Caveolin 1 and lipid rafts in modulation of autophagy

187 524 0
Caveolin 1 and lipid rafts in modulation of autophagy

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

CAVEOLIN-1 AND LIPID RAFTS IN MODULATION OF AUTOPHAGY SHI YIN (BSc, Zhejiang University, P.R. China) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2014 i Declaration ii Acknowledgements I would like to take this opportunity to express my deepest respect and most sincere gratitude to my supervisor, A/P Shen Han-Ming, for his professional guidance, as well as the enthusiastic encouragement, persistent patience and instructive discussions throughout the whole course of my study here. It has indeed been an enriching experience to learn this exciting biological area and the ropes of scientific research from his enthusiasm and dedication to scientific research. What I have learned from Prof. Shen will benefit my future career after my graduation and be cherished all the time in my life. I would also like to extend my sincere thanks to my TAC members and A/P Tan Shyong Wei, Kevin and A/P Markus Wenk for their excellent suggestions and continuous supports throughout all our TAC meetings. I would also like to express my deep appreciation to the following people for the materials provided for my study: Dr. Miguel A del Pozo (Centro Nacional de Investigaciones Cardiovasculares) for the Cav-1 WT and KO MEFs; Dr. Michelle M. Hill (The University of Queensland) for the PTRF WT and KO MEFs; Dr. Robert G. Parton (The University of Queensland) for the EGFP and EGFP-Cav-1 re-constituted MCF7 cells; Dr. N Mizushima (Tokyo Medical and Dental University) for the Atg5 KO MEFs, Atg5 Tet-off inducible MEFs (m5-7) with stably expressing GFP-LC3 and HeLa cells with stable expression of GFP-LC3; Dr. Peden (University of Cambridge) for the HeLa cells with stable expression of HA-VAMP7; iii Dr. D. J. Kwiatkowski (Harvard Medical School) for the TSC2 WT and TSC2 KO MEFs; Dr. T. Yoshimori (Osaka University) for the mRFP-GFP tandem fluorescencetagged LC3 construct (tfLC3) and Stawberry-Atg16L; Dr. Galli (University Denis Diderot) for the VAMP7-mRFP vector. And, it has been very fortunate of me and my honour to study in such a warm and harmonious family of our lab throughout these four years. Special thanks go out to Mr. Ong Yeong Bing and Miss Su Jin for their logistical help. You guys always ensure a superb and efficient lab environment which helps me a lot through the length of my study. And I would like to specially thank Dr. Ng Shukie for all the useful techniques I have learnt from you, and also Dr. Tan Shihao for his ever present suggestions and criticisms. All the other members of our lab have also provided most kindly help and support which have made the duration of my stay very enjoyable. I would like to express my gratitude to the following people: Dr. Zhou Jing, Dr. Cui Jianzhou, Dr. Chen Bo, Dr. Yang Naidi, Ms Mo Xiaofan and Mr. Zhang Jianbin. Also, special thanks go out to all the staffs in Saw Swee Hock School of Public Health and Department of Physiology, Yong Loo Lin School of Medicine, as well as to NUS for the Research Scholarship granted to me. Finally, I would like to extend my deep appreciation to my family members for their continuing love, understanding and support. iv List of Publications 1. Shi Y, Tan SH, Ng S, Yang ND, Zhou J, McMahon KA, del Pozo MA, Hill MM, Parton RG, Kim YS, Shen HM. Critical role of caveolin-1 and lipid rafts in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy. 2015 (in press) 2. Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Tan K SW, Wong WS F, Shen HM. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 2014 Nov 28;289(48):33425-41. 3. Cui JZ, Lu KH, Wang Y, Shi Y, Tan SH, Lee CG, Gong ZY, Shen HM. Integrated and comparative miRNA analysis of starvation-induced autophagy in mouse embryonic fibroblasts. Gene. 2015 (under revision) 4. Tan SH, Shui G, Zhou J, Shi Y, Huang J, Xia D, Wenk MR, Shen HM. Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy. 2014 Feb 1;10(2):226-42. 5. Zhang Y, Yang ND, Zhou F, Shen T, Duan T, Zhou J, Shi Y, Zhu XQ, Shen HM. (-)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLoS One. 2012;7(10):e46749. Presentation at scientific conferences: 1. Shi Y, Tan SH, Ng S, Zhou J, Yang ND and Shen HM. Lipid rafts deficiency promotes autophagy and cell survival of breast cancer cells under metabolic stress."Autophagy in Stress, Development & Disease" v Gordon Research Conference, Lucca (Barga), Italy. 2014 2. Shi Y, Tan SH, Ng S, Zhou J, Yang ND and Shen HM. Lipid rafts deficiency promotes autophagy and cell survival of breast cancer cells under metabolic stress, 7th APOCB Congress and ASCB Workshops, Singapore, Singapore. 2014 3. Shi Y, Tan SH, Ng S, Zhou J, Yang ND and Shen HM. Regulatory Role of Caveolin-1 and Lipid Rafts in Lysosomal Function and Autophagy, "Autophagy: Molecular mechanism, physiology and pathology" EMBO conference. Hurtigruten MS Trollfjord, Norway. 2013 4. Shi Y, Tan SH, Ng S, Zhou J, Yang ND and Shen HM. Regulation of autophagy by lipid rafts, 3rd Xiamen winter symposium, Xiamen, China. 2012 5. Shi Y, Tan SH, Ng S, Zhou J, Yang ND and Shen HM. The novel regulatory function of Lipid raft in autophagy, YLLSOM 2th Annual Graduate Scientific Congress, Singapore, Singapore. 2012 (Best Poster Award) vi Table of Contents CAVEOLIN-1 AND LIPID RAFTS IN MODULATION OF AUTOPHAGY . i Declaration .ii Acknowledgements iii List of Publications v Summary xii List of Figure . xiv List of Abbreviations .xvii Chapter 1. 1.1. Introduction . AUTOPHAGY 1.1.1. Overview of autophagy 1.1.2. The process of autophagy 1.1.3. Autophagy machinery 1.1.4. Lysosome . 10 1.1.5. Regulatory pathways of autophagy 12 1.1.6. Biological functions of autophagy . 15 1.1.7. Implication of autophagy in human diseases . 20 1.2. LIPID RAFTS AND CAV-1 27 1.2.1 Lipid rafts 27 1.2.2 Caveolin-1 . 33 1.3. LIPID RAFTS AND CAV-1 IN AUTOPHAGY 35 1.3.1. Lipid rafts in autophagy . 35 1.3.2. Cav-1 in autophagy 38 1.4. LIPID RAFTS AND CAV-1 IN CANCER 39 1.4.1. Lipid rafts in cancer cell death and progression 39 1.4.2. Cav-1 in cancer development . 40 vii 1.5. SCOPE OF STUDY 41 Chapter 2. Materials and Methods 44 2.1. CELL LINES AND CELL CULTURE . 45 2.2. REAGENTS AND ANTIBODIES 45 2.3. MEASUREMENTS OF LYSOSOMAL FUNCTION 46 2.3.1. LysoTracker staining . 46 2.3.2. Cathepsin activity assay . 46 2.3.3. Proteolysis activity assay . 47 2.4. LIPID RAFTS DETECTION . 47 2.4.1. CTxB staining 47 2.4.2. Filipin staining . 47 2.5. CELL FRACTIONATION 48 2.5.1. Lipid rafts fractionation . 48 2.5.2. Lysosome fractionation 49 2.6. PROXIMITY LIGATION ASSAY (PLA) 49 2.7. CAV-1 IMMUNOHISTOCHEMISTRY 50 2.8. DETECTION OF CELL DEATH . 51 2.9. TRANSIENT SIRNA TRANSFECTION . 51 2.10. DNA EXTRACTION . 51 2.11. RNA EXTRACTION . 52 2.12. REVERSE TRANSCRIPTASE AND QUANTITATIVE REAL-TIME POLYMERASE CHAIN REACTION . 52 2.13. PLASMIDS AND TRANSIENT TRANSFECTION 52 2.14. WESTERN BLOTTING 53 2.15. IMMUNOPRECIPITATION . 53 viii 2.16. IMAGE ANALYSIS . 54 2.17. ANALYSIS OF AUTOPHAGIC FLUX BY LC3-II LEVELS USING LYSOSOME INHIBITORS 54 2.18. ANALYSIS OF AUTOPHAGOSOME-LYSOSOME FUSION WITH MRFP- GFP-LC3 REPORTER . 55 2.19. STATISTICAL ANALYSES 56 Chapter 3. Cav-1 deficiency and lipid rafts disruption enhance autophagy at early stage via promotion of autophagosome biogenesis 57 3.1. INTRODUCTION 58 3.2. RESULTS 61 3.2.1. Cav-1 deficiency and lipid rafts disruption induces autophagy flux . 61 3.2.2. Cav-1 deficiency and lipid rafts disruption promote autophagosome formation via engaging VAMP7 73 3.3. DISCUSSION . 82 3.3.1. Autophagy induction by lipid rafts disruption . 82 3.3.2. Lipid rafts disruption promotes autophagosome formation via VAMP7 84 Chapter 4. Cav-1 deficiency and lipid rafts disruption enhance autophagy via promoting lysosomal function at late stage 86 4.1. INTRODUCTION 87 4.2. RESULTS 88 4.2.1. Cav-1 deficiency and lipid rafts disruption enhance lysosomal function via V-ATPase assembly . 88 ix 4.2.2. Cav-1 deficiency and lipid rafts disruption promote autophagosome-lysosome fusion . 100 4.3. DISCUSSION . 104 4.3.1. The regulatory role of Cav-1 and lipid rafts on lysosome . 104 4.3.2. Lipid rafts disruption enhances V-ATPase assembly 105 4.3.3. Lipid rafts disruption promotes autophagosome-lysosome fusion 106 Chapter 5. Autophagy mediated by Cav-1 deficiency and lipid rafts disruption plays a pro-survival role and supports breast cancer development 108 5.1. INTRODUCTION 109 5.2. RESULTS 111 5.2.1. Autophagy mediated by Cav-1 deficiency and lipid rafts disruption promotes cell survival under starvation 111 5.2.2. Cav-1 expression level is reduced in some human breast cancer cells . 115 5.2.3. Re-expression of Cav-1 in MCF7 recovers lipid rafts and suppresses autophagy and lysosomal function 117 5.2.4. Downregulation of Cav-1 with enhanced autophagy in human breast cancer tissues . 122 5.3. DISCUSSION . 125 5.3.1. Lipid rafts disruption and cell death 125 5.3.2. Lipid rafts disruption-induced autophagy is an important cell survival mechanism for breast cancer cells against starvation 125 Chapter 6. General discussion and conclusions 128 x Lingwood, D., Kaiser, H.J., Levental, I., and Simons, K. (2009). Lipid rafts as functional heterogeneity in cell membranes. Biochemical Society transactions 37, 955-960. Lingwood, D., and Simons, K. (2007). Detergent resistance as a tool in membrane research. Nature protocols 2, 2159-2165. Lingwood, D., and Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science (New York, NY) 327, 46-50. Liu, L., Brown, D., McKee, M., Lebrasseur, N.K., Yang, D., Albrecht, K.H., Ravid, K., and Pilch, P.F. (2008). Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell metabolism 8, 310317. Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W., et al. (2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nature cell biology 14, 177-185. Liu, L., Sakakibara, K., Chen, Q., and Okamoto, K. (2014a). Receptormediated mitophagy in yeast and mammalian systems. Cell Res. Liu, Q., Shi, X., Zhou, X., Wang, D., Wang, L., and Li, C. (2014b). Effect of autophagy inhibition on cell viability and cell cycle progression in MDAMB231 human breast cancer cells. Molecular medicine reports 10, 625630. Lu, M., Holliday, L.S., Zhang, L., Dunn, W.A., Jr., and Gluck, S.L. (2001). Interaction between aldolase and vacuolar H+-ATPase: evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump. The Journal of biological chemistry 276, 30407-30413. Lu, M., Sautin, Y.Y., Holliday, L.S., and Gluck, S.L. (2004). The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+ATPase. The Journal of biological chemistry 279, 8732-8739. Lum, J.J., Bauer, D.E., Kong, M., Harris, M.H., Li, C., Lindsten, T., and Thompson, C.B. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237-248. Mérino, D., Lalaoui, N., Morizot, A., Schneider, P., Solary, E., and Micheau, O. (2006). Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors and 2. Molecular and cellular biology 26, 7046-7055. Ma, D., Molusky, M.M., Song, J., Hu, C.R., Fang, F., Rui, C., Mathew, A.V., Pennathur, S., Liu, F., Cheng, J.X., et al. (2013a). Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Molecular endocrinology (Baltimore, Md) 27, 1643-1654. Ma, X., Liu, L., Nie, W., Li, Y., Zhang, B., Zhang, J., and Zhou, R. (2013b). Prognostic role of caveolin in breast cancer: A meta-analysis. Breast. 152 Manes, S., Mira, E., Gomez-Mouton, C., Lacalle, R.A., Keller, P., Labrador, J.P., and Martinez, A.C. (1999). Membrane raft microdomains mediate frontrear polarity in migrating cells. The EMBO journal 18, 6211-6220. Marino, G., Salvador-Montoliu, N., Fueyo, A., Knecht, E., Mizushima, N., and Lopez-Otin, C. (2007). Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. The Journal of biological chemistry 282, 18573-18583. Martinez-Outschoorn, U.E., Casey, T., Lin, Z., Whitaker-Menezes, D., Chiavarina, B., Zhou, J., Wang, C., Pavlides, S., Martinez-Cantarin, M.P., Capozza, F., et al. (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle 9, 3515-3533. Martinez-Outschoorn, U.E., Whitaker-Menezes, D., Lin, Z., Flomenberg, N., Howell, A., Pestell, R.G., Lisanti, M.P., and Sotgia, F. (2011). Cytokine production and inflammation drive autophagy in the tumor microenvironment: Role of stromal caveolin-1 as a key regulator. Cell Cycle 10, 1784-1793. Matarrese, P., Garofalo, T., Manganelli, V., Gambardella, L., Marconi, M., Grasso, M., Tinari, A., Misasi, R., Malorni, W., and Sorice, M. (2014). Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 10. Mathew, R., Karp, C.M., Beaudoin, B., Vuong, N., Chen, G., Chen, H.Y., Bray, K., Reddy, A., Bhanot, G., Gelinas, C., et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062-1075. Mathew, R., Kongara, S., Beaudoin, B., Karp, C.M., Bray, K., Degenhardt, K., Chen, G., Jin, S., and White, E. (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes & development 21, 1367-1381. Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., et al. (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature cell biology 11, 385-396. Maycotte, P., and Thorburn, A. (2011). Autophagy and cancer therapy. Cancer Biol Ther 11, 127-137. Meijer, A.J., and Codogno, P. (2009). Autophagy: regulation and role in disease. Critical reviews in clinical laboratory sciences 46, 210-240. Meijer, W.H., van der Klei, I.J., Veenhuis, M., and Kiel, J.A. (2007). ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3, 106-116. 153 Meng, Q., and Cai, D. (2011). Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NFkappaB pathway. The Journal of biological chemistry 286, 32324-32332. Mercier, I., Casimiro, M.C., Zhou, J., Wang, C., Plymire, C., Bryant, K.G., Daumer, K.M., Sotgia, F., Bonuccelli, G., Witkiewicz, A.K., et al. (2009a). Genetic ablation of caveolin-1 drives estrogen-hypersensitivity and the development of DCIS-like mammary lesions. The American journal of pathology 174, 1172-1190. Mercier, I., Casimiro, M.C., Zhou, J., Wang, C., Plymire, C., Bryant, K.G., Daumer, K.M., Sotgia, F., Bonuccelli, G., Witkiewicz, A.K., et al. (2009b). Genetic ablation of caveolin-1 drives estrogen-hypersensitivity and the development of DCIS-like mammary lesions. The American journal of pathology 174, 1172-1190. Mindell, J.A. (2012). Lysosomal acidification mechanisms. Annual review of physiology 74, 69-86. Mintern, J.D., and Villadangos, J.A. (2012). Autophagy and mechanisms of effective immunity. Front Immunol 3, 60. Misra, R.S., Russell, J.Q., Koenig, A., Hinshaw-Makepeace, J.A., Wen, R., Wang, D., Huo, H., Littman, D.R., Ferch, U., Ruland, J., et al. (2007). Caspase-8 and c-FLIPL associate in lipid rafts with NF-kappaB adaptors during T cell activation. The Journal of biological chemistry 282, 1936519374. Mizushima, N. (2007). Autophagy: process and function. Genes & development 21, 2861-2873. Mizushima, N. (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Current opinion in cell biology 22, 132-139. Mizushima, N., Kuma, A., Kobayashi, Y., Yamamoto, A., Matsubae, M., Takao, T., Natsume, T., Ohsumi, Y., and Yoshimori, T. (2003). Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. Journal of cell science 116, 16791688. Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat Cell Biol 12, 823-830. Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398. Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326. Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27, 107-132. 154 Monastyrskaya, K., Hostettler, A., Buergi, S., and Draeger, A. (2005). The NK1 receptor localizes to the plasma membrane microdomains, and its activation is dependent on lipid raft integrity. The Journal of biological chemistry 280, 7135-7146. Moon, H., Lee, C.S., Inder, K.L., Sharma, S., Choi, E., Black, D.M., Le Cao, K.A., Winterford, C., Coward, J.I., Ling, M.T., et al. (2014). PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene 33, 3561-3570. Moreau, K., Ravikumar, B., Renna, M., Puri, C., and Rubinsztein, D.C. (2011). Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303-317. Mundy, D.I., Li, W.P., Luby-Phelps, K., and Anderson, R.G. (2012). Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content. Molecular biology of the cell 23, 864-880. Nada, S., Hondo, A., Kasai, A., Koike, M., Saito, K., Uchiyama, Y., and Okada, M. (2009). The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. The EMBO journal 28, 477-489. Nair, U., Jotwani, A., Geng, J., Gammoh, N., Richerson, D., Yen, W.L., Griffith, J., Nag, S., Wang, K., Moss, T., et al. (2011). SNARE proteins are required for macroautophagy. Cell 146, 290-302. Nassar, Z.D., Hill, M.M., Parton, R.G., and Parat, M.O. (2013). Caveolaforming proteins caveolin-1 and PTRF in prostate cancer. Nature reviews Urology 10, 529-536. Nath, S., Dancourt, J., Shteyn, V., Puente, G., Fong, W.M., Nag, S., Bewersdorf, J., Yamamoto, A., Antonny, B., and Melia, T.J. (2014). Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nature cell biology 16, 415-424. Nazarko, T.Y. (2014). Atg37 regulates the assembly of the pexophagic receptor protein complex. Autophagy 10, 1348-1349. Nezis, I.P., Shravage, B.V., Sagona, A.P., Lamark, T., Bjorkoy, G., Johansen, T., Rusten, T.E., Brech, A., Baehrecke, E.H., and Stenmark, H. (2010). Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. The Journal of cell biology 190, 523-531. Ng, S., Wu, Y.T., Chen, B., Zhou, J., and Shen, H.M. (2011). Impaired autophagy due to constitutive mTOR activation sensitizes TSC2-null cells to cell death under stress. Autophagy 7, 1173-1186. 155 Ni, H.M., Bockus, A., Wozniak, A.L., Jones, K., Weinman, S., Yin, X.M., and Ding, W.X. (2011). Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 7, 188-204. Nicolau, D.V., Jr., Burrage, K., Parton, R.G., and Hancock, J.F. (2006). Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Molecular and cellular biology 26, 313-323. Nixon, R.A., Wegiel, J., Kumar, A., Yu, W.H., Peterhoff, C., Cataldo, A., and Cuervo, A.M. (2005). Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64, 113-122. Notte, A., Leclere, L., and Michiels, C. (2011). Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochem Pharmacol 82, 427-434. Oakhill, J.S., Chen, Z.P., Scott, J.W., Steel, R., Castelli, L.A., Ling, N., Macaulay, S.L., and Kemp, B.E. (2010). beta-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proceedings of the National Academy of Sciences of the United States of America 107, 19237-19241. Oh, H.Y., Lee, E.J., Yoon, S., Chung, B.H., Cho, K.S., and Hong, S.J. (2007). Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. The Prostate 67, 1061-1069. Onodera, J., and Ohsumi, Y. (2005). Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. The Journal of biological chemistry 280, 31582-31586. Pacheco, C.D., Kunkel, R., and Lieberman, A.P. (2007). Autophagy in Niemann-Pick C disease is dependent upon Beclin-1 and responsive to lipid trafficking defects. Human molecular genetics 16, 1495-1503. Pacheco, C.D., and Lieberman, A.P. (2007). Lipid trafficking defects increase Beclin-1 and activate autophagy in Niemann-Pick type C disease. Autophagy 3, 487-489. Pajak, B., Wojewodzka, U., Gajkowska, B., and Orzechowski, A. (2008). Lipid rafts in anticancer therapy: Theory and practice (Review). Molecular medicine reports 1, 167-172. Palade, G.E. (1953). Fine structure of blood capillaries. J Appl phys 24, 14241436. Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. The Journal of biological chemistry 282, 2413124145. 156 Parton, R.G., and del Pozo, M.A. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14, 98-112. Parton, R.G., Hanzal-Bayer, M., and Hancock, J.F. (2006). Biogenesis of caveolae: a structural model for caveolin-induced domain formation. Journal of cell science 119, 787-796. Parton, R.G., and Simons, K. (2007). The multiple faces of caveolae. Nat Rev Mol Cell Biol 8, 185-194. Patra, S.K. (2008). Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1785, 182206. Patra, S.K., and Bettuzzi, S. (2007). Epigenetic DNA-methylation regulation of genes coding for lipid raft-associated components: a role for raft proteins in cell transformation and cancer progression (review). Oncology reports 17, 1279-1290. Pavlides, S., Tsirigos, A., Vera, I., Flomenberg, N., Frank, P.G., Casimiro, M.C., Wang, C., Fortina, P., Addya, S., Pestell, R.G., et al. (2010). Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect": a transcriptional informatics analysis with validation. Cell Cycle 9, 2201-2219. Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A.K., Frank, P.G., Casimiro, M.C., Wang, C., Fortina, P., Addya, S., et al. (2009). The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984-4001. Peralta, E.R., and Edinger, A.L. (2009). Ceramide-induced starvation triggers homeostatic autophagy. Autophagy 5, 407-409. Poklepovic, A., and Gewirtz, D.A. (2014). Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer. Autophagy 10. Pua, H.H., Guo, J., Komatsu, M., and He, Y.W. (2009). Autophagy is essential for mitochondrial clearance in mature T lymphocytes. Journal of immunology (Baltimore, Md : 1950) 182, 4046-4055. Pucadyil, T.J., and Chattopadhyay, A. (2004). Cholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus. Biochimica et biophysica acta 1663, 188-200. Puri, N., and Roche, P.A. (2006). Ternary SNARE complexes are enriched in lipid rafts during mast cell exocytosis. Traffic 7, 1482-1494. Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E.L., Mizushima, N., Ohsumi, Y., et al. (2003). Promotion of 157 tumorigenesis by heterozygous disruption of the beclin autophagy gene. The Journal of clinical investigation 112, 1809-1820. Qu, X., Zou, Z., Sun, Q., Luby-Phelps, K., Cheng, P., Hogan, R.N., Gilpin, C., and Levine, B. (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931-946. Quinn, P.J. (2010). A lipid matrix model of membrane raft structure. Progress in lipid research 49, 390-406. Raben, N., Hill, V., Shea, L., Takikita, S., Baum, R., Mizushima, N., Ralston, E., and Plotz, P. (2008). Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Human molecular genetics 17, 3897-3908. Rabinowitz, J.D., and White, E. (2010). Autophagy and metabolism. Science (New York, NY) 330, 1344-1348. Rajendran, L., and Simons, K. (2005a). Lipid rafts and membrane dynamics. J Cell Sci 118, 1099-1102. Rajendran, L., and Simons, K. (2005b). Lipid rafts and membrane dynamics. Journal of cell science 118, 1099-1102. Rao-Bindal, K., Zhou, Z., and Kleinerman, E.S. (2012). MS-275 sensitizes osteosarcoma cells to Fas ligand-induced cell death by increasing the localization of Fas in membrane lipid rafts. Cell death & disease 3, e369. Rao, S., Tortola, L., Perlot, T., Wirnsberger, G., Novatchkova, M., Nitsch, R., Sykacek, P., Frank, L., Schramek, D., Komnenovic, V., et al. (2014). A dual role for autophagy in a murine model of lung cancer. Nature communications 5, 3056. Razani, B., Engelman, J.A., Wang, X.B., Schubert, W., Zhang, X.L., Marks, C.B., Macaluso, F., Russell, R.G., Li, M., Pestell, R.G., et al. (2001). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. The Journal of biological chemistry 276, 38121-38138. Reeves, V.L., Thomas, C.M., and Smart, E.J. (2012). Lipid rafts, caveolae and GPI-linked proteins. Advances in experimental medicine and biology 729, 313. Reis-Sobreiro, M., Gajate, C., and Mollinedo, F. (2009). Involvement of mitochondria and recruitment of Fas/CD95 signaling in lipid rafts in resveratrol-mediated antimyeloma and antileukemia actions. Oncogene 28, 3221-3234. Robenek, M.J., Severs, N.J., Schlattmann, K., Plenz, G., Zimmer, K.P., Troyer, D., and Robenek, H. (2004). Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 18, 866-868. 158 Ropolo, A., Grasso, D., Pardo, R., Sacchetti, M.L., Archange, C., Lo Re, A., Seux, M., Nowak, J., Gonzalez, C.D., Iovanna, J.L., et al. (2007). The pancreatitis-induced vacuole membrane protein triggers autophagy in mammalian cells. The Journal of biological chemistry 282, 37124-37133. Rubinsztein, D.C., Codogno, P., and Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11, 709-730. Russell, R.C., Tian, Y., Yuan, H., Park, H.W., Chang, Y.Y., Kim, J., Kim, H., Neufeld, T.P., Dillin, A., and Guan, K.L. (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature cell biology 15, 741-750. Ryu, J., Kim, H., Chang, E.J., Kim, H.J., Lee, Y., and Kim, H.H. (2010). Proteomic analysis of osteoclast lipid rafts: the role of the integrity of lipid rafts on V-ATPase activity in osteoclasts. Journal of bone and mineral metabolism 28, 410-417. Saftig, P., and Klumperman, J. (2009). Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10, 623-635. Saitoh, T., Fujita, N., Hayashi, T., Takahara, K., Satoh, T., Lee, H., Matsunaga, K., Kageyama, S., Omori, H., Noda, T., et al. (2009). Atg9a controls dsDNAdriven dynamic translocation of STING and the innate immune response. Proceedings of the National Academy of Sciences of the United States of America 106, 20842-20846. Saitoh, T., Fujita, N., Jang, M.H., Uematsu, S., Yang, B.G., Satoh, T., Omori, H., Noda, T., Yamamoto, N., Komatsu, M., et al. (2008). Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264-268. Salaun, C., Gould, G.W., and Chamberlain, L.H. (2005). Lipid raft association of SNARE proteins regulates exocytosis in PC12 cells. The Journal of biological chemistry 280, 19449-19453. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303. Sarkar, S., Carroll, B., Buganim, Y., Maetzel, D., Ng, Alex H.M., Cassady, J.P., Cohen, M.A., Chakraborty, S., Wang, H., Spooner, E., et al. (2013). Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease. Cell Reports 5, 1302-1315. Sautin, Y.Y., Lu, M., Gaugler, A., Zhang, L., and Gluck, S.L. (2005). Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+ATPase assembly, translocation, and acidification of intracellular 159 compartments in renal epithelial cells. Molecular and cellular biology 25, 575589. Scarlatti, F., Bauvy, C., Ventruti, A., Sala, G., Cluzeaud, F., Vandewalle, A., Ghidoni, R., and Codogno, P. (2004). Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. The Journal of biological chemistry 279, 18384-18391. Schlegel, A., Arvan, P., and Lisanti, M.P. (2001). Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. The Journal of biological chemistry 276, 43984408. Schley, P.D., Brindley, D.N., and Field, C.J. (2007). (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. The Journal of nutrition 137, 548-553. Schubert, K.M., Scheid, M.P., and Duronio, V. (2000). Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. The Journal of biological chemistry 275, 13330-13335. Schuck, S., and Simons, K. (2004). Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. Journal of cell science 117, 5955-5964. Schweers, R.L., Zhang, J., Randall, M.S., Loyd, M.R., Li, W., Dorsey, F.C., Kundu, M., Opferman, J.T., Cleveland, J.L., Miller, J.L., et al. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proceedings of the National Academy of Sciences of the United States of America 104, 19500-19505. Scott, R.C., Schuldiner, O., and Neufeld, T.P. (2004). Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7, 167-178. Seol, J.H., Shevchenko, A., and Deshaies, R.J. (2001). Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nature cell biology 3, 384-391. Settembre, C., De Cegli, R., Mansueto, G., Saha, P.K., Vetrini, F., Visvikis, O., Huynh, T., Carissimo, A., Palmer, D., Klisch, T.J., et al. (2013). TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nature cell biology 15, 647-658. Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., et al. (2011). TFEB links autophagy to lysosomal biogenesis. Science (New York, NY) 332, 14291433. Shackelford, D.B., and Shaw, R.J. (2009). The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9, 563-575. 160 Shao, E., and Forgac, M. (2004). Involvement of the nonhomologous region of subunit A of the yeast V-ATPase in coupling and in vivo dissociation. The Journal of biological chemistry 279, 48663-48670. Shaw, R.J., Lamia, K.A., Vasquez, D., Koo, S.H., Bardeesy, N., Depinho, R.A., Montminy, M., and Cantley, L.C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science (New York, NY) 310, 1642-1646. Shen, H.-M., and Codogno, P. (2011). Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7, 457-465. Shen, H.M., and Codogno, P. (2012). Autophagy is a survival force via suppression of necrotic cell death. Exp Cell Res 318, 1304-1308. Shen, H.M., and Mizushima, N. (2014). At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci 39, 61-71. Shiroto, T., Romero, N., Sugiyama, T., Sartoretto, J.L., Kalwa, H., Yan, Z., Shimokawa, H., and Michel, T. (2014). Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PloS one 9, e87871. Silvius, J. (2003). Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochimica et Biophysica Acta (BBA) - Biomembranes 1610, 174-183. Simons, K., and Gruenberg, J. (2000). Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol 10, 459-462. Singer, S.J., and Nicolson, G.L. (1972). The fluid mosaic model of the structure of cell membranes. Science (New York, NY) 175, 720-731. Singh, R., and Cuervo, A.M. (2012). Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012, 282041. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009a). Autophagy regulates lipid metabolism. Nature 458, 1131-1135. Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A.M., Luu, Y.K., Tang, Y., Pessin, J.E., Schwartz, G.J., and Czaja, M.J. (2009b). Autophagy regulates adipose mass and differentiation in mice. The Journal of clinical investigation 119, 3329-3339. Sloan, E.K., Ciocca, D.R., Pouliot, N., Natoli, A., Restall, C., Henderson, M.A., Fanelli, M.A., Cuello-Carrion, F.D., Gago, F.E., and Anderson, R.L. (2009). Stromal cell expression of caveolin-1 predicts outcome in breast cancer. The American journal of pathology 174, 2035-2043. 161 Smardon, A.M., Tarsio, M., and Kane, P.M. (2002). The RAVE complex is essential for stable assembly of the yeast V-ATPase. The Journal of biological chemistry 277, 13831-13839. Solomon, V.R., and Lee, H. (2009). Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 625, 220-233. Sonnino, S., and Prinetti, A. (2009). Sphingolipids and membrane environments for caveolin. FEBS Lett 583, 597-606. Sonnino, S., and Prinetti, A. (2013). Membrane domains and the "lipid raft" concept. Current medicinal chemistry 20, 4-21. Sotgia, F., Martinez-Outschoorn, U.E., Howell, A., Pestell, R.G., Pavlides, S., and Lisanti, M.P. (2012). Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annual review of pathology 7, 423-467. Sotgia, F., Williams, T.M., Schubert, W., Medina, F., Minetti, C., Pestell, R.G., and Lisanti, M.P. (2006). Caveolin-1 deficiency (-/-) conveys premalignant alterations in mammary epithelia, with abnormal lumen formation, growth factor independence, and cell invasiveness. The American journal of pathology 168, 292-309. Sou, Y.S., Waguri, S., Iwata, J., Ueno, T., Fujimura, T., Hara, T., Sawada, N., Yamada, A., Mizushima, N., Uchiyama, Y., et al. (2008). The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Molecular biology of the cell 19, 4762-4775. Staubach, S., and Hanisch, F.G. (2011). Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert review of proteomics 8, 263-277. Stienstra, R., Haim, Y., Riahi, Y., Netea, M., Rudich, A., and Leibowitz, G. (2014). Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia 57, 1505-1516. Strohecker, A.M., Guo, J.Y., Karsli-Uzunbas, G., Price, S.M., Chen, G.J., Mathew, R., McMahon, M., and White, E. (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer discovery 3, 1272-1285. Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H.D., Sun, M., Sato, Y., Liang, C., Jung, J.U., Cheng, J.Q., Mule, J.J., et al. (2007). Bif-1 interacts with Beclin through UVRAG and regulates autophagy and tumorigenesis. Nature cell biology 9, 1142-1151. Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., Eishi, Y., Hino, O., Tanaka, K., and Mizushima, N. (2011). Autophagydeficient mice develop multiple liver tumors. Genes & development 25, 795800. 162 Takats, S., Nagy, P., Varga, A., Pircs, K., Karpati, M., Varga, K., Kovacs, A.L., Hegedus, K., and Juhasz, G. (2013). Autophagosomal Syntaxin17dependent lysosomal degradation maintains neuronal function in Drosophila. The Journal of cell biology 201, 531-539. Tan, S.H., Shui, G., Zhou, J., Shi, Y., Huang, J., Xia, D., Wenk, M.R., and Shen, H.M. (2014). Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy 10, 226-242. Tanida, I., Tanida-Miyake, E., Komatsu, M., Ueno, T., and Kominami, E. (2002). Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. The Journal of biological chemistry 277, 13739-13744. Tanida, I., Tanida-Miyake, E., Ueno, T., and Kominami, E. (2001). The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. The Journal of biological chemistry 276, 17011706. Thomas, P.V., Cheng, A.L., Colby, C.C., Liu, L., Patel, C.K., Josephs, L., and Duncan, R.K. (2014). Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear. Journal of proteomics 103, 178-193. Tran, A.T., Ramalinga, M., Kedir, H., Clarke, R., and Kumar, D. (2014). Autophagy inhibitor 3-methyladenine potentiates apoptosis induced by dietary tocotrienols in breast cancer cells. European journal of nutrition. Tsai, P.S., De Vries, K.J., De Boer-Brouwer, M., Garcia-Gil, N., Van Gestel, R.A., Colenbrander, B., Gadella, B.M., and Van Haeften, T. (2007). Syntaxin and VAMP association with lipid rafts depends on cholesterol depletion in capacitating sperm cells. Mol Membr Biol 24, 313-324. Vabulas, R.M., and Hartl, F.U. (2005). Protein synthesis upon acute nutrient restriction relies on proteasome function. Science (New York, NY) 310, 19601963. Valentin-Vega, Y.A., Maclean, K.H., Tait-Mulder, J., Milasta, S., Steeves, M., Dorsey, F.C., Cleveland, J.L., Green, D.R., and Kastan, M.B. (2012). Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119, 1490-1500. Veiga, M.P., Arrondo, J.L., Goni, F.M., Alonso, A., and Marsh, D. (2001). Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Biochemistry 40, 2614-2622. 163 Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R.L., Kim, J., May, J., Tocilescu, M.A., Liu, W., Ko, H.S., et al. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences of the United States of America 107, 378-383. Waheed, A.A., and Freed, E.O. (2010). The Role of Lipids in Retrovirus Replication. Viruses 2, 1146-1180. Wang, H., Zhang, Q., Wen, Q., Zheng, Y., Lazarovici, P., Jiang, H., Lin, J., and Zheng, W. (2012). Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway. Cellular signalling 24, 1724. Wang, J., and Yu, R.K. (2013). Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proceedings of the National Academy of Sciences of the United States of America 110, 19137-19142. Wang, K., and Klionsky, D.J. (2011). Mitochondria removal by autophagy. Autophagy 7, 297-300. Wang, X.Q., and Paller, A.S. (2006). Lipid rafts: membrane triage centers. The Journal of investigative dermatology 126, 951-953. Wary, K.K., Mariotti, A., Zurzolo, C., and Giancotti, F.G. (1998). A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625-634. Wei, H., Wei, S., Gan, B., Peng, X., Zou, W., and Guan, J.L. (2011). Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes & development 25, 1510-1527. Westover, E.J., Covey, D.F., Brockman, H.L., Brown, R.E., and Pike, L.J. (2003). Cholesterol depletion results in site-specific increases in epidermal growth factor receptor phosphorylation due to membrane level effects. Studies with cholesterol enantiomers. The Journal of biological chemistry 278, 5112551133. White, E. (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12, 401-410. White, E., and DiPaola, R.S. (2009). The double-edged sword of autophagy modulation in cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 5308-5316. Williams, L.M. (2012). Hypothalamic dysfunction in obesity. The Proceedings of the Nutrition Society 71, 521-533. Williams, T.M., and Lisanti, M.P. (2004). The caveolin proteins. Genome biology 5, 214. 164 Witkiewicz, A.K., Dasgupta, A., Sammons, S., Er, O., Potoczek, M., Guiles, F., Sotgia, F., Brody, J.R., Mitchell, E.P., and Lisanti, M.P. (2010). Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biology & Therapy 10, 135-143. Witkiewicz, A.K., Dasgupta, A., Sotgia, F., Mercier, I., Pestell, R.G., Sabel, M., Kleer, C.G., Brody, J.R., and Lisanti, M.P. (2009). An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. The American journal of pathology 174, 2023-2034. Wiza, C., Nascimento, E.B., and Ouwens, D.M. (2012). Role of PRAS40 in Akt and mTOR signaling in health and disease. American journal of physiology Endocrinology and metabolism 302, E1453-1460. Wong, A.S., Cheung, Z.H., and Ip, N.Y. (2011). Molecular machinery of macroautophagy and its deregulation in diseases. Biochim Biophys Acta 1812, 1490-1497. Wu, Y.T., Tan, H.L., Huang, Q., Kim, Y.S., Pan, N., Ong, W.Y., Liu, Z.G., Ong, C.N., and Shen, H.M. (2008). Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4, 457-466. Wu, Y.T., Tan, H.L., Huang, Q., Ong, C.N., and Shen, H.M. (2009). Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5, 824-834. Xia, F., Gao, X., Kwan, E., Lam, P.P., Chan, L., Sy, K., Sheu, L., Wheeler, M.B., Gaisano, H.Y., and Tsushima, R.G. (2004). Disruption of pancreatic beta-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. The Journal of biological chemistry 279, 24685-24691. Xu, W.H., Liu, Z.B., Hou, Y.F., Hong, Q., Hu, D.L., and Shao, Z.M. (2014). Inhibition of autophagy enhances the cytotoxic effect of PA-MSHA in breast cancer. BMC cancer 14, 273. Xu, Z.X., Ding, T., Haridas, V., Connolly, F., and Gutterman, J.U. (2009). Avicin D, a plant triterpenoid, induces cell apoptosis by recruitment of Fas and downstream signaling molecules into lipid rafts. PloS one 4, e8532. Yamada, E. (1955). The fine structure of the gall bladder epithelium of the mouse. The Journal of biophysical and biochemical cytology 1, 445-458. Yamaguchi, H., Takeo, Y., Yoshida, S., Kouchi, Z., Nakamura, Y., and Fukami, K. (2009). Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer research 69, 8594-8602. Yamamoto, A., Tagawa, Y., Yoshimori, T., Moriyama, Y., Masaki, R., and Tashiro, Y. (1998a). Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23, 33-42. 165 Yamamoto, M., Toya, Y., Schwencke, C., Lisanti, M.P., Myers, M.G., Jr., and Ishikawa, Y. (1998b). Caveolin is an activator of insulin receptor signaling. The Journal of biological chemistry 273, 26962-26968. Yang, L., Li, P., Fu, S., Calay, E.S., and Hotamisligil, G.S. (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell metabolism 11, 467-478. Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., Ying, H., Bause, A., Li, Y., Stommel, J.M., Dell'antonio, G., et al. (2011). Pancreatic cancers require autophagy for tumor growth. Genes & development 25, 717-729. Ye, Y.C., Yu, L., Wang, H.J., Tashiro, S., Onodera, S., and Ikejima, T. (2011). TNFalpha-induced necroptosis and autophagy via supression of the p38-NFkappaB survival pathway in L929 cells. Journal of pharmacological sciences 117, 160-169. Yoshinaka, K., Kumanogoh, H., Nakamura, S., and Maekawa, S. (2004). Identification of V-ATPase as a major component in the raft fraction prepared from the synaptic plasma membrane and the synaptic vesicle of rat brain. Neuroscience letters 363, 168-172. Yue, Z., Jin, S., Yang, C., Levine, A.J., and Heintz, N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America 100, 15077-15082. Zhang, C., He, Y., Okutsu, M., Ong, L.C., Jin, Y., Zheng, L., Chow, P., Yu, S., Zhang, M., and Yan, Z. (2013). Autophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPARgamma2 degradation. American journal of physiology Endocrinology and metabolism 305, E530-539. Zhang, C.S., Jiang, B., Li, M., Zhu, M., Peng, Y., Zhang, Y.L., Wu, Y.Q., Li, T.Y., Liang, Y., Lu, Z., et al. (2014). The Lysosomal v-ATPase-Ragulator Complex Is a Common Activator for AMPK and mTORC1, Acting as a Switch between Catabolism and Anabolism. Cell metabolism. Zhang, X., Shen, P., Coleman, M., Zou, W., Loggie, B.W., Smith, L.M., and Wang, Z. (2005). Caveolin-1 down-regulation activates estrogen receptor alpha expression and leads to 17beta-estradiol-stimulated mammary tumorigenesis. Anticancer research 25, 369-375. Zhang, Y., Goldman, S., Baerga, R., Zhao, Y., Komatsu, M., and Jin, S. (2009a). Adipose-specific deletion of autophagy-related gene (atg7) in mice reveals a role in adipogenesis. Proceedings of the National Academy of Sciences of the United States of America 106, 19860-19865. Zhang, Y., Goldman, S., Baerga, R., Zhao, Y., Komatsu, M., and Jin, S. (2009b). Adipose-specific deletion of autophagy-related gene (atg7) in mice 166 reveals a role in adipogenesis. Proceedings of the National Academy of Sciences of the United States of America 106, 19860-19865. Zhou, J., Tan, S.H., Nicolas, V., Bauvy, C., Yang, N.D., Zhang, J., Xue, Y., Codogno, P., and Shen, H.M. (2013). Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell research 23, 508-523. Zhuang, L., Lin, J., Lu, M.L., Solomon, K.R., and Freeman, M.R. (2002). Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer research 62, 2227-2231. Zoncu, R., Efeyan, A., and Sabatini, D.M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12, 21-35. 167 [...]... microdomains (defined as lipid rafts) are known to play a crucial role in the assembly of signaling molecules, proteins trafficking and the balance of membrane fluidity There are mainly two types of lipid rafts: the planar lipid rafts and Caveolae Caveolin- 1 (Cav -1) is one of the key membrane proteins in maintaining the structure and function of both types of lipid rafts Currently, the functional role and. ..6 .1 CAV -1 AND LIPID RAFTS IN EARLY STAGE OF AUTOPHAGY 12 9 6.2 CAV -1 AND LIPID RAFTS IN LATE STAGE OF AUTOPHAGY 13 2 6.3 CAV -1 AND LIPID RAFTS IN BREAST CANCER REGULATION 13 4 6.4 CONCLUSIONS AND FUTURE RESEARCH 13 6 References 14 0 xi Summary Autophagy refers to an evolutionarily conserved process in which intracellular protein aggregates and damaged organelles are engulfed in. .. inhibit mTORC1 activity and induce autophagic response (Laplante and Sabatini, 2 012 ; Rabinowitz and White, 2 010 ) What's more, there are recent reports showing a direct role of AMPK in autophagy modulation through a direct phosphorylation of ULK1 and Beclin1 (Egan et al., 2 011 ; Kim et al., 2 013 a; Kim et al., 2 011 ) Figure 1. 6 Regulatory pathways of autophagy 14 1. 1.6 Biological functions of autophagy At... Model of the regulatory roles of lipid rafts and Cav -1 in autophagy, cellular stress response and tumorigenesis 13 8 xvi List of Abbreviations 3-MA 3-methyladenine 4EBP1 factor 4E-binding protein AA amino acid AMPK adenosine monophosphate–activated protein kinase Atgs autophagy- related-genes Baf balfilomycin A1 BSA bovine serum albumin CAFs cancer-associated-fibroblasts Cav -1 Caveolin- 1 CK2 Casein kinase... of Cav -1 sensitizes the MCF7 cells to cell death induced by starvation stress 12 1 Figure 5.7 Downregulation of Cav -1 with enhanced autophagy in human breast cancer tissues 12 4 Figure 6 .1 Model of the regulatory role of lipid rafts and Cav -1 in early stage of autophagy 13 0 Figure 6.2 Model of the regulatory role of lipid rafts and Cav -1 in late stage of autophagy 13 4... mechanism of Cav -1 and lipid rafts in autophagy remain largely elusive The hypothesis is that the Cav -1 and lipid rafts modulate autophagy and via which they play important roles in cell stress responses and cancer development In order to test this hypothesis, the following investigations were performed to study: (i) the role of Cav -1 and lipid rafts in autophagy at early stage; (ii) the role of Cav -1 and lipid. .. have provided strong evidence that Cav -1 and lipid rafts are closely implicated in determining cell stress responses via regulation of autophagy Understanding the function of Cav -1 and lipid rafts in autophagy regulation expand the functional scope of Cav -1 and lipid rafts More importantly, our study provides the potential indicator for the suitability of using autophagy suppression as a therapeutic... and Mizushima, 2 014 ) The detailed steps are described below and illustrated in Figure 1. 1 (Rubinsztein et al., 2 012 ) 2 Figure 1. 1 Summary of the different stages of the autophagy process in mammalian cells (Modified based on (Rubinsztein et al., 2 012 )) 1. 1.2 .1 Induction or initiation The initiation of autophagy starts with emergence of phagophore or preautophagosomal structure (PAS), and which process... ULK1/Atg1 complex downstream of mechanistic target of rapamycin complex 1 (mTORC1) The mTORC1 plays a role in the regulation of cell growth and protein synthesis by the phosphorylation of two key translational regulators eukaryote initiation factor 4E-binding protein (4EBP1) and S6 kinase (S6K) (Jewell et al., 2 013 ; Zoncu et al., 2 011 ) mTOR inhibitors such as rapamycin are well known to induce autophagy, ... (Choi et al., 2 013 ) The detailed information of the lysosome will be discussed in the Section 1. 1.4 1. 1.3 Autophagy machinery 1. 1.3 .1 ULK1/2 complex The unc- 51- like kinase (ULK) 1/ 2 complex is responsible for the initiation step of autophagosome formation ULK1/2 complex is composed by three major components: ULK1/2, ATG13, and FIP200 (Mizushima, 2 010 ) ULK1 and ULK2 are mammalian Atg proteins which appear . 27 1. 2.2 Caveolin- 1 33 1. 3. LIPID RAFTS AND CAV -1 IN AUTOPHAGY 35 1. 3 .1. Lipid rafts in autophagy 35 1. 3.2. Cav -1 in autophagy 38 1. 4. LIPID RAFTS AND CAV -1 IN CANCER 39 1. 4 .1. Lipid rafts. 10 1. 1.5. Regulatory pathways of autophagy 12 1. 1.6. Biological functions of autophagy 15 1. 1.7. Implication of autophagy in human diseases 20 1. 2. LIPID RAFTS AND CAV -1 27 1. 2 .1 Lipid rafts. List of Figure xiv List of Abbreviations xvii Chapter 1. Introduction 1 1. 1. AUTOPHAGY 2 1. 1 .1. Overview of autophagy 2 1. 1.2. The process of autophagy 2 1. 1.3. Autophagy machinery 4 1. 1.4.

Ngày đăng: 09/09/2015, 08:13

Từ khóa liên quan

Mục lục

  • Caveolin-1 and lipid rafts in modulation of autophagy

  • Declaration

  • Acknowledgements

  • List of Publications

  • Summary

  • List of Figure

  • List of Abbreviations

  • Chapter 1. Introduction

    • 1.1. Autophagy

      • 1.1.1. Overview of autophagy

      • 1.1.2. The process of autophagy

      • 1.1.3. Autophagy machinery

      • 1.1.4. Lysosome

      • 1.1.5. Regulatory pathways of autophagy

      • 1.1.6. Biological functions of autophagy

      • 1.1.7. Implication of autophagy in human diseases

      • 1.2. Lipid rafts and Cav-1

        • 1.2.1 Lipid rafts

        • 1.2.2 Caveolin-1

        • 1.3. Lipid rafts and Cav-1 in autophagy

          • 1.3.1. Lipid rafts in autophagy

          • 1.3.2. Cav-1 in autophagy

          • 1.4. Lipid rafts and Cav-1 in cancer

            • 1.4.1. Lipid rafts in cancer cell death and progression

            • 1.4.2. Cav-1 in cancer development

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan