Niu, Y.Q. Cai, Y.L. Shi, F.S. Wei, J.M. Liu, G.B. Jiang, Anal. Bioanal. Chem. 392 (2008) 927. [143] Y. Cai, S. Mou, Y. Lu, J. Chromatogr. A 1081 (2005) 245. [144] X. Liu, Y. Ji, Y. Zhang, H. Zhang, M. Liu, J. Chromatogr. A 1165 (2007) 10. [145] W. Zhang, Y. Sun, C. Wu, J. Xing, J. Li, Anal. Chem. 81 (2009) 2912. [146] L. Xu, H.K. Lee, J. Chromatogr. A 1192 (2008) 203. [147] H. Lee, M. Sng, C. Basheer, H.K. Lee, J. Chromatogr. A 1196-1197 (2008) 125. [148] L. Vidal, E. Psillakis, C.E. Domini, N. Grané, F. Marken, A. Canals, Anal. Chim. Acta, 584 (2007) 189. [149] J.–F. Liu, G.-B. Jiang, Y.-G. Chi, Y.-Q. Cai, Q.-X.Zhou, J.-T. Hu, Anal. Chem. 75 (2003) 5870. [150] Q. Zhou, H. Bai, G. Xie, J. Xiao, J. Chromatogr. A 1177 (2008) 43. [151] M. Baghdadi, F. Shemirani, Anal. Chim. Acta 613 (2008) 56. [152] P. Berton, E.M. Martinis, R.G. Wuilloud, J. Hazard. Mater. 176 (2010) 721. [153] L.M. Ravelo-Pérez, J. Hernández-Borges, M. Asensio-Ramos, M.Á. RodíguezDelgado, J. Chromatogr. A 1216 (2009) 7336. [154] H. Zhang, X. Chen, X. Jiang, Anal. Chim. Acta 689 (2011) 137. [155] Q. Zhou, X. Zhang, J. Xiao, J. Chromatogr. A 1216 (2009) 4361. [156] J.-F. Peng, J.-F. Liu, X.-L. Hu, G.-B. Jiang, J. Chromatogr. A 1139 (2007) 165. [157] C. Yao, W. Pitner, J. Anderson, Anal. Chem. 81 (2009) 5054. [158] N.V. Ignat‟ev, U.W. Biermann, A. Kucheryna, G. Bissky, H. Willner, J. Fluor. Chem. 126 (2005) 1150. [159] J.-F. Liu, Y.-G. Chi, G.-B. Jiang, C. Tai, J.-F. Peng, J.-T. Hu, J. Chromatogr. A 1016 125 (2004) 143. [160] J.-F. Liu, Y.-G. Chi, G.B. Jiang, J. Sep. Sci. 28 (2005) 87. [161] EU (Cosmetics Directive 76/768/EEC,2010), Council Directive 76/768/EEC of July 27, 1976 on the approximation of the laws of the member states relating to cosmetic products and its successive amendments, basic act 31976L0768, Off. J. Eur. Commun. L 262 (27.9.1976) p. 169, http://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1976L0768:20100301:en:PDF (accessed November 2011). [162] A. Zenker, H. Schmutz, K. Fent, J. Chromatogr. A 1202 (2008) 64. [163] D.L. Giokas, A. Salvador, A. Chisvert, Trends Anal. Chem. 26 (2007) 360. [164] T. Poiger, H.R. Buser, M.E. Balmer, P.A. Bergqvist, M.D. Müller, Chemosphere 55 (2004) 951. [165] M.E. Balmer, H.R. Buser, M.D. Müller, T. Poiger, Environ. Sci. Technol. 39 (2005) 953. [166] M.A. Mottaleb, S. Usenko, J.G. O‟Donnell, A.J. Ramirez, B.W. Brooks, C.K. Chambliss, J. Chromatogr. A 1216 (2009) 815. [167] D. Schlenk, Y. Sapozhnikova, M.A. Irwin, L. Xie, W. Hwang, S. Reddy, B.J. Brownawell, J. Armstrong, M. Kelly, D.E. Montagne, E.P. Kolodziej, D. Sedlank, S. Snyder, Environ. Toxicol. Chem. 24 (2005) 2820. [168] H.K. Jeon, Y. Chung, J.C. Ryu, J. Chromatogr. A 1131 (2006) 192. [169] P.Y. Kunz, K. Fent, Aquat. Toxicol. 79 (2006) 305. [170] M. Inui, T. Adachi, S. Takenaka, H. Inui, M. Nakazawa, M. Ueda, H.Watanabe, C. Mori, T. Iguchi, K. Miyatake, Toxicology 194 (2003) 43. 126 [171] R. Rodil, M. Moeder, J. Chromatogr. A 1179 (2008) 81. [172] H. Gustavsson-Gonzalez, A. Farbrot, O. Larkő, Clin. Exp. Dermatol. 27 (2002) 691. [173] L.Vidal, A. Chisvert, A. Canals, A. Salvador, J. Chromatogr. A 1174 (2007) 95. [174] R. Rodil, S. Schrader, M. Moeder, J. Chromatogr. A 1216 (2009) 4887. [175] M.A. Soliman, J.A. Pedersen, I.H. Suffet, J. Chromatogr. A 1029 (2004) 223. [176] M. Castillo, M.F. Alpendurada, D. Barcelό, J. Mass Spectrom. 32 (1997) 1100. [177] D.L. Giokas, V.A. Sakkas, T.A. Albanis, J. Chromatogr. A 1026 (2004) 289. [178] P. Cuderman, E. Heath, Anal. Bioanal. Chem. 387 (2007) 1343. [179] V.A. Sakkas, D.L. Giokas, D.A. Lambropoulou, T.A. Albanis, J. Chromatogr. A 1016 (2003) 211. [180] N. Fattahi, Y. Assadi, M.R.M Hosseini, E.Z Jahromi, J. Chromatogr. A 1157 (2007) 23. [181] L.-W. Chung, K.-L. Lin, T.C.-C. Yang, M.-R. Lee, J. Chromatogr. A 1216(2009) 4083. [182] L. Vidal, A. Chisvert, A. Canals, A. Salvador, Talanta, 81 (2010) 549. [183] P.-P. Zhang, Z.-G. Shi, Q.-W. Yu, Y.-Q. Feng, Talanta, 83 (2011) 1711. [184] M. Ghambarian, Y. Yamini, A. Saleh, S. Shariati, N. Yazdanfar, Talanta, 78 (2009) 970. [185] S.-C. Wang, H.-J. Liao, W.-C. Lee, C.-M. Huang, T.-H. Tsai, J. Chromatogr. A 1212 (2008) 68. [186] W.G. Lan, M.K.Wong, N. Chen, Analyst 119 (1994) 1659. [187] W.G. Lan, M.K.Wong, N. Chen, Analyst 119 (1994) 1669. [188] W.G. Lan, M.K.Wong, K.K. Chee, Analyst 120 (1995) 273. 127 [189] W.G. Lan, K.K. Chee, M.K.Wong, H.K. Lee, Analyst 120 (1995) 281. [190] D. Ge, H.K. Lee, J. Chromatogr. A 1229 (2012) 1. [191] B. Chen, S. Xiang, G. Qian, Acc. Chem. Res. 43 (2010) 1115. [192] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O‟Keeffe, O.M. Yaghi, Acc. Chem. Res. 43 (2010) 58. [193] O.K. Farha, J.T. Hupp, Acc. Chem, Res. 43 (2010) 1166. [194] A.M. Shultz, O.K. Farha, J.T. Hupp, S.T. Nguyen, J. Am. Chem. Soc. 131 (2009) 4204. [195] M. Eddaoudi, H. Li, O.M. Yaghi, J. Am. Chem. Soc. 122 (2000) 1391. [196] N. Nijem, J.-F. Veyan, L. Kong, K. Li, S. Pramanik, Y. Zhao, J. Li, D. Langreth, Y.J. Chabal, J. Am. Chem. Soc. 132 (2010) 1654. [197] A.W. Thornton, K.M. Nairn, J.M. Hill, A.J. Hill, M.R. Hill, J. Am. Chem. Soc. 131 (2009) 10662. [198] M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O‟Keeffe, O.M. Yaghi, Acc. Chem. Res. 34 (2001) 319. [199]B. Chen, C. Liang, J. Yang, D.S, Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S.A. Dai, Angew. Chem. Int. Ed. 45 (2006) 1390. [200] V. Finsy, H. Verelst, L. Alaerts, D. De Vos, P.A. Jacobs, G.V. Baron, J.F.M. Denayer, J. Am. Chem. Soc.130 (2008) 7110. [201] Z.-Y. Gu, X.-P. Yan, Angew. Chem. Int. Ed. 49 (2010) 1477. [202] Z.-Y. Gu, J.-Q. Jiang, X.-P. Yan, Anal. Chem. 83 (2011) 5093. [203] Z-Y. Gu, G. Wang, X.-P. Yan, Anal. Chem. 82 (2010) 1365. [204] Y.-Y. Zhou, X.-P. Yan, K.-N. Kim, S.-W. Wang, M.-G. Liu, J. Chromatogr. A 128 1116 (2006) 172. [205] Z.-Y. Gu, Y.-J. Chen, J.-Q. Jiang, X.-P. Yan, X.-P. Chem. Commun. 47 (2011) 4787. [206] X.-Y. Cui, Z.-Y. Gu, D.-Q. Jiang, Y. Li, H.-F. Wang, X.-P. Yan, Anal. Chem. 81 (2009) 9771. [207] S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, J. Am. Chem. Soc. 129 (2007) 14176. [ [208] S. Hausdorf, J. Wagler, R. Mossig, F.O.R.L. Mertens, J. Phys. Chem. A 112 (2008) 7567. [209] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283 (1999) 1148. [210] H. Hayashi, A.P. Côté, H. Furukawa, M. O‟Keeffe, O.M. Yaghi, Nat. Mater. (2007) 501. [211] N. Chang, Z.-Y. Gu, X.-P. Yan, J. Am. Chem. Soc. 132 (2010) 13645 [212] N. Chang, Z.-Y. Gu, H.-F. Wang, X.-P. Yan, Anal. Chem. 83 (2011) 7094. [213] Y. Yang, D.J. Miller, S.B. Hawthome, J. Chromatogr. A 800 (1998) 257. [214] C. Basheer, K. Narasimhan, M. Yin, C. Zhao, M. Choolani, H.K. Lee, J. Chromatogr. A 1186 (2008) 358. [215] D. Fairen-Jimenez, S.A. Moggach, M.T. Wharmby, P.A. Wright, S. Parsons, T. Düren, J. Am. Chem. Soc. 133 (2011) 8900. [216] J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 23 (2011) 2130. [217] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R.D. Huang, F.J. Uribe-Romo, H.K. Chae, 129 M. O‟Keeffe, O.M. Yaghi, Proc. Nat. Acad. Sci. 103 (2006) 10186. [218] H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y.-S. Li, J. Caro, Chem. Mater. 23 (2011) 2262. [219] K.W. Chapman, G.J. Halder, P.J. Chupas, J. Am. Chem. Soc. 131 (2009) 17546. [220] H. Wu, W. Zhou, T. Yildrim, J. Am. Chem. Soc. 129 (2007) 5314. [221] W. Zhou, H. Wu, T.J. Udovic, J.J. Rush, T. Yildrim, J. Phys. Chem. A 112 (2008) 12602. [222] E. Rianawati, R. Balasubramanian. Phys. Chem. Earth 34 (2009) 857. [223] Z-G. Shi, H.K. Lee, Anal. Chem. 82 (2010) 1540. [224] N.M. Vieno, H. Härkki, T. Tuhkanen, L. Kronberg, Enviro. Sci. Technol. 41 (2007) 5077. [225] C. Narjoz, L. Marisa, S. Imbeaud, A. Paris, H. Delacroix, P. Beaune, I.D. Waziers, Chem. Res. Toxicol. 22 (2009) 779. [226] M. Gros. M. Petrović, M. Barcelό, Anal. Chem. 81 (2009) 898. [227] M. Carballa, F. Omil, J.M. Lema, Enviro. Sci. Technol. 41 (2007) 884. [228] M.N.A. Khan, J.-Y. Cho, M.-C. Lee, J.-Y. Kang, N.G. Park, H. Fujii, Y.-K. Hong, J. Agric. Food Chem. 55 (2007) 6984. [229] K. Kummerer, Pharmaceuticals in the Environment: Sources, Fate, Effect and Risks; Springer: New York, 2001. [230] M. Balchen, A. Gjelstad, K.E. Rasmussen, S. Pedersen-Bjergaard, J. Chromatogr. A. 1152 (2007) 220. [231] C. Basheer, J. Lee, S. Pederson-Bjergaard, K.E. Rasmussen, H.K. Lee, J. Chromatogr. A 1217 (2010) 6661. 130 [232] J.B. Quintana, R. Rodil, T. Reemtsma, J. Chromatogr. A 1061 (2004) 19. [233] A.R.M. Silva, F.C.M. Portugal, J.M.F. Nogueira, 1209 (2008) 10. [234] I. Rodríguez, J. Carpinteiro, J.B. Quintana, A.M. Carro, R.A. Lorenzo, R. Cela, J. Chromatogr. A 1024 (2004) 1. [235] A. Sarafraz-Yazdi, A. Amiri, Trends Anal. Chem. 29 (2010) 1. [236] J.C. Wang, D.Q. J, Z.Y. Gu, X.P. Yan, J. Chromatogr. A 1137 (2006) 8. [237] Z.-G. Shi, H.K. Lee, Anal. Chem. 82 (2010) 1540. [238] L. Lili, H. Xu, D. Song, Y. Cui, S. Hu, G. Zhang, J. Chromatogr. A 1217 (2010) 2365. [239] J. Zhang, H.K. Lee, J. Chromatogr. A 1216 (2009) 7527. [240] B. Halling-Sөrensen, S. Nors Nielsen, P.F. Lanzky, F. Ingerslev, H.C. Holten Lützhөft, S.E. Jөrgensen, Chemosphere 36 (1998 ) 357. [241] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barker, H.T. Buxton, Environ. Sci. Technol. 36 (2002) 1202. [242] H.-B. Lee, T.E. Peart, M.L. Svoboda, J. Chromatogr. A. 1094 (2005) 122. [243] G. Nalcz-Jawecki, Chemosphere 70 (2007) 29. [244] B.J.G. Silva, F.M. Lancas, M.E.C. Queiroz, J. Chromatogr. B 862 (2008) 181. [245] P. Ghahramani, M.S. Lennard, J. Chromatogr. B 685 (1996) 307. [246] A.T. Aranas, A.M.G. Jr, P.R. Haddad, J.P. Quirino, Talanta 85 (2011) 86. [247] A. Lajeunesse, C. Gagnon, S. Sauvé, Anal. Chem. 80 (2008) 5325. [248] C.D. Metcalfe, X.-S. Miao, B.G. Koenig, J. Struger, Environ. Toxicol. Chem. 22 (2003) 2881. [249] M.J. Gόmez, M. Petrović, A.R. Fernández-Alba, D. Barcelŏ, J. Chromatogr. A 1114 131 (2006) 224. [250] B.J. Vanderford, R.A. Pearson, D.J. Rexing, S.A. Snyder, Anal. Chem. 75 (2003) 6265. [251] M. Himmelsbach, W. Buchberger, C.W. Klampfl, Electrophoresis 27 (2006) 1220. [252] M.T. Jafari, M. Saraji, H. Sherafatmand, Anal. Bioanal. Chem. 399 (2011) 3555. 132 List of Publications [1] D. Ge, H.K. Lee, Water stability of zeolite imidazolate framework and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples, J. Chromatogr. A 1218 (2011) 8490. [2] D. Ge, H.K. Lee, Ionic liquid based hollow fiber supported liquid phase microextraction of ultraviolet filters, J. Chromatogr. A 1229 (2012) 1. [3] D. Ge, H.K. Lee, tris(pentafluoroethyl)trifluorophosphate A new ionic liquid 1-hexyl-3-methylimidazolium based ultrasound-assisted emulsification microextraction for the determination of organic ultraviolet filters in environmental water samples, J. Chromatogr. A 1251 (2012) 27. [4] D. Ge, H.K. Lee, Zeolite imidazolateframeworks8 as sorbent and its application to sonication-assisted emulsification microextraction combined with vortex-assisted porous membrane-protected micro-solid-phase extraction for fast analysis of acidic drugs in environmental water samples, accepted manuscript, J. Chromatogr. A. [5] Dandan Ge, Lee HianKee, Orthogonal array design for the optimization of microsolid-phase extraction of chlorobenzenes, The 5th mathematics and physical science graduate congress, 7-9 Dec, 2009, Bangkok, Thailand; [6] Dandan Ge, Lee HianKee, A novel ultrahydrophobic ionic liquid 1-hexyl-3methylimidazolium tris(pentafluoroethyl)trifluorophosphate supported hollow fiber membrane liquid-liquid-liquid microextraction, Internationalchemical congress of pacific basin societies, 15-20 Dec, 2010, Hawaii, USA; [7] Dandan Ge, Lee HianKee, tris(pentafluoroethyl)trifluorophosphate A ionic new liquid 1-hexyl-3-methylimidazolium based ultrasound-assisted 133 emulsification microextraction for the determination of UV filters, 4th International Conference on the "Challenges in Environmental Science and Engineering", 25-30 Sep,2011, Tainan, Taiwan. 134 [...]... received increasing attention in the past few decades since they are critical in an analytical procedure Along with the trend in miniaturization in analytical chemistry, microextraction methods have undergone rapid development This thesis reports the development and application of ionic liquids (ILs) for liquid phase microextraction (LPME) and zeolite imidazolate frameworks (ZIFs) for sorbent phasebased microextraction. .. single drop microextraction (SDME), hollow fiberprotected liquid- phase microextraction (HF-LPME) and dispersive liquid- liquid microextraction (DLLME) Other microextraction methods developed based on sorbent phase -based microextraction (SPBME) including fiber -based solid -phase microextraction (SPME), stir bar sorptive extraction (SBSE), microextraction in a packed syringe (MEPS), micro-solid -phase extraction... IL-HF-LPME and high performance liquid chromatography (HPLC) provides repeatability from 2.4 and 7.5% and limits of detection (LODs) between 0.3 and 0.5 ng/ml In Chapter 2, another approach termed IL based USAEME (IL-USAEME) combined with HPLC-UV was developed for the preconcentration and detection of UV filters in environmental water samples An IL was used in place of an organic solvent as in conventional... removable insert was developed for the direct injection of IL to GC for the detection of volatile analytes [83] More generally, reversed -phase LC is used for the analysis of IL extracts IL is compatible with columns and aqueous organic mobile phases used in reversed -phase LC 1.3 Sorbent phase -based microextraction (SPBME) SPBME is usually employed for isolation and preconcentration of analytes from aqueous... headspace phase and extraction phase The overall rate of mass transfer is determined by both the aqueous phase stirring rate and the diffusion of the analytes within the extraction phase [20] Aqueous phase mass transfer is the rate-determining step HS-SDME is suitable for complex samples to achieve a high degree of extract /clean-up analysis since non-volatile compounds are not extracted in the headspace... syringe needle The extraction process is based on establishment of an equilibrium state between the analytes and the coated fiber The fraction of analytes extracted increases as the ratio of the coated volume to the sample volume increases SPME is generally used in combination with GC Since thermal desorption is the main means of removing the analytes from the sorbent for analysis It is employed for analysis. .. [18] In this procedure, the microsyringe is used as a microseparatory apparatus for extraction and also as a gas chromatography (GC) sample injector The extraction process takes place by repeatedly manipulating the plunger in and out of the microsyringe barrel The aqueous phase is withdrawn into the microsyringe barrel preloaded with an organic solvent An organic film forms on the inner surface of the... tris(pentafluoroethyl)trifluorophosphate HPLC High performance liquid chromatography IL Ionic liquid Im Imidazolate Imi Imipramine LLE Liquid- liquid extraction LPME Liquid- phase microextraction LODs Limits of detection 4-MBC 3-(4-Methylbenzylidene)-camphor MEPS Microextraction in a packed syringe MOFs Metal organic frameworks MS Mass spectrometry Nap Naphthalene OCPs Organochlorine pesticides OPPs Organophosphorus... high miscibility in both extraction phase and aqueous phase When the mixture of extraction phase and disperser is injected into an aqueous sample containing the analytes of interest, fine droplets of the extraction solvent are formed The equilibrium is reached quickly due to the large surface area between extraction solvent and aqueous sample The mixture is then centrifuged and the fine droplets settle... is to clean up, isolate and concentrate the analytes of interest, while rendering them in a form that is compatible with the analytical system 3 Traditional sample preparation methods involve liquid- liquid extraction (LLE) and solidphase extraction (SPE) LLE, in particular, can be tedious, labor-intensive and timeconsuming, and consume large quantities of potentially toxic and expensive high-purity . DEVELOPMENT OF IONIC LIQUID BASED LIQUID PHASE MICROEXTRACTION, AND ZEOLITE IMIDAZOLATE FRAMEWORKS BASED SORBENT PHASE BASED MICROEXTRACTION COMBINED WITH CHROMATOGRAPHY FOR APPLICATIONS. APPLICATIONS IN ENVIRONMENTAL ANALYSIS GE DANDAN NATIOANAL UNIVERSITY OF SINGAPORE 2012 DEVELOPMENT OF IONIC LIQUID BASED LIQUID PHASE MICROEXTRACTION, AND ZEOLITE IMIDAZOLATE FRAMEWORKS. FRAMEWORKS BASED SORBENT PHASE BASED MICROEXTRACTION COMBINED WITH CHROMATOGRAPHY FOR APPLICATIONS IN ENVIRONMENTAL ANALYSIS by GE DANDAN (M.Sc., NATIONAL UNIVERSITY OF SINGAPORE)

Ngày đăng: 09/09/2015, 10:18

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan