60 đề thi thử thpt quốc gia môn vật lý with keys (lỗi hiển thị nhưng vẫn tải xuống bình thường)

643 1,531 1
  • Loading ...
    Loading ...
    Loading ...

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 24/07/2015, 03:22

[...]... http://tuyensinh247.com/ để học Toán -Lý- Hóa- Sinh- Văn- Anh tốt nhất 14 TRƯỜNG THPT CHUYÊN PHAN BỘI CHÂU ĐỀ THI THỬ THPT QUỐC GIA LẦN 3 NĂM 2015 Môn thi: VẬT LÝ Thời gian làm bài: 90 phút; Mã đề: 209 Câu 1 (ID: 87549) Một lò xo cấu tạo đồng đều, khối lượng không đáng kể, chiều dài tự nhiên l1= 3l0, đầu trên cố định vào điểm O Khi treo vào đầu dưới A của lò xo một vật có khối lượng m thì chu kỳ dao động... giải chi tiết của từng câu, truy cập trang http://tuyensinh247.com/ và nhập mã ID câu 13 SỞ GDĐT NINH BÌNH TRƯỜNG THPT CHUYÊN LƯƠNG VĂN TỤY ĐỀ THI THỬ THPT QUỐC GIA NĂM 2015 Môn: VẬT LÝ Thời gian làm bài: 90 phút; (50 câu trắc nghiệm) Mã đề thi 134 Họ, tên thí sinh: Số báo danh: Câu 1: (ID: 8603 0) Đặt một điện áp xoay chiều u = U0cost vào hai đầu đoạn mạch có điện trở thuần R và tụ điện có... Đông B hướng Tây C thẳng đứng xuống dưới D hướng Bắc Câu 24: (ID: 8605 3) Chu kì dao động của vật là A khoảng thời gian giữa hai lần liên tiếp vật đạt li độ cực đại B khoảng thời gian ngắn nhất để vật trở lại vị trí ban đầu C khoảng thời gian ngắn nhất để vật thực hiện một dao động toàn phần D khoảng thời gian ngắn nhất để độ lớn tốc độ trở về giá trị ban đầu Câu 25: (ID: 8605 4) Gọi u, U, U0 lần lượt... 0,25C1 C 4C1 D 2C1 Câu 35: (ID: 8606 4) Một vật thực hiện dao động điều hòa với chu kì T Chọn trục tọa độ Ox trùng với phương chuyển động, gốc tọa độ ở vị trí cân bằng, gốc thời gian lúc vật ở vị trí cân bằng Trong nửa chu kì đầu tiên, gia tốc của vật có giá trị cực đại ở thời điểm T T T T A B C D 4 2 8 12 Câu 36: (ID: 8606 5) Trong một mạch dao động LC lý tưởng, khoảng thời gian để điện tích trên một... của OB Nhận định nào sau đây là đúng? A Thời gian ngắn nhất để vật đi từ B đến O là T/6 B Thời gian ngắn nhất để vật đi từ C đến I là T/4 C Thời gian ngắn nhất để vật đi từ I đến B là T/3 D Thời gian ngắn nhất để vật đi từ O đến I là T/12 A  Câu 20: (ID: 8605 9) Nhà nước quy định hệ số công suất cos trong các cơ sở sử dụng điện năng tối thi u phải bằng 0,85 để A đỡ gây tốn kém cho cơ cở tiêu thụ điện... ta có: 20  10 lg I I  2 lg 12  I  10 10 W / m 2 Io 10 =>I gấp 100 lần Io =>Đáp án D Câu 19: Thời gian ngắn nhất để vật đi từ B đến O là T/4 => A sai Thời gian ngắn nhất để vật đi từ C đến I là T/3 => B sai Thời gian ngắn nhất để vật đi từ I đến B là T/6 => C sai Thời gian ngắn nhất để vật đi từ O đến I là T/12 => D đúng =>Đáp án D Câu 20: Đáp án D W  Wt  Wđ  Câu 21: Ta có: hay Uo 2 C... đó tỉ lệ thuận với bình phương thời gian Chọn gốc thời gian là lúc bắt đầu điều chỉnh, bỏ qua điện trở dây nối Kể từ lúc bắt đầu điều chỉnh thì cường độ dòng điện trong mạch bằng không sau một khoảng thời gian A t  T 2  B t  T 2 C t  T  2 D t  T  Câu 12 (ID: 87 560) Một con lắc lò xo có độ cứng k tương đối lớn, vật có khối lượng m treo thẳng đứng Nếu từ vị trí cân bằng kéo vật xuống phía dưới 3... đứng tại giá M cách sàn nhà 1,5 m, lò xo có k = 50 N/m, chiều dài tự nhiên l0 = 60 cm, vật nặng có m = 500 g, hệ đặt tại nơi có g = 10 m/s2 Đưa vật tới vị trí lò xo không biến dạng rồi thả nhẹ để vật dao động điều hòa Khi vật đi xuống tới vị trí cân bằng thì tuột ra khỏi lò xo đi xuống va chạm hoàn toàn đàn hồi với sàn nhà thì vật nẩy lên cách sàn nhà một đoạn A: 85 cm B: 105 cm C: 75 cm D: 95 cm Câu 22... Toán -Lý- Hóa- Sinh- Văn- Anh tốt nhất 10 Câu 42: Độ biến dạng của lò xo khi 2 vật ở VTCB l0  mA  mB 0,3.10 g  0, 06m  6cm k 50 Nâng vật đến vị trí có chiều dài tự nhiên l0 = 30cm thì buông nhẹ thì 2 vật sẽ dđđh với biên độ A=6cm Vật dao động điều hòa đến vị trí lực đàn hồi của lò xo có độ lớn cực đại, tức là tại vị trí biên dương vật B bị tách ra Lúc này chiều dài của lò xo lmax=30+6+6=42cm vật. .. trí cân bằng kéo vật xuống dưới một đoạn 6 cm rồi thả nhẹ thì chu kì dao động bằng A: 1 s B: 2 s C: Chưa đủ điều kiện để kết luận D: 0,5 s Câu 13 (ID: 87561) Khi treo lần lượt hai vật nặng vào cùng một lò xo có độ cứng 10 N/m và cho dao động thì trong cùng một thời gian như nhau, số dao động mà vật thứ nhất thực hiện được lớn gấp đôi số dao động của vật thứ hai Nếu treo đồng thời cả hai vật lên lò xo . src=" 3601 1rupTqR6ibH/UtyRxlcm4+nRdDRd0J+aK//LX7u81fig3uk1terpWNqB11KVA51Ne/6h+6+klIVsZiTv+070xHqHlFI6BS+aLphqOZ/NZg/5F96e51Uq5dccx3GUo+7fXm3fq4Wt0GnHbqhlpO2hpVIIoaRRwqRcE7g640SlQM9UnNdmS5Vy0U5T8H03n/bK6Wg73hHKHhQjpHSk45ZSUTHjpQL/iZ+66+YzbimI2roZJUao2L52I51yqpdPe6ldt7a7ruu6biaTKZbLmXxxszK2/WBqbe3eZu1BurudCRt+3PV1z096ThK6QkuhpXm0LqKlMkIlyo2V13ODnkp1nHQ7W+0VJtzJq5W5qxNzCxNTB5/qE/heLu2VUu1KryFUYh79gFzp9MpBWMq4Kf/Rz8hz3VzaK6W65W4rlMao+HH8OGUvKmWczJNzlpVS2ZRXTpuOaftxZGT0aOFOuq4ri2mVDnzXdRxHpQI/n3IqfjuIHPl4g5hUbtrT5bTJZ3xHObt/+OmUX0i55aAX6oaR0aMp6spVjldO6XwmsL9XUspU4Fcyoh31AtM0KnmuqYP748c48UgmyaZ913Wfa+ebUiqT9kopUQo7jomFevxROK7rOMWUzmdSruce/gi+5+QDUfLaKSmFivvxI6SRqjealblMyveY9gYAAF76+Mlm0hOVbL0VJUnD3vEvhBBGCOmkPFFMO9Vy/ojXTJ7nVaujn1Eqn03/460H/3i3tdIwWx1ljBRS+EqXUnqqKF6fzv3GtUtTE9XRkcrdB6uN9kqt3WtHoXy0eiGny95oKZtJp575dGnfdWRvfxiVUsnliXSllH/mhCvP88rl0r/IpK9cmv148f6Hdx4urjTvbbXrHbkTykQ7dsXCd3Wg9GjWjOXV/Hj28lR5YW5qYmw0nU7b+MllM5OVXK1Z00lDCv144pYUQk2WnKmRbCH/xFC4TDo1NZJrdredelPrXatMUo5k1Fi5kM+l92eb7/sTU9Mj1bHwU9d36rXtzfXGytLa2n1RX3V31oNOPRU2grjj6tjRid2HFSs3Vm7PzXaDQpgbTYoTamQ6P3VpfvZyJpfPZLOH3OSTyaSq5dx0sWWS5idrS0IZocbzYmY0U8hn7VemgqBazs1sdztRM0mM+eRGJFVMy8lKtlzM7X47juNUK/m5kbbj9Nq9rnw0NVoKIR0lJ8vZUiHje77necVCdrKcntva7kT9FyCEUClfThadsXLW2xUGUspCLjM5kqm1dgLZ2HXekRJCTZed8Uo2nU7Zryzms3MjKVeFO92mEFoe5+apR/+sGCE9R4zn3XIx6+8bLXg4x3FGS7nZ0WZies1uVz36KIQRSjlqpuSMV3LpQ28q81y3UsxOltqdqB3Hpj/tzQglhfFdcXk8VSrkfN8jfgAAwMsePyPl0utXZkqF7CvbTfnJnTPCCOm7Kp3yF+Ymj3jNZA+5L5WKC0L4vjdaXNuot7ebPSOMPQgol/aq5dz0eGVhfjqXywVB8MrlGc91W51eL0rskxhjRku52amxSrn4xCWmMUmSaK2NMb1er93u3L6/cnO52Ywce//Io5dgtNK9ata8OjtSLhWOePWZyWRSqZQxJptJzYzV1mvNRqvX6oaJFnZnV+D5gecUs0GpkBkbKY2NlkdHKtlstv8go5Xy61eiYj79WqP1yccopTGmmEuPj5aqI09M6yoW8p+6OjNSytV22sY8OqLIfn0uHcxOjlZHKvvLze738zwvk8mk0+lcoZgrlnfGpzuNethqdNvNdq+tex2R2GU0I4QwypGOJ4OMk8542UI+X86WKoXKSGVk1PO8w+fUVUqlK3OJ5zpb2235eHyfnUVXzKVGSvn+m8rlslfmpzLpYHZ8R2u9+9clHfjjo8XJ8dHdleW67sLcZOC59Z12L4z7v19GCCXV3GRlamIsk0k7jjNerVyLk3zWD+Ok/8EaITzXKeUzk2OV9K6BFkqpyfGqMWakWN9pd/unutpfjmo5Pz5aKpcKUkql1Nho5fPXZus77XY3UvKAm9OOGj9S2GYrZNPz0xPZbOa57q7xPG9+dsLz3EsTzW4YqV0fhZSqWs5NVCuF/GGD47LZzJW5yWw6uDTZTJJk9y5KY4TnqtFyfmy0EgQB8QMAAF44aYx54S/ikNdw7AsmY0wYhr1ezz6453l2+9aeC+4Dn3r/k2qtu91uHMda6/p2Y7NW/7/+/p9/vKjrcbqtA5MkQhghHUfGroj+519L/pff+txYdaRQKBzvo4iiKIoim1v2xfu+r5RSSh3ygTztY3zatzzv1x/+vFrrJEnsy7a30du0s+fD9K/Ij/fgR3mRZ/f2z+iRT/0fvZP8w3LCxzz8vZA9AABgQAzEqOuzuDayyxRKPRoJoB473lOvrq79/J9uPtxo7LSjnU7UaEeLW3I7SoVaGWPLR0nHK7ndsXRndmxkdKR8vAnU9vXYSOsnhFLKOcIxKc/7MZ7Wx24fx77C3S/b/i0ppXOCM16O/o1n9/bP6JEHJwlO/krIGwAAQPy8YAfWzjEYY9Y3t376y4c31+OtTtCKnW7oxtJLhCtM/4QfqaQsp5NPTXjzUyOlUmkQXvmQfuAAAAAA8fMC2A1vW/Wdle1oreV3TDrUIpJ2BLe9o11Kx3WlCWRrKhf9q2tzs1NjfG4AAAAA8TNkkiTZ2WnWtlsbLbEdB7EMtNFGyEdTraSSUjhS5pzeSNB6ZSL9L37tSqlY5HMDAAAAiJ8hE8fxZq2+sd1qaz82gXk0W1gK6UgphXIckaRkdybffuNK5jdeny2XSr7v87kBAAAAxM+Q0Vo3W51WJzZGKqmNSYwxUgoljaeE74Z5NxpN965NBZ//9Pzl2ends49xPJ1Op9VqKaVc17VnGYnH08Y7nU6z2cxms7lc7tTvL+r1er1eL45jIUQul7MR2+v1ms1mkiRCiHw+f/jPtz8P3Q5e11rbkYPdbrdQKGQymT1fb4zRWm9vb7fb7Vwul8lkvEMP6omiaGdnR2vteV4qlQqCYJB/jlEU1ev1JEnS6fTgv1oAAED8QGitoyhOtPZkEsiuEUJIIYxOuSbrJmNZPVdxPr0w/sr85Pzs1O6zd3BstVptaWnJls/k5KSdHmHL5+HDh0tLS9PT05cuXXrmSUHPa2dnZ319vdPpSCnn5uZGRkaEEI1GY3FxMYoiIcTc3NzMzMwhjxCGYbfb1Vo7jpPL5cIwrNVqm5ubm5ubV65cmZub2x9LYRguLi4uLy/Pzc1NT08XCoVDDn7tdDqLi4txHOdyudHR0bGxgb67rNPpfPTRR91ud3x8vFqtjoyMMA8DAAAQPwPN87yRSvHVuZEw3qi1etoIe7BkJnCyKa9aTE9VCwvzU+PV0bNYi3g51ev1xcXFVCqVy+WKxeLu+FlZWfnoo48cx5mennYc53Q/8Eaj8fDhw52dHSllpVKx8SOEkFK22+1Go1GpVA7v5JWVlY2NDaWUXTjqdrtbW1tLS0srKyulUml//PR6vVqtVq/X6/X6xMTEM99Oq9VaWlrq9Xqjo6O+7w94/LRarbt37zabTWNMEATlcpl/QAAAAPEz0FKp1KW5mbHRyvXXm70wTBIthFBKpVNBOpVKpQLf913XPclRNtijVqstLy+n0+lisTg7O2v/MI7jTqeztra2tLRUqVSiKDr1e6t2dnZWV1e3t7ellFevXu3/ApTLZdsn7Xb7kG9PkuTBgweLi4ue542NjVWr1V6vt7W1tbKy8uDBg/n5+f3f0ul0Njc3W61WHMeO46RSqf5psAdqt9sPHz7sdrvGmBOOUz8HnU5naWnJblOsVCqDcJ4yAAAgfvAMvu87jpNOp+M4thdw9gRVmueM7D7dtf/xKqXsD8J+gf3vKIrsvrKNjY0oipRS1Wp1cnIyk8nYQ2ZbrdbDhw9rtVqr1bJ1MTk5OTExccgPbveDN5tNu9FubW2t1Wo9ePAgnU5PTEyUy+U93xWGYaPRWF5evn//vuu6vV5vbm7O8zzHcbTWURQ9ePDgxz/+ca/XcxxnbGxsZOTRYVD27qAgCIIgsDf82OddX19fWVmx9xrZlCoUCvbr7bv+6KOPdnZ2HMfxfX96erparbquu/9NbW5u2rff7XbjONZaJ0lSrVZnZmbS6bTv+71er16vLy0t9e+z8n0/m83m8/lCoeA4Tv8D1FpLKavV6vT0tOd5dqUriqLJyclCoaCUqtVqa2trruumUin77uxPkAUfAABA/AwNe3bnIXdi4NQ/cOcxO+fA1kj/D/tR1Ov1Hj58ePv27bt374ZhqJSan5+3dZFKpewsgVu3bi0vL9frddd1c7lcFEWlUimVSrnu3l9+e5luu0hKGYbhxsbG0tLSnTt3Op1OHMe2RnzfLxaLey7obfysr69vbm7av7W9vV0qlXzfV0rFcby6umqnNfi+v7CwkCRJNpuVUjqO43leEDxaQhRCdLvd9fX1W7du3bp1y95rdOnSpVdffdW+MDtHYXt724aZUioIAq11LpfLZrN7Fo601hsbG4uLixsbG81mM4qiOI6TJJmfn0+n0yMjI67r2j68ceNGrVZzXdeOUqhUKpOTk8YY3/fv3Llz//59O7pASnnp0qVUKpXNZrXWH3/8cbfbDYLAdtTm5ubNmzftkp39VwOe59n3dWCYAQAAED942dkI2d7e3t7etjfNi8fb3uxSgxDC8zy7S+3GjRtbW1t2/lscx1tbWz/84Q8/85nPuK67vLx89+5dO66gXC6HYWiXOHzfn5ube9oNM7Z8jDH1ev3mzZu1Wi2TydiuqNVqd+7cyWazQRCMjo7axaVH/yC5biqVymQy6XTacZxsNmvn1NmI6na7QohMJmOMieP4zp079r6dKIra7fbGxsbGxsb8/Lwxptfr3b9//x/+4R92dnZSqZR9inq9/sEHHwRB4LqufYQoivL5/MjIyNbW1ubm5scff2y36u25K8kYU6vVHj58uLq6miTJ2NiYDae1tbWf/exn165du3Tp0gcffLC4uNhut+1NVtvb24uLi51Ox/d922Zra2thGI6NjdnA29jY+MlPfvKpT31qYmKi0WjU6/Xl5eUgCMbGxjY3N2/fvj01NVWpVOy/MvAfO3w7HwAAAPGDlzd+pJSdTqfb7UZRtLW1JaVMksTOjLbrD67r2m1my8vLcRxPTExkMplOp7O8vLyxsWEnod29e/fevXuNRiOVSo2PjzcajVarZW+zOcqoAPuV3W63VCrZfXQrKyt2N9rY2Fg+n98dP3ZPXTabtZlkh2LblZwkSZIkcV23XC4HQbC9vb28vGzfoK2dnZ0dO+06SZJWq7W6unrv3j2llN04J6Xc2Nio1+vdbjeTydhR2lrrVCo1NTXVaDS63e7a2loQBJOTk3viR2vdbDa3t7cbjYbneYVCwQ5vaLVarVarWq1Wq9W7d+8uLy/n8/lisTg6OtpqtXZ2doIgsN/iOI7d8FYqlbrdrn20zc3NiYmJ6enpMAxbrdb6+rrdJlev1zc3N8vlsl1Y273yQ/wAAADiBziYMcbefFIsFovFor0Dx66f9Ho9uzJj72ZJp9OZTObVV18tlUr2mJ16vd7pdB48eLCystLtdsfGxsbHx1977TWtdaPRSKfTuVzu8LltNsAKhcKlS5e2trb6fdLpdJIkiaIoDEOt9RP/ILmuXTmxc96KxWIqlbIv2/f9TCYzPT396U9/utfrLS0t1et1pZS9SclutLP/HUXRxsbG9va2EKJYLH 7605 +2RwO1222t9czMTK1Ws5PTKpWK3QvX6/Vs5HQ6Hbsmtv+NeJ5XLpfz+fwrr7wipQyCYHV1dWtrq9PpbG9vd7tdx3GuXr166dKldDptjGk0GnZXW6FQKBaLzWazXq/v7OzYdLTvPUmSIAiq1WoURXbjXBAE7Xbbdd1CoTA1NZXJZLrdrs2eU5/LBwAAQPzg4pSPEMLeCVOtVsfGxowxYRjaw0YbjYaNn3a73W637YLGxMTExMSEEOKjjz6yIwHsxXoURYVCYXp6empqyvf9OI7DMIzj+JmT4uwCi71kt0s3/dNLtdZ2csCexrC1Zm+AsceV2ueyi0IjIyPz8/NhGNocsm/BjhCwCWRXt1qtVq/XM8ZkMplLly7l83kbP2EYplKpra0tIYTv++VyeXx8fGpqam1trV6vb29vR1F04Dg1+8Ly+Xy1WrWTHuwnubW1FcexXVuTUk5OTl69elUptbW1df/+ffvGtdb2FQohoiiycWX/0Bjjed74+Hiv11tfX19bW7OvM5PJ9KeTK6VSqZTNJEaDAAAA4gc4OH7sHfy5XG5hYcEej2OXX6IoWl1dVUrZMlFK2TLpX/fbv7RX/PZq267VCCG63a69R6Xb7c7MzFSr1QOfvT9KYWVl5Z//+Z+73W6xWMxkMplMxn7vITu4bCPt//P+hAY7cqD/LAd+ZT8w+p/GysrK1tbWxMSEXfXaPQTPflb9bzzw7fTZR7bl1o8uO1sviqIkSfqfp32K1dXVhw8fPnz4MI7jsbExO27ORo6t0/Hx8U6ns7q6Wq/X7fbCsbGx/gxuu+KUSqUKhUIQBMQPAAAgfoAD4scGjN0/Njo6atOlP3PPrjzY+Wb2BJ7FxUU7jqxWq0kp7ajlUqlkd8Hdu3fPHjm6sbEhhPB93z7mgdFlOyqOY3sCaRzHdg+YnVgdx7EdmPa0U2uSJLGzCuwtPf2H7d+rY9uj/+39J7U7/XK5XCaTUUq1Wq0PP/wwnU4LIe7du9dsNu38OvuV/UfQuxxSknahqf/Z2q9XSqXT6XQ63e12Hzx4IKXMZDIPHjyo1WrFYjGfz3c6nU6nY099td9iV67sJyCltIs8drR3vV4fHx+/evVqfw64HRBvN9rtn60HAABA/ACiXxr9dRIbFb1er58fxphqtdpqte7evdtoNP7pn/7J8zy7OqSUyufzMzMz9mSb+/fvb21t2WkHdhbC1NRUGIZPe147WTtJkvgxrXW327ULR3av3f57fvqX+3acWhzHdkyceLzYYh/W/mV/H51Syv6l/QLP86rV6tramu/729vb77//vl2/ajQaQoiZmRk70c6u0tgX0H/wpy062b9l/0f/T+xna2cwVCqVRqNx69ate/fuFQqFtbW19fV1x3HGx8d37/ezM+tqtZr9VMMwtHcfZbNZe3eTvTHp0qVLIyMj9ons+pt9Cyz7AAAA4gc4gL1BJQiCQqFglz6EEPZAm1KpZDdW2cKZnJycn59fX1+PoqjX62mti8Xi9PT0zMxMoVCYmZmxydRut+1ggEKhYM/3tPfS7JHNZiuVir0hp1gsCiGmp6ebzaZ4fMpQpVIJgmBkZCSTyexfynAcp1qtbm9va63t2TtKqWKxWK1W7d45Ozk6l8vZMdmpVMq+i5GRETtdQCmVyWQmJiauXr26ublpDxdSSpVKpXw+b4fFjY6OdrvdSqVijwnK5XIjIyOpVCoIgt3T5/ofWn/prFwu23WzQqEwMjISRZE9jadUKhWLxVarZW86Eo8PthJCjIyMVCqVJEm63a7W2saSTa9CoWD/xHVdu3xkj0atVCq7X4Z5jN9qAABA/AAHGBkZWVhY8H0/nU73K8V13Ww2Oz09nSTJ5OSkUiqXy6VSKc/zFhcXb9682e12Pc+bn5//9V//dTtpem5uLpfLBUHw8OHDzc3NXC5XLpevXr165cqVA++QKRaLMzMznU5HSjk2Nub7fpIkS0tLdjJ1JpOxr6pQKJRKpf2H3iqlpqenXde16zl2/sHIyIgxJp1O2+HanueVSqWFhYUgCPL5vF0PieO4VCpVKhU7mc2u8Ny5c+fWrVthGNoDfK5evVosFnu93qVLl8IwLBQKdndZuVyenZ3t9Xqe5+0vOill/9Yme/SQEGJ0dLRfTbaFxsbG7DAJ13U7nY790KSUMzMzdize6upqFEWZTGZqakoIobUeHx+3K0KO42QymXw+bwMvl8vtzsL+LUn0DwAAIH4AcWCEzM/PO45jVxXsH9qZaWNjY0EQFItFz/PsLUDlcrnVatl1Ers0USgUbJnYS/zZ2dlCobCzs2OXJkZGRp42scDWiN1ol8vlHMeZnJxMp9Ojo6P22e3BNXaeWxAE+0sjl8vZ/2F35dkXb4et2baxk6AvXbrUvx/GToKuVCp2rcl+faFQmJ2dtePpbIkVi0U7M21mZiaOY3ugqn3NSim7QNT/rHb3mF0vEkLYw0aFEKVSqT9DPI7j9fX15eVle19QEAT2Zh67AFUsFguFwpUrV6rVahzHnuflcjl7/0+lUtFaLy4u2mNkwzC0I/V2V2UQBDMzM/Y81mw2y7RrAADwwkn+jSyG3cbGxs2bN+3Y65mZmStXrvCZHIXWemtr6z//5/987949u+hkhx80m81XXnnljTfesNvtnvbt7Xb75z//+a1bt5aXl3O53Gc/+9mFhYWZmRk+WAAAMLBY+cHQy2az8/Pz9szQ/voJnklKmc1mr127ViqVarWanaNdKpWy2ezs7Gx/yeiQb7fHrdrZevPz8/0h1wAAAAN6/cPKDy6A/qAz9lY9rzAMa7Xa4uKiPSnVHsZqjzZ65jfevn27Vqv5vl8qlew+PT5PAABA/AAY3G4Mw9AeIJskSSqVyuVyvu8fcpZr/xubzWav17OD+OzxRHyeAACA+AEAAACAF4x/UwsAAACA+AEAAAAA4gcAAAAAiB8AAAAAIH4AAAAAgPgBAAAAAOIHAAAAAIgfAAAAACB+AAAAABA/AAAAAED8AAAAAADxAwAAAADEDwAAAAAQPwAAAABA/AAAAAAA8QMAAAAAxA8AAAAAED8AAAAAiB8AAAAAIH4AAAAAgPgBAAAAAOIHAAAAAIgfAAAAACB+AAAAAID4AQAAAADiBwAAAACIHwAAAADEDwAAAAAQPwAAAABA/AAAAAAA8QMAAAAAxA8AAAAAED8AAAAAQPwAAAAAAPEDAAAAAMQPAAAAAOIHAAAAAIgfAAAAACB+AAAAAID4AQAAAADiBwAAAACIHwAAAAAgfgAAAACA+AEAAAAA4gcAAAAA8QMAAAAAxA8AAAAAED8AAAAAQPwAAAAAAPEDAAAAAMQPAAAAABA/AAAAAED8AAAAAADxAwAAAID4AQAAAADiBwAAAACIHwAAAAAgfgAAAACA+AEAAAAA4gcAAAAAiB8AAAAAIH4AAAAAgPgBAAAAQPwAAAAAAPEDAAAAAMQPAAAAABA/AAAAAED8AAAAAADxAwAAAADEDwAAAAAQPwAAAABA/AAAAAAgfgAAAACA+AEAAAAA4gcAAAAAiB8AAAAAIH4AAAAAgPgBAAAAAOIHAAAAAIgfAAAAACB+AAAAABA/AAAAAED8AAAAAADxAwAAAADEDwAAAAAQPwAAAABA/AAAAAAA8QMAAAAAxA8AAAAA4oePAAAAAADxAwAAAADEDwAAAAAQPwAAAABA/AAAAAAA8QMAAAAAxA8AAAAAED8AAAAAQPwAAAAAIH4AAAAAgPgBAAAAAOIHAAAAAIgfAAAAACB+AAAAAID4AQAAAADiBwAAAACIHwAAAAAgfgAAAAAQPwAAAABA/AAAAAAA8QMAAAAAxA8AAAAAED8AAAAAQPwAAAAAAPEDAAAAAMQPAAAAABA/AAAAAIgfAAAAACB+AAAAAID4AQAAAADiBwAAAACIHwAAAAAgfgAAAACA+AEAAAAA4gcAAAAAiB8AAAAAxA8AAAAAED8AAAAAQPwAAAAAAPEDAAAAAMQPAAAAABA/AAAAAED8AAAAAADxAwAAAADEDwAAAADiBwAAAACIHwAAAAAgfgAAAACA+AEAAAAA4gcAAAAAiB8AAAAAIH4AAAAAgPgBAAAAAOIHAAAAAPEDAAAAAMQPAAAAABA/AAAAAED8AAAAAADxAwAAAADEDwAAAAAQPwAAAABA/AAAAAAA8QMAAACA+AEAAAAA4gcAAAAAiB8AAAAAIH4AAAAAgPgBAAAAAOIHAAAAAIgfAAAAACB+AAAAAID4AQAAAED8AAAAAADxAwAAAADEDwAAAAAQPwAAAABA/AAAAAAA8QMAAAAAxA8AAAAAED8AAAAAQPwAAAAAIH4AAAAAgPgBAAAAAOIHAAAAAIgfAAAAACB+AAAAAID4AQAAAADiBwAAAACIHwAAAAAvO5ePAAAAAIA24uO2/qip10N9u6V3/62FrKr66mpOzaeVP8yrJ9IYw08aAADmIyAzAAAgAElEQVQAeGnVI/OjreT9WnyUL17Iqi9U3CsZpSTxAwAAAGBItBLzf6/GNxrJ835jzpVvjbnX8s5wJRDxAwAAALyMbjSS95ajkzzCeKD+YMYreUMTQMQPAAAA8HLRRnxrKdxzY8+xfXnc+3zZIX4AAAAADJZWYr55L1rt6VN8zOsF53cnvcHfAkf8AAAAAC9R+bx7J2zGp58AC1n19pSXdQY6gIgfAAAAgPI5BTlXvnPZH+T+4ZBTAAAA4OLTRnzzXnR25SOEaMbm3TthKxncxRVWfgAAAICL75v3T23CweFyrvy9aW8uPYirLKz8AAAAABfcjUZyPuUjhGjG5ht3w3sdPYCfA/EDAAAAXGT1yJzwPJ9jGMz+IX4AAACAi+w/rkQv5HkHsH+45wcAAAC4sO519Dfuhkf84vFAjQWPZrXdaCSn8gK+Nu8Pzv0/xA8AAABwMWkjvv5x75kT3hay6q0xr+xJXz3xvUtd/e2V+OTHoQ5O/xA/AAAAwMX0zGWf8UD9zoR7eJnc6+i/fnDSGdkD0j/EDwAAAHAxvXsnPGTd5o2y+9aYq45wJKk24j88jE64EW4Q+oeBBwAAAMAFVI/MIeXz5qj72+NHKh8hhJLi7Snv7SnvJK9nEOYfED8AAADABXSz+dTSeHvK++Ko+7wPeL3gfG3ez7ny2C/phfcP8QMAAABcQP+1fvAutTfK7vWCc7zHnEurdy4Pcf8QPwAAAMBFE2px4J63hax6a8w9ySNnHTm8/UP8AAAAABfN3YPqIufKt6c8JU/64MPbP8QPAAAAcNHUwgNGOr815mYdeSqPP6T9Q/wAAAAAF839fV0xHqhreecUn2IY+4f4AQAAAC6aO+29UfE7E66Sp/wsQ9c/xA8AAABwoYRaNOMntr2NB+qMDhgdrv4hfgAAAIALpZ3sveHnfzzZhLcL0z/EDwAAAHDBzafP9rJ/WPqH+AEAAAAulD3TDhayyj/7q/6h6B/iBwAAALjIPlt0zueJBr9/iB8AAADgIptNn981/4D3D/EDAAAAXCid5Im/LHnyPJ99kPuH+AEAAAAulN33/FwvOOf/Al5I/7QS85NaQvwAAAAAL6nz3PP2AvunlZh374TfWY1+sBETPwAAAMBwayVmtWduNJL+f261dD0y2hz2XWVfvqgXfCr988zFHCHEvY5+905oz3X9/kZcj576ibj8GgEAAAADa7VnPtxJfrmjV3tPXQZZyKrPFp3Xcs7+kdbVFxc//f7pl8kxfGc12gzNl6rugdO6tRE/qyffWY36f/K1ef+Qe5ykMYZfKQAAAGCgaCOWuvrbK/EhzbPfm6PuFyru361ENxqPFkz+j9dSSr7g92L3pB27f4QQOVe+Nebuvn9JG/HBTvLdtXj3w35t3p87dJsf8QMAAAAMlnpk/mopeq7s2ZMK/ST4P19PDcI7Onn/CCHGAzUWyNm0+rCZ3G7t/XCeWT7EDwAAADBA9u/jOmEtvHPZH5C3dir98zRHKR/BwAMAAABgcMrnW0vhaZWPEGIskIPz7k4+/+CE5UP8AAAAAAOhlZivf9zbv5vrJG40kjM6LXRw+ufo5UP8AAAAAANRPme0JewYp4UOUf88V/kI7vkBAAAAXixtxJ8vhsceb3AUb466XxwdoENuTiX2nrd8BCs/AAAAwIv1raWzLR8hxPc34h9sxIPzlk++/nOM8iF+AAAAgBfpBxvx6d7n8zL0z/HKh/gBAAAAXph6ZL5/jkFyMfrn2OVD/AAAAAAvzF8tRef8jAPYP7837Z1P+RA/AAAAwItxq6XP+lafoeifubR6e+pI/XPC8iF+AAAAgBdAG/G3D4+67DMeqOsF53rBGQ9O5+p90PrnWt45h/IRQrj85gEAAADn7IOd5JmDnt8ou9cKaiJQ/q5r/lCLlZ7+aS250UhO2D9CiAGZf62keKPsvl+Lz7R8iB8AAADgBfjh5mHpcr3gfKnqlrwDJgH4Ssyl1Vxafanq/tVSdJKNcwPVPzNp+X7tbMuH+AEAAADO22rPHBItfzjrv5J99rV+yZPvXPZvNJL3lo8/NWGg+uesy4f4AQAAAM7bhzsHL/vkXPlHs/548Byjn68XnNm0OskS0ID0Tyc58/IRDDwAAAAAzpM24mln+7xz+fnKxyp58n+95C9kj39h/8LnH2gj/n4zPuvyIX4AAACAc9V4ypyDr837WUce7zGVFF+ZGeL+2T/+4SzKh/gBAAAAztX9zgH7094cdU96go0UX5nx3ygff/faC+yfPeMfzqh8iB8AAADgXN1s7o2fhaw6lVtulBS/Pe6+OTpk/fODjXj3DUtnVz7EDwAAAHCu9p/P868nvFN8/C+ODlP/3Ovo3XdAnWn5ED8AAADA+Wkle2/4uV5wDjzP52Xon3pkvnE3PLfyIX4AAACA8xPtu9/nS9UzmTE9+P3TSsy/O9/yIX4AAACA87MePrHys5BVp77sMxT9E2rx7p2wP+HtfMqH+AEAAABORysxP6klh39N98ltb//DGR8tOrD94yvxuZJzzuUjhHD5NQUAAABOXj52KaOTmKOPbptJnflFv30x3z9uw9hv/OIZRJp9zMtZdW7lQ/wAAAAAp1Y+z6yF3XOu3yi7Sp7Hyxvw/jlPbHsDAAAATuSb96L+7SviyLvFrhXO71J8uOZfEz8AAADAILrX0bvP6Dx6LZzDnjf6h/gBAAAATs23V+Kj10L/hNOFrDqfPW+D0D+txKz2DPEDAAAADLF6ZPYv+xylFl7POS/kBZ9//9gbot6907vX0cQPAAAAMKy+tx4frxbmMy/sOvw8+6cefTIK4ht3w/BF5w/T3gAAAIDjqEemv43t8FqwyaF37fzKvdDL8JPPf9sIze9Oeofv3LvX0d+4G/b/8mvzvv+iV16IHwAAAOA4nrnss6d/PlP8ZKtb1pEv9sWfsH9uNJJWYt6e8g58I6EWf7cS7S7D8zzJ9BDSGMMvLgAAAPBc6pH5s497z/UtC1l1u6Xt//jqrD8I7+IHG/H3TzbD7e0p71re6S8BhVr8Yjv5zmq0+2sGpHwEKz8AAADAMRx92afPlo8YgGWfvhOu/wgh3luOfhgkY4EUQqz1Dhj/MDjlQ/wAAAAAz62VHOlun6Fw8v5Z7enVp6yBDVT5CKa9AQAAAM/rZ7UTlU8rGawbT044/+1pBq18iB8AAADg+YRanPA+mdst/YOTPcLg988Alg/xAwAAADyfH22dQrcc47TQIeqfwSwf4gcAAAB4Didf9rnw/TOw5UP8AAAAAM/hVJZ9Brx/FrLHb4RBLh/iBwAAADiqU1z2GeT++cqMf7z+GfDyIX4AAACAozrdZZ+B7R8lj9M/g18+xA8AAABwJNqIn9b3TrjOufIkm8QGuX9+f9rPuUc9jHUoykcIIY0x/CoDAAAAh7vRSN5bjnb/yZuj7n834ioptBFLXf3tlXi1p0/yFG+Oul88g/N2jq0emT/7uHdhyof4AQAAAJ5NG/H1j3vN+NGV80JW/esJr+TJPV/zs3ryndXoIvXPN++Ht1v6YpSPYNsbAAAA8Ewf7CT98sm58isz/p7yEUIoKT5fdr42/xy7xfYbtP1vr+ecC1M+xA8AAADwDNqI7659EiTvXPbV0+tmLq3euXxx+ufVnLow5UP8AAAAAM+w1NX9ZZ8vj3tZ5xlhk3XknywEJxmEMDj904jNhSkf4gcAAAB4hp/WHg15y7nyvyk5R/kWXx3/tJyB6p/tyFyY8hEMPAAAAACeqZWYDxp6IiWf66JfG/GtpWcMDDjcC59/8N5ydKORXIzyIX4AAACAMzTU/XOvo79xN7ww5SPY9gYAAACc4dW2FF+d9d88Qb28wP1v316JL1L5ED8AAADAmfviqDt0/XOjkew+s/UClA/xAwAAANA/e93r6PeWowtWPsQPAAAAQP88oZWYv35wAcuH+AEAAADonyfK5907Yf9co4tUPsQPAAAAQP88oo24wOVD/AAAAAD0z+M2kOL3pr2LWj6Cc34AAACAF+IHG/H3T9AwZ3f+z72OFkJcvPIhfgAAAAD652XBtjcAAADgxRjG83+IHwAAAAD0D/EDAAAAYPD6p5WY1d7LdQsMewQBAADwUgi1aCfmfkcLIZY6pp3sve5/NaeEEGOByrki68hz7h+bMcfun/6DHL187FTrCznV7WkYeAAAAIALSxux1NV3WvqXO3q1p5/re68XnNm0ejWnSt45hdC5zT/Yc5Lp//5qyn858of4AQAAwAV0r6M/aOj3a6dwP0zOlZ8rOZ8pOudQQSfsn4Ws+sqMr+QzPplv3A37f8nKDwAAADCUtBEf7CTfXYv7yxqnaDxQvzPhnnUqnLB/xgP1BzPegZ2mjfgvm088+EtVPsQPAAAAyJ6BS6AT9o8Q4o2y+6Wqu3sz262W/tuH0e4P52UrH+IHAAAAF8Fqz/zNcvS8d/WcxEJWvT3lnd1chJP3z+FewvIhfgAAADDcQi2+tx6fyr09x/Dlce/zZWfo+uflLB/iBwAAAENstWf+4n541vvcDreQVb8/7Z/RtLSz6J+XtnyIHwAAAAyrn9SS76xGg/BKcq5857J/RlvgTrd/XubyIX4AAAAwfLQR/+FhdKORDM5Lyrnyj2b98WCg++clLx/iBwAAAMNXPt9aCm+39AC+trOri5P3D+UjhFD88wMAAIBh0UrM1z/uDWb5CCH++kHUSs5kaeGLo+71wvEnK1A+Fis/AAAAGJryeffOM8YbLGTV6zlnPqOCJy/173d0JxH3O/pOW5/pgISzu//n2EtelA/xAwAAgItTPtcLzm+OuFVfKnmkh1rumo+a+owGZC9k1VdmfHUGt/9oI77+ce+54o3yIX4AAAAwTA5Z9LhecL5UdUuePN7DftzWP9qKT30f3Rtl97fH3bP4KOqR+bOPe5QP8QMAAICXqHxyrvzjef942bO/KH60lZzuQtA7l4MXO/yN8iF+AAAAMGTeWz5gqvVZbC0LtfjeenxaCZRz5Z9eCc5i81uoxb+9/YzNb5TPgfhEAAAAMLhutfT+8nlz1P3q7OnfVOMr8dvj7v92JVjInsJFcjM23107k3uKfCUuZxTlQ/wAAADg4mgl5m8fRnv+8Mvj3hdH3bN70pInvzrr/+Gsn3NPWlfv1+J6dN7brCgf4gcAAADD573laM/mrjfK7ufLzjk89StZ9c5l/+RLQN9bj8/zE6N8iB8AAAAMnxuNZM+Qg/FAvTXmntsLyDryq7P+21PeCd/FuS3+UD7EDwAAAIZPqMWeG2ZyrvzqnKfkeb+S6wXnncvBSbbAncXiTysxlA/xAwAAgIvgR1vxng1vb425WUe+kBczHsiTbIG70Uj2t8pJ1COzZ02M8iF+AAAAMJRCLfacY5Nz5bW88wJfUtaRX5k5fv/8rJac4ov5jysR5UP8AAAA4CL40dbefWKfKzlKvuBXpaT46qz/5rEGzf20fmrxc6uldy/7UD7EDwAAAIbV/mUfIcQXKu6AvLwvjrrH6J9mbO519MmfvR6Zv7wfUj7EDwAAAC6CXzX3LpK8UXb9QbpoPV7/fNA4afy0EvPv7lI+xA8AAAAuih9u7o2fq7mBu2Q9Rv+8X4v1CaYetBLz7p2wPwSC8iF+AAAAMNxWe2a1t3eFZColB/ClHqN/1sPTmflG+RA/AAAAGHo/P2gwwIuacH2U/rleeI4ZdHfbx9/5lnXkO5f9nCspH+IHAAAAF8EHO8lwveDfnfSOPv/6w+aJ3l3WkX96JaB8iB8AAAAMvVZi9hxsOgQX01L8/rSfc4+0NnW7pbU56dOB+AEAAMDQW+6aYXzZvhJ/PO8f8YsbseEHTfwAAADgpY+fp5yEowe+F0qefHvKO8pX3j+N035A/AAAAGC4/XLn4DAYitWS6wXnuYYfgPgBAADAy2v/kGvrtCZEn7XfGnf5IRI/AAAAwPF91ByOrWJZ59mb32422fZG/AAAAODl1kqeurzzfi0elndxLe8ccfIbiB8AAAC8pKJDV0TuDcmcACXFfz/C5jfiBwAAADiu/29jaBZ/fr3I2APiBwAAADiu2y1dj4Zj7IGvxJujLP4QPwAAAMBxfW99aBZ/PvP0xZ9Xc1x+Ez8AAADAoW40ktXecCz+lDxmHhA/AAAAwFMUjjAk7W+WIz0c+SMWsgdfZqccuoj4AQAAwEt+VXqEKFjt6Q92kqF4O/Ppgy+zqz7xQ/wAAADgpTcePPvS9L3laCg2v1WeEjnsiCN+AAAAAHEpc6RL07+4H4Z6KN/g0/bCgfgBAADAy2UmfaRVkWZs/v2DcBjf4Os5jgAifgAAAAAhZtNHvTS93dI/GJ5jT/smUux5I34AAACAow186/v+RjzI/bMV7r0xKefKmRTX3sQPAAAAIISSz3dXzPc34p/UBnT42y939t6W9LmSo1j4IX4AAAAA6wsV97m+/jur0a3WwE0/aCVmtbf3Vb2e54Yf4gcAAAB4bD793Fenf3k/HLT9b8vdvXvexgM1HrDuQ/wAAAAAj/nqOPOgB+3+nx9t7X0xvznCsg/xAwAAADzpeXe+9fvnP63GegCOP73X0bef3ImXc+U19rwRPwAAAMAex9j5Zr1fi7+1FLaSFxxA317Zu+zz1pjLqAPiBwAAANjLV+LNUfd433u7pd+9E672Xlj/3GrpPaMOWPYhfgAAAICnOt7ON6sZm3fv9H5SS85/C1wrMX95P9zzh//TpMeyD/EDAAAAHMxX4nrhRKsl31mN/nwxrEfnF0ChFu/e2Vs+C1n1SpbrbeIHAAAAw6+VmHr0yX9O8ZG/VHVP+AirPf1nH/d+sHEeUxC0Ef/+QdiMn3imnCvfnvL4JRko0hjDpwAAAICjqEfmZlN/2ExuP+Vo0ZwrP1dyXs87Jz/W5j+txu/XTmGAdc6Vb4251/LOGW0/00Z8aync/4H84azPsg/xAwAAgCGz2jM/ryfPlSI5V/7xvF/yjh8c2oivf9zbs5xybOOB+p0Jdy59yjXSSsw370V7hhwIIa4XHJZ9iB8AAAAMk3sd/e2VeP/F/RF9edz7fPn4d+/caun9IwROwq4CvZZz/NOIoBuN5L3l6MBn+dMrAXMOiB8AAAAMh9We+Zvl6NjZ03fC3V/vLUc3Gsmpv7s3yu61gjreQpA2Yqn71CbMufKdy37WIX2IHwAAAAw8bcR3107nfhsbA3+yEBx7peV0N7/tf23X8s7VnJpPq6O8wlCLH23FP60nh7yef/NKQPkQPwAAABgCqz3zF/fD042Nt6e8k4yubiXm3TvhGfXP7hC6nFGv5lTRkwX3iXpZD00tNIeMeej72rx/6rcVgfgBAADAKdNG/JfN+Psb8ak/8gnjxybZu3d6A/4BUj6Djx8PAAAAHs1rPovyEULcbJ70xqHxQH5t3qd8QPwAAADgRFqJ+frHvWfu6Tq2V3OncM05l1aD2T85V75zOaB8iB8AAAAMQfmc9R01C6d01ucA9o+d7XbyE11B/AAAAGDoy2c8UKc4/Wwurf7NK8F4MBAXsQtZ9adXmO02TBh4AAAAQPk89eI+68i1njnJaT9nMfr5dIdxH88Jz28F8QMAAIBzoo3488XwwKoZD9Rvjjiv5ZzdR9+EWnxv/bl744QnnB7uXkf/9YPorEdgH/j5/MGMV/JY8CF+AAAAMAy+eT/cP+Eg58o/mj3sDpZ6ZL63Ht9oJEd5ijdH3S+OumedcGc0nvtpTj62G8QPAAAAzs8PNg4IhoWs+v1p3z/COs0zl1yeGVGnK9TiR1tnnkBvjrpfqLg+t8wTPwAAABgW9zr6G3fDPX/4Rtl9a8xVR66VUIu/W4kOXAI6ekSdegL9qpn8cDM5yR1KB4bc50oO2UP8AAAAYMiEWvzb2709izZvlN3fHj/O/rTVnvlwJ/lpPRFCXM6oV3NqLFAvfO7zas/cbev/Wj9pBb1Rdq8V1ExKKe7uIX4AAAAwdN5b3rtcs5BVX5nxL+T1fSsxm6FZ6Zr7HX3E+5SuF5zZtJpISZqH+AEAAMAQ27/hLefKP1kIXp4NXfXo0aXvemi6iRFCpBxZ9aUQwlOCE3suPJePAAAA4GWgjfjrB9GeP/zjef+lupWlP5+aQdUvJ+7bAgAAeCl8sJPsudXnzVGXBgDxAwAAgAtFG/HdtScmQedc+YXKEGwCWu0ZzV0aOCVsewMAALj49i/7vDU26LObb7X0/7sWr/b0l8e9z5c5VxSngJUfAACAi2/Pso8Q4rXcoOfEckfbWdXfWY1Czc8QxA8AAACeZbVn9iz7LGTV4M85uJz95CX+3UrEzxHEDwAAAJ7h5/W9R9x8tjgEu8hmUp9cqd5oJK2EW39A/AAAAODptBHv1/bueZtND8FFoJLijfInN6j/rJbw0wTxAwAAgKdaDw9YMMkMyWmeV3OfXKx+fyPmzh8QPwAAAHiqD3cOWDAZloNNq/4TkfaLbRZ/QPwAAADgKX65M8TLJXvOYP37zZgfKIgfAAAAHEAbYadFD6+FXTPf/n/27jU2jutA9PypR1eT7FaLjyZbokhKpCzZjobx5saWIsS2oiQXTuzNGIkwQQZRDFwhgKEPEwTGJgvMh8V+GmDg3WCQD6O9QCBgbWcMDKDxTAb2jGbtoWVrrqNIc22Ho4llRaT5MM2m+Gx1s9nVVXX2Q8c02ez3s6r5/30wbKlJVhfp7vrznDonbsloimUPQPwAAABgh5gl80WRVxzcvjZDzll8APEDAACw2+Vc7aBAFLlQ9/bbfq6vEj8gfgAAALDDhu35+GnbvjBd3JJs+APiBwAAANlmk7k7YS3tmX7IWvBNCDG3QfyA+AEAAMB263kGSfJFkSfMJdnuB8QPAAAASnNtxXI8mz9TxA+IHwAAAJRudsMbCbHz9qSJBPED4gcAAAAle3PRGxuGeuj2JBA/AAAAcKOJhGN6YQQl5+1JqxQRiB8AAACU7r01D+yZ89E6k9xA/AAAAKA6r0XTLh/8MR0RTRE/IH4AAABQTHjHJjlZ/nE+7ebjX2F6G4gfAAAAlKK7WPyMx+xoyr2B8T9Xbb6JIH4AAABQXJumFH3M382l3bnnj+mIaysW30QQPwAAACiuv614/ERTzttLbmyMW/G8wz4hXeGbC+IHAAAAnwloJUXC2KJ122U7hzpSXF3KGz8q7QPiBwAAAFlGQ1opD/vljOmqm39u3rPzrfMW8XMFC+IHAAAAOxwNlnq99+KMmbBd0T+mIy7N5V2Grs/PuA+IHwAAAOxwf1Ar8ZFxS16YdEX/FF6Au/ScA4gfAACAXcRQxUig1Es+N/TPeMwejxVa4bqPaW8gfgAAAJDTyW699AfHLfn87dR0sjnrH0wnnQIT3jJ6Daa9gfgBAABALoc71GCZa0NfnDJ/s9LoDUYTtrw4ZRZ+zGhIY6k3ED8AAADIc8GniEc6tXI/6rVo+tJc2mzUCFDClhcmzaIPe6RL4xsK4gcAAAB5lTXzbdN4zP75RKoBWwBFU/LCpBm3itxrFNSVgTYuX0H8AAAAID9DFU9GfBV8YNySv5wxL82lV9P1WgXhdsK5MJkqWj5CiEc6mfOGqihSSs4CAABAy3Ok+Nmdkhojn9Nh/eEuLaApNTykVz5JF17bbasfH/Z3+qgfED8AAADFRFMyqIsaXrt7znTSKbqiQFEjAfUrYX2gTa1mEMZ0xK24fXnBKj3GRgLqM4MGP8YgfgAAAEq67g/qyvlhYzf3z6W5MkZaCgjqyuM9+rGQWu7JNB3xzrI1tmiV+xUZ9gHxAwAAUGr5bF61P3fYv2tvHal+8tvOCjq2R7svqPYaSr44MR2xbsuZpDOblNdWrAq+yoku/ZsRnZ9kED8AAACllk/GmX7faGj3rpi8mpZ/dSdVp08e1JXhjm1Lak2uO1W2VlBXfjTiN1ioC8QPAABAWeWTuZj+3+7z7+bTMh6zL82lvXK0uzxWUUMUNAAA2F3lI4SIW3I66ezmMzMa0k6HvTGLbCSgUj4gfgAAACopn4xX561dfn5OhXX390/Er54dYIU3ED8AAACVlo8QIppy6rdrJ/1TE0FdeWbIx66mIH4AAAAqL5+MN+5anCs3988PD+7qRclB/AAAANSmfIQQ4zE7YbPyk0v759xBg119QPwAAADUoHwybqzYnLRM/5zp97mqfIbauUxF7bHUNQAA2KXlk/HnR9vYQCZjNS1/MWXWcP/TCgR15QeDRsTPmA/qgv/XAQDA7i0fIcStOIM/f9DpU3404h8JNO36cCSgnh+mfFBHjPwAAIDdWz5CiKCuPHfYz5JiW91OOP/wSbrBQ0Cnw/pjPTrfCBA/AAAAdSmfDO4w2cl0xD/Op8djjRgWi/jVPx3wsbwBiB8AAID6lk/m4vv8MDtp5rCalm/cteqXQEFdeaJPHw1pnGoQPwAAAHUvn4zzw35uNWlkAkX86qM92rE9GvPcQPwAAAA0rnyEEKMhzVVrPbuQ6Yhbcfvqkh1NORV/kqCuPNKpPbBHIzVB/AAAADShfDJ+csQf0LgiL6mCppLO7+POR+tOiSE0GtKOBtXBdpUbe0D8AAAANLl8hBCnw/qpsM7pLddqWgoh7ppyw952VTnYrgohQrrCxDYQPwAAAI0rn6Cu/PCgUXQHTzY8BVob/38DAIDWL5/zw0anT3mir8jADhueAsQPAACAt8snczPPsT1FllS+vGA5zIkBiB8AAABPl48QQlXE6YJ39cQtObvhcLYB4gcAAMDD5ZNxsrvIzLdX5y1OOED8AAAAeLt8hBCGKk50FeqfaMrJLF8GgPgBAADwavlknOwucufPG3cZ/AGIHwAAAI+XjxCi06eMhgr1z3jMNrnxByB+AAAAPF0+GY90FRn8eWeZwR+A+AEAAPB4+QghhtrViL/QVdDYImteA8QPAACAx8sn4+vFNjy9eY8NTwHiBwAAwOPlI4Q43KEG9UKPv7zAzDeA+AEAAPB4+QghVL4RMxAAACAASURBVEU80Vdkw9PpJOseAMQPAACAl8sn4/5gkWUP3lxk8AcgfgAAADxePkIIQxWnw4UGfyYSbHgKED8AAAAeL5+Mh4uvec2yBwDxAwAA4PHyEUIEtCIbnl5bsdjwFCB+AAAAvF0+GY/2FFnzmg1PAeIHAADA8+UjhIj4lcIbnl5ftdnwFGgNOqcAAADs2vLJeGqfXuBg4pa8s+4cCbTUr4wTtpxIOO+u2RMJJ3NihzvUsKE81qOrCj+eaFmKlPwqAwAA7N7yEUI4UvzsTipu5b0oivjV88NGa5x8R4rLC9a1FSvfSf7uAd9QO5OD0Jr4yQYAALu6fEQJG55GU05rbHiasOV//8jMVz5CiLglL06Zv1lhjTsQPwAAAC1XPhnH9hRZ8/q693sgYcvnb6eiqeIV91o0zQZHIH4AAABasHyEEKpSZMPT8ZidsD3cA44UL0ynS3/8r+bT/MSC+AEAAGi18sk42V1kIagbXh78ubxglTLms2ki4TD4A+IHAACgBctHCGGoovCGp2OLXt3wNGHLAvf55BOziB8QPwAAAGWqoHyEEI0sn4yv9RYZ/LkV9+TgT2Y963KtMfID4gcAAKBchW+nyencwUaXjxCi01dkw9PLC5YXz/+7a6zeBhA/AACgIR4otpbazlhq1lYzT+0r1GlxS3pxzevKRn72+tjuFMQPAABAmSL+IiMqW42GtFPljxTVylC7GtQLXfS/Om/tku/aPj8XiiB+AAAAyvfFzpIGf4K68q19vuYeatENT3fDMmgRv2pwnQjiBwAAoALHQiVddTy939f0a+6iG56+cddjgz+FV7GrJlYB4gcAACBbQFNGAmrRa/QjgeZfnJSy4am31rzuKHPpiJGA+jDxA+IHAACgYkV3EX2kS/PKob6z7KXBn6/16oVvZMpypt+nstgBiB8AAICKHSy4gFvErzZrhbedim54en3Vdrxz44+hiqf3l3onVVMWGQeIHwAA0FIMVZzoyjui4rabTApveBq35M17Xto850hALbrb0khA/ckRv3sSFCB+AACAhxVY9uBgh7suS4pueHp1yWM7h54K6z8+7M/5pIK68mTEd3aAMR+0OJ1TAAAAGmagTQ3qStzKMWMs4nfdZfdT+/SLU2a+v42mnOmk461xkk6f8uwhI2bJmCXX0lIIsden9BgKzQPiBwAAoMZURTzSqY0tZq8WUMFazA2Q2fA0Z6plXF+xPTdJTFVEp0/p9CminZ9H7L6XIE4BAABopAdy7aIz6NaEKLzh6XjM3g0bngLEDwAAQCUi/hz30rS7dVOZohuevr9m8z0FiB8AAIDcdi7s1ud36TVJ0Q1PxxYtb214ChA/AAAAjbNzzTe/iy9JHi629eqtOIM/APEDAACQS0Arsoq024628HoMlxcshxt/AOIHAAAgp6/3eWnJ2Ud7imx4OrvB1DeA+AEAAMjloKdWiM65SMNWr85bfE8B4gcAACAHQ3Xp3j75PLWv0OBPNOWw5jVA/AAAAOT2yJaFBGaSbp82NtCmBnWlwAPeuMvgD0D8AAAAFMuJZdPtwyaqUnzDU9a8BogfAACA3DnxyKcb/iyaHpgzdn+wyDy9d5YZ/AGIHwAAgFwe2POHnBiPeWCrHEMtvuEpa14DxA8AAEAOmVXURkPajw/7PXHARTc8vXmPDU8B91Kk5BcUAACgaUxHGJ76ZeyluXSBcaqIXz0/bPBtBdyJkR8AACCEEM1aqdnw2sVI4Q1PoylnOsm6BwDxAwAA3Go66fzVndSVRe7XL67ohqdvchoB4gcAALi2fC5OmUKIsUWL/ilF4Q1PJxJseAoQPwAAwMXlk0H/lKLohqfvr7HsAUD8AAAAF5cP/VPq9VOxDU/HFi02PAWIHwAA4OryoX9KVHTD0/cY/AGIHwAA4PLyoX9KUXTD07eW2PAUIH4AAECzJWxZuHzon1IU3vA0bsk760x9A4gfAADQVOmSr8npnwICmjIaKtQ/ry9w6gDiBwAANJWvnPd/+qcANjwFiB8AAOBqAU0p6/H0Tz5FNzy9vsKyBwDxAwAAmqrwNjX0T+kKb3g6HrPZ8BQgfgAAQDMNd5R9DUD/5MSGpwDxAwAAWhD9k+Naig1PAeIHAAC42dFghdcA9M9ORTc8vRVn8AcgfgAAgAfRP1mKbnh6eYENTwHiBwAANEmfv6prAPonS9ENT2c3mPoGED8AAKAZ/FVfAtA/WxXd8PTVec4VQPwAAIBm6Chzqx/6p6iiG55GU0x9A4gfAADQcEaNLgHon01FNzy9usSJAogfAADQDOXuc0r/FFV0w9OEzeAPQPwAAICGq2CfU/qnsKIbnt5YYc1rgPgBAAAeR/8INjwFiB8AAOBOg+05LgMK71dD/xR1bE+RDU/fW2PwByB+AABAY7Xnukp/aK9G/1R1aaUUCci3ltjwFCB+AABAY+315b475VRYp3+qcbK70NmLW/LOOlPfAOIHAAA0UCjXrfl3TUn/VMlQReENT19fYHEIgPgBAAAN5Mt1FbDx6VrM9E81vtZbZMPT6SSDPwDxAwAAGiWg5Rj5WTY/ux+F/qlYp08ZCRS6yrrOmtcA8QMAAJpr0dx2Mz79U7GvhItseLqaZt0DgPgBAACNUnh0gv6pxlC7GvEXOr3vs+Y1QPwAAICG2TnzbTxm0z+18miPVvi0sOY1QPwAAIAGCRtKiY+kfypwbI8W1POe4XMHDVXhZxAgfgAAQEN054qfhC3pn9pcZini8R49X/kMtXMZBhA/AACgqdL5F2Gmf8r1v+zVKB+A+AEAAM03mOsSPFVwBxr6pyyGKrJOF+UDED8AAMAtFlJF9t+kf8rycJdG+QDEDwAAaLKQXuEd927oH0eK2wnH/Sc5oCmjIY3yAYgfAADQ1OuAXO0zmyxpAebm9o8jxUuz5i9nTE8MIn2tV6d8ADfQOQUAAOxmQV2JW9tqZ90udfeZU2E9kzEV98/mJ6mgfCYSTjWfpJE6fUqnj2WtgebjNxAAAOxqwx3ZFwMJu4ytNxs//rO1fCr+JACIHwAAADFR5o00jeyfneVD/wAgfgAAQEkGa3EjSmP6J1/50D8AiB8AAFBce45NOMub+daY/ilcPvQPAOIHAAAU0abluBE/XdEK0vXrn1LKh/4BQPwAAIBCeo0c8ZOqdPucevRP6eWz+UkqGLkCQPwAAIDdaCFV+eahte2fcstHCHHuoBHQWFcaAPEDAAC2q8f+M7Xqn8rKh71EAeTDJqcAACDbbFKOhqrtH1H1/qdTSYfyAUD8AACAmon41ej2eW7rtbhnpib9Q/kAqCFeIwAA2O36/Nkz32q1YECV898oHwDEDwAAqK+yJps1vX8oHwDEDwAAKMnRYH2vB+raP5QPAOIHAABUxXRq+dnq1D+UDwDiBwAAlGFvrtWu12u9T2jN+4fyAUD8AACA8oT0Bm0JWsP+oXwAED8AAKA2ZpJOPT5tTfqH8gFA/AAAgEp0+pRGfrnq+2cy4fBdA0D8AACA2lg2Zf0+eZX9M7ZoXal071QAxA8AANjVRgLZlwSL9YwfIcRjPXqwinuN6B8AxA8AAKhEQGvozDdHipdmzbhVVV/RPwCIHwAAULaOHfEzHrPrWj4Ttbhvh/4BQPwAAIDyDLQ3aOSnhuVD/wAgfgAAQM1CxeXlQ/8AIH4AAEB5+vw5LgliVi3rp07lQ/8AIH4AAEAZ/HW+Iqhr+dA/AIgfAABQKl+uK4K7NVrtugHlQ/8AIH4AAEBJci51vWHXIH4qKJ/RkEb/AKgHnVMAAABySla92HUF5XPuoDHUroYNZazShsl84KkwFzkAsjHyAwAAhMg13jKTrGqiWsXlk0mX01XUC+M/AIgfAADQINWUTwb9A4D4AQAAdRE2sm/7mVyvcOSn+vKhfwDUA9NhAQComdW0TDliIeUIIZZNufjpamlHg6oQok1Teg2lQ1MMV/7usXtH/MQr2uenVuWz2T/i09t4Kusfwf0/AIgfAABqIpqSU+vOB3G7wOX+eGzb0gEjAfWBoHY0qHb6FPc8kbZcC745UqjlHGNty4f+AUD8AADQfAlb3lixr6/aFQyPTCSciYTzWlSMhrRHe/SI3xUJ1GvkOIyYJUsvtHqUD/0DgPgBAKBpVtPyjbtW1mBOZcZj9njMjvjVp/bppTSAm9WvfOgfAMQPAAAezp6toinn4pQ5GtK+vd+nNm8QKKTn+Np3zZJGfupdPrXqn4f2aq6aagiA+AEAwHUcKd5essbquXTYeMxeSMlnhnwBrTlX5zm7a8OWpZycBpRP9f1z7qBB+QC7HEtdAwBQRDQlf3YnNVb/RZOjKefCpDld3dai1Yj4sy8Mlk3pnvLZ7J8K1r+u8osCIH4AAGhxjhRXFq0Lk6nKFn2uQNySF6ea1j99O5ZeWCwYP40vn8r6h/IBQPwAACCKXtmPNWOXzGb1T0c5M+6aVT7l9g/lA4D4AQCgkIQtf3YnVdaVfW397cfphC0b/EUH2rPjJ9/qDs0tn9L7h/IBQPwAAFDIalpemDQbNtUtp7glL0yajnTj+XFD+ZTSP5QPAOIHAIBCppPOX91JNbd8Nvvn8kJDJ931+XNcGGQNQLmnfAr3D+UDgPgBAKBI+VycMt1zPNdWrGiqcRmWq31E2nFv+eTrH8oHAPEDAEAhCVu6qnwyXpxp3OS3nAsepBxXl8/O/qF8AOTDJqcAAPyhfC5Mmi48sLglb96zR0NaA76WkSsZFlJOxK+5uXw2+6ddU/a1KZQPgHx4dQAAQDhSvDCddsN9PjldXrAaNvgT1JWc58fl5ZNxvEujfAAUwMgPAADilU/S0VS1q1pH/GqfXwkbSrumzHy6S89CSlb/mRs5+DPcoWYtb/3umv3umu3+8gEA4gcAgCLGY3a+3WyKGgmoJ7v1/jYlsP1umeNdn4VKwpZzG/K3a5V/FSHE5QWrMfGzU7mbHVE+AFxLkVJyFgAAu1bCls/fTpX7URG/+vU+/WC7apRzke9IcfOefXnBqmx+XWOiYjxmX5pLV/zhlA8AN2PkBwCwq5V7oR/UlSf69MoGYVRFjIa0+4PaO8vW2GLZG/jcjDku7wrKB4DL8QoFANi9xmPl3cpyOqw/d9hf5fQzQxWnwvpPjvgj/vLeha+tNGLZgz5/hdcGlA8A4gcAAJdypLi8UOrwS1BXzh00ToV1VanNVw9oyrOHjJFAeW/Ed9adep+WytqH8gFA/AAA4F4379kl3nsT1JXzw7W/uFcV8cygsbk1Zyl+H697/IT0svOO8gFA/AAA4F6lD/uMBNQfjfizFnOroVNhvfT+ubZi1fvMlDu0RfkAIH4AAHC1O+tOKcM+IwH17IBh1Pndsqz+iabqft9P6ZPxKB8AxA8AAG73znLxIZSgrpzp96lKI47nVFgvMTkWUnWf+XZ2oKSbkSgfAMQPAABuZzrFN+7M3OdTv9luO33vgBEs4X6bD+t/24+qFO8fygcA8QMAgAdMJYv3ww8GG1o+QghDFT8YNIo+bDxmN+L6oGD/UD4AiB8AALzht2tF+uFElx7xK40/sIhfOdFV/OafhC0bcDD5+ofyAUD8AADgGYUHT4K68kSf3qxj+1pv8S+9ZMrGHMzO/qF8ABA/AAB4xmq6SDl890CDFjnIyVDFkxFf4cespWXDjmdr/1A+ALxO5xSgwV7/h5cmbrz63sdiJSlefvllTgiABosVXOE64lebfn3/cKf21pJVYCXuD+POaEhrcP/cNWVTpgICQC1f0DgFaJhodP769X+b/+Dd+IcfLq+uLCaTnBMAjVd42OSpfc3/taCqiEc6C7XNQko2/pAoHwAtgJEfNM5HH90aGVmaaDu2qH3uh//7V/d/bj/nBEDjLee/YcYNwz4ZJ7v1scW8OxFF67/VDwC0JEZ+0DjSsvyxpZhhfLy3Y2Hyg7s3bnBOADTeYv74ebRHc8lBGqoovOybSf4AAPEDN3Msa316IuVX7f1dR4YPfOXRRzknAFyl8LaeDfZfCs58W7cl3y8AIH7g4vhJm4v/8a7hV8KHh1WVnz0A7hLxqw3e1bTY8ShBPe/xFF62AQBA/KBp1tbW3nrr/1tf+OT2+2G/Gjw8oqkaZwWAu3xuj+veEwsse9DI1a4BgPgByrC+vh4ImIP79k1M9fuU4ECvUFk0CIDLPLBH45AAgPgBqieFuJcUqY/FfiH2dAtB+wBolqPB3O99fve9JRZYXbrAmnUAAOIHzbbwyXp8+eNjD87F52U0uq+vj1MCwFU6fW78tUy+zUwXiR8AIH7gUlIm56KJtVX5hfu6u/1f+fKX+4gfAE0y2O6l975841QAAOIHrm0f8cnHq/eWEl881hvo8HFCADSRL9dbX74BFlINAFqJzilATbz52v87efuTufm1dSE6+g71Hrz/sWMDD95/nxDi3XdvLH0yZcfa08qeA/0+I8b9PgCaKaApQV2Je2Sp6HyT8RZSjTt+R7JKDYAWwe+TUBsnDyaTk9f/xysv/+3/87NXrvx2LHF04uOFzF+trcw/8vlIWhm4m9yrLU7s8ZPcAJrs2I5V1CbXHdcebc5RqWiqQQd8ZdG6sWrzMwOA+AE+M//J/i+dPffs8z/+b1/e1+fc/bff/kfKTP/h78x75sqHvwvtnzHa/0hTHz52jNMFoMnxE8p++3PzQFDYaNqwy5VFa2zRemvJclheAQDxA2z6z5gdXZKKs/fkyYeOBK2VX7917cP51978t9i9e9b6vbXJ/1D7wm294YODg52dnZwuAM010Oalt7/+Jt32s5qWY4tWpgxnNxx+bAAQP8AffPM73/nmE//r8KHPD/7R6NFurePdN+dSoZtx/d69uJlILN+ZCPXu3RPuZH8fAK5481PEia7sKbimWy/ve43mv3S+uWjxYwOA+AG20zQxfN9Q/54v27dXJ2dn5uJCCDMllhbEng4RDHCCALjFzplvK2mXTu1q1gZEW7/uRMJJ2Ex9A0D8AFt0d/d+vBJOB7q//uWg9dHvJ38386/vXo3GUnei9/W0B3qIHwCuMdSuRvzb3gQXUszsKuTGCsseACB+gC36+w+cOvWtPYMPPv7t+zsW7iy8+25s3727bftuJT+vp+0uLa2q/MgBcIuv922b+fZh3GMLvjXY9VWbZQ8AED9ANj3U2f9fv/nwvuX+318e+7///trvVz9+cCi9vvDg0FB7WxvnB4BLHO5Qg/pnM7vGY+69uO/QmjDzLetsxC15Z53BMQDED7Bdd+/B96Y6eweVA3uiH/x6Lp5U+4727evtGj50SNM0zg8At7wFKuLp/b6tf+Lai/uB9ibET2zH8t+vL7DsAQDiB9juoYcefuTE03sO7h96oGP5ri9o7PnckU5dY6E3AK5zJLDtzp93lrm4/8zOe6CiKWc1zdQ3AMQPkEURfSOfG/3St+5vu+9QMNTTLbjZB4A7/enAZ4M/EwnHnQte9/mb8Br6wb0cKxy8v8ayBwCIH2A7n8/Qw3+0EXnoa2e/cLTf9E992NvdxWkB4EKdPmVzz5+ttwC5SjPaR1xfzdE5Y4sWyx4A8C6dU4B6aGtre+yrfyyE+DbnAoDrPdGnf7TuJGx5ftgw+K2gEEKIaErGrdyVc2fdORLgNAEgfgAA8CBVEc8M+YQQAbfenRhq+JDU/1zNO73t9QXryLDBjw0AT77gcwoAAAhoSsDF67KojT201bS8tpJ37YdoyommmPoGgPgBAADe9/JsuvADCowLAQDxAwAAvGE8ZkdTRda8u7Zimex3CoD4AQAA3hVNyUtz6VIeeSvO4A8A4gcAANRfpA6rXyds+eKMWeKDry4RPwCIHwAAUH99/hqvgeBIcWHSzLe89U7RlDOdZOobAOIHAAB4iiPFS7NllE+GX1U4dQCIHwAAUGMjddtXNFM+E4nyhnHOHTQifuIHAPEDAABqrX7bEL3ySbqC8hlq5xICAPEDAADqYHK9LjfYXFm0xmPlLV1A+QAgfgAAQB2Ve0NOieUztmhRPgCIHwAA0MooHwDEDwAAoHwoHwDEDwAAcIejwcrfwSkfAMQPAABofZQPAOIHAABQPpQPAOIHAABQPgBA/AAAAMoHAIgfAABQAwm7qk1+KB8AIH4AAPCGtJP9J3t9CuUDAMQPAACtL6SXFD+UDwAQPwAAtD7KBwCIHwAAKB/KBwDxAwAA3OeuWd6CB5QPABA/AAB40saO1d46NIXyAYBy6ZwCAEDpppPOm4vW2QFDVdx+qKtpKYS4a8oNW+71KZkVAjp9Smt8IwyV8gEA4gcAUM/yuThlCiFemjXd2T+OFHfWnd/HnWsreQNgNKR9fq92sF01Wu6Cn/IBAOIHAFDL8hFCTCQct/WP6YhbcfvyghW3itweMx6zx2O2EOJEl36yW/PEWNBssvg9P5QPABA/AIDapMVm+biwf6aTzt9+nC6aPVmurVjXVqzRkPaNiB7QXJ1A69vv+Qnu2OSH8gGAUvCqBwAo7p3lHBfWmf5xZDMPzJHin6LWxSmz3PLZNB6zn7+d+s2K3dwnUpbhDpXyAQDiBwBQe6Yj8l1bN7d/TEe8NGsWuL2ndK9F0y/Nmqbj0m9Bws57iikfACB+AAA1k3PYp+n9k7DlzydSE4ma9cpEwvn5RCqacuMAUL6nSfkAAPEDAKgZR4qil9eN75+ELS9MVj7VLZ+4JS9MpjLLIbjZYLtK+QAA8QMAqLGb90oqgUb2jyNFPcpn06W59JVFyz3fgp1ntV2jfACA+AEA1Pqy+/JCqVfYDeufl2brWD4ZY4vWP0UtlyyBENvxZC8vUD4AQPwAAGrq5j27rMxoQP+Mx+wa3udTwLUVq+lr2eVTbvtRPgBA/AAACilr2Kcx/bOalpfm0g07A25Yy1sIkaqu9SgfACB+AABFlDvs04BmeONuo2/FcUP/LFRRP5QPABA/AIDiri5VvuhZPZphOuk0ZR02l4z/UD4AQPwAAOpiOulEq5tuVfNmeHW+pGGfiF8dDWln+n1n+n1PRnwRfw3e6ZrbP8mKio/yAYCddE4BAKDi0iilGc4OGKpS7adaTcuiMTYa0h7t0SP+bV/seJdmOmI+5bw6b1WTczV8LuWaSZZ92JQPAOTEKyMAIFv1wz5ZzVD9mMk7y4WGP4K68pMj/jP9vqzyyTBUMdSuPnvIONPvc8NzqTfKBwCIHwBAqWoy7FPDZnCkuLaS95BGAupzh/0BrciIjKqI0ZB2ftgf1JUmPpcKLKTK+HqUDwAQPwCAUtVw2KdWzXDXzPuRp8P6M4NlTEWL+JUfjfhHAmqznksFSv92UD4AQPwAAMrw5mJdlpOuphk+uJd7zttoSDsVLvvmVUMVZweM0ZDmof6hfACA+AEA1NhqWk4ksscZTof1M/2+E13VrpFTcTP8570cQx8Rv/rt/RXew6Mq4ky/73RYb/xzqeA7QvkAAPEDAKi9rF1ER0Pajw/7T4X10ZD2zYj+50fbqgmGipth57yvoK48M+SrcuG1U2H9yYivwc+lHigfACB+AADlWU3LrbuIfn/QONPv6/R9VhiGKk6F9QavGZBz6OOJPr3oCgelON6lnTtouLl/YpakfACA+AEA1NjWYZ8nI74jeVYFiPiV88NGNZuHltUMO6/+g7pybI9Wq2c91K66uX/WCk57o3wAgPgBAJQtYX827DMSUI93FaqLgKY8e8hozJppO6/+n+jTa7vTqMv7h/IBAOIHAFBLN1Y+m/D2x/uK3wmjKuLsQCP658P4tht+ajvs4/7+yXr6lA8AED8AgGqtf9o+p8P61vt8ivZPNavAVdAMNR/2cX//UD4AQPwAAGrpmxH9/7i/7fuDxsnuMmJGVcQ3I3pd14yeXN829HF/UKvfSXBh/yykJOUDAMQPAKDWbwmKOBJQjfLfGU6F69g/8S0LHoxUdHiN75+EXbMAylrmm/IBAOIHANBkde2fTV/YqzXguVTfPxcma9Y/W1cVp3wAgPgBALRs/2QlxGCjLv2r7J+4JWvVP+eHjUz/UD4AQPwAAFq5f9LblzoL6UrDnotL+iegKeeHDcoHAIgfAEDr98+miF9VlYY+F/f0D+UDAMQPAGAX9U+fX2n8c2l8/yRsWcNbhgAAxA8AwHv9EzaUpjyXRvZPpnyiKYf+AQDiBwCwu/pn6zrP3U2Kn5r0z/O3U9NJp/DDppPOhUkzs7R33JJLJvEDADWmSMlrKwCgXq4sWmOLVsUfHtSVzX1+zvT7RkNaE5/LdNK5OGVW8xlOdOlf69V3blXkSHFj1X4tmt78E1Y4AADiBwCw6/pn048P+zt9SnOfS/X9E9SVJ/r0rWt23zXlP3yS3rqXK+UDAMQPAGBX948b4qcm/VMY5QMA9cPLKwCg7qq8/8dVqrz/h/IBAOIHAED/FPGr+bTjjskKdeofygcAiB8AAP0jRMH9T1ugfygfACB+AAD0T+v3D+UDAMQPAID+af3+oXwAgPgBANA/rd8/lA8AED8AAPqn9fuH8gEA4gcAQP94r3/O9PsoHwAgfgAAaP3+GQ1ppT8XygcAiB8AAP3j4f45FdaDukL5AADxAwBA6/fP4z065QMAxA8AAK3fP8dCKuUDAMQPAACt3z8BTaF8AID4AQBgV/QP5QMAxA8AAK3fP6ZD+QAA8QMAwC7on3eWLcoHAIgfAABavH9MR4wtWpQPABA/AAC0eP+8t2ZTPgBA/AAA0OL9M510XoumKR8AIH4AAGjl/knY8m8/pnwAgPgBAKCl+ydhywuTZtySlA8AED8AALRs/1A+AED8AACwK/rnhek05QMAxA8AAK3fP88M+YK6QvkAgCcoUkrOAgDAK64sWll76ZRlJKCeHTBUpZaHlLBl3BIRv8J3BwCIHwAAWrx/AADEDwDAexK2nNuQv12zJ9edzbtZMkZD2mC7uq9NGWhTmxsP9A8AgPgBAFRuOum8Om9FU04pDz4d1h/YozVxrldT+ocZbgBA/AAAGovIFAAAIABJREFUvG01LV+eTZeYPVtF/Op3+n3NioEG98/mqtasbQAAxA8AwJN+s2K/Fk1X8xlGQ9q39/uaMousYf2zmpa/mPpsP58/P9pmkD8AQPwAALzCkeKlWXMi4VT/qYK68oNBoylDQNX3z5l+X0ArdOTTSefilLn5n4z8AADxAwDwks1JXDX8nE9GfMe7NM/1T4FyS9jyn6PWeMymfACA+AEAUD7bnOjSn+jTGz8Frsr+EUKMhrRv7fNtTmZL2PLGip31OSkfACB+AABe4kjxszupepRPRrMWkq6+f4QQEb/a51e2DvVQPgBA/AAAvFo+tbrPp3D/FL2RxrX9kxPlAwAtgNdxANhdbqza9S4fIcREwrkwaSbsRv9+7VRYPx3WKR8AAPEDALvdalpWuap16eKWbI3+oXwAgPgBAHiMI8XLs+lGfsUW6B/KBwCIHwCA99y8Z0dTToO/qKf7h/IBAOIHAOBJV5fsEh8Z8aujIS3ir817hEf7h/IBgNbDam8AsCtMJ52LU2bR5nlqn77Pr27udeNIMbvh3Iw511aqXUItqCvnh43Gr/92aS6dc91qygcAiB8AQGt6YabQ8tZBXXl6v+9IIO/lfsKW/xy1KqiIpvdPBUt7Uz4AQPwAALwqYcvnb6fy/W3pe/JEU/LFGbOa3VGb0j+Fnz7lAwC7B6/vAND6bsacAuVzdqDUGon4lecO+0dDWsVH0pT7fwKacqbfR/kAAHiJB4DW9++rdoHyUcsZhlEVcabfV2JLuKd/ju0pvn4D5QMAxA8AwNtMR+Rc4TqoK2f6fWpFE9BGQ9q5g4aH+kdVxKM9GuUDAMQPAKCVzefZ2+e7B3zV3Hsz1K6eO2gE9Qo/Q7PWv6Z8AID4AQC0rMlcC509GfFVf7k/1K6eH/Z8/1A+AED8AABaxFQyO34ifvV4l1aTTx7QFE/3D+UDAMQPAKB17Nzi5ql9eg0/v1f65+qSTfkAAPEDAGhZO6NiJKDW/Irf/f0znXSyVn2gfACA+AEAeInpFHlAescDvhLW63EkLu+fV+ctygcAwEs/AHhVwpY/n0hdWbQKPGZm+w0/QV0ZaKvXK79r+2c8Zm8d9qF8AID4AQB4rHwuTJpxS44tWoX7Z6tHOjVVqeNRubB/oil5aS5N+QAAiB8A8CTTEZnyyfxngf5Jbr/J/4E9Wr2PzVX9k7DlizMm5QMAIH4AwKveWbY2y6dw/2RNe4v4lQYcnkv6Z3NwjPIBABA/AOBJpiPGcnVO0flvoyGtYQfptvlvlA8AgPgBAO+5Fbfz/VXh/hls7NV/0/tn8wAoHwAA8QMA3uNIcXmh0PBOgf452NHo1/ym9E/Clr9ZsTcP4LnDfsoHAED8AID33LxnZ93tU3r/+Jvxkt/g/snc5/NaNL15BlSFnxoAAPEDADuYjphOOtGUXE1LFx5e0WGfwv3T6WtOB1TfP8/fTk0nnaKPjKY+W+FgbNFy5zcRANBEOqcAABwpbqza/766bStMIcSJLv2JPt09QwelDPts7R/3nOFM/2xde61cF6fMJyO+h/PvUzQes7P282lW7AEAXEuRkl+MAdjVErZ8YTqdlT2bgrryg0GjMStEFy20n91JVRwPoyHtTL+v6ae6mv7JfDu+e8CXdQ9PNCX/bm7bd5AVDgAAxA8AZJtOOhenzKIP+8kRf0Brcv/cTji/nDEr/nA3xE9N+kcIMRJQHwhq7ZpYNuVU0plIbAtXygcAkA/T3gDsXglbllI+Qoh/jlpNL4fXF6wWOOfVz38TQkwksoOH8gEAlIJ3CAC7lCPFC9PpEh88HrObe/f8dNLJNzGv9NJzVf9UvP5BAZQPAID4AYAc3l6yysqJmaTTxKN9db7aYZ+JhHPFNUsg1KN/KB8AAPEDALn9573yYiZpN+1Qqx/2ySiw/6nX+4fyAQAQPwCQm+mIcnOiiSM/1Q/7tHb/UD4AAOIHAPKaKr9kjgab84JZq2GfVu0fygcAQPwAQCH+8l/8Bpt0hV3DYZ/W6x/KBwBA/ABAEaHyL7U7fU3Y52c1LWs77OPa/vnhQYPyAQAQPwBQex1l7ljarE1+3rib3ScRv3p+2H/uoHE6rFd5t4yr+qfTp5wrp38oHwBABdjkFMBuZKhiJKDm2ygzy0hAHQ1pjT/I1bQcj322xlxQV57e7zsSyFzxK0Pt6mM9+s179qW5dMVfYmzREkKcCrvivWCoXT3RpV9bKd5jlA8AoDK8eQDYpUoczAnqyvcOGE05wq3DPhG/+txh/6fl8+kruCJGQ9qPD/urGQJy1fjP4+HikUn5AACIHwAoT0BTnowU6Z+RgPqjEb/RjFfKrcM+QV15Zsin5gmcTp9yftiI+Cs/Svf0T0BTRgIq5QMAIH4AoMaOd2nnh/35suHJiO+ZQcNo0svkO8ufTXj77gFfoOBNSgFNefaQUTgbvNI/X9irUT4AgDrhnh8Au1rErzx7yLiz7mzYcjYp12052K4e7FB7DUVVmnZUpiM2b30ZDWmlXPGrijg7YLw0a5Z4I1PO/hGuuf+H8gEA1IMipeQsAICrOFLcWXdeX7CiKefHh/2lr7LtSFFN/wghTof15vbPeCzHEg6UDwCA+AGAFmc6ooJ5d1cWrbEq5rA1t38uTJpZWxtRPgCAWuHtBADcq7I7jk6F9dNV1EsT7/+ZTjqUDwCA+AEAtH7/XF+xKR8AAPEDAGjx/rmdcLZu6kr5AACIHwBAC/bPalr+csakfAAAxA8AeFLClgm7yYvKeKJ/Erb8xRTlAwAgfgDAs+VzYdK8MGnSP6WcqLglKR8AAPEDAF4tn7gl45akfwowHUH5AACIHwDwKkduu6CnfwrQFdHnVygfAADxAwCedPOevVk+9E+RNyFFnB0wRgIq5QMAaABFSslZAIBacaT42Z1UVvxkBHXl/LAR0JTmHuGVRWusioY5HdZPVVFQAAA0Eb9mA4Ba2jnss4nxHwAAiB8AaB1Xl+wCf0v/AABA/ABAK5hOOtGUU/gxu7l/Erb8v36fmk46/KgAAIgfAPC2V+dL6oHd2T+by39fnDLpHwAA8QMAHlbKsE/r9c8/RS2nhCcRTW3byRQAAOIHADysxGGfFuufayvWS7Nm4f65nXAuTKbYyRQA0HQsdQ0ANTCddC5OmRV8YGusfx3Ulaf3+44EspNmNS1/NZ+eSHw2IEb5AACIHwDwthdmzK2X+Luwf4QQIwH1C3u1zf9cNmXWJ6R8AADEDwB422pa/tWdVDWfoWX6pwDKBwDQdLwPAUC13rhbbTC0xv0/lA8AgPgBgFa2mpbjMbv6z9PC/UP5AACIHwBoBdUP+7R2/1A+AADiBwBaQa2GfVq1fygfAADxAwAtoobDPq3XP5QPAID4AYAWkbBrPOzjtv55rEcfCVT4NkH5AABciKWuAaBCOxeGHg1p39rnE0LMp5w3F62Kd/7JcMP6144U//0jM5oq74lQPgAA4gcAWofpiL/4cGPzPyN+9Tv9voh/W6hEU/LFGTNuVf4y64b+SdjywmQZz4LyAQC4Fu9PAFCJd5atreXz7CEjq3yEEBG/8qMRf8Uzx4Q75r8FNOXp/T7KBwBA/ADAbmQ6YnPCW1BXnhnyqXnGZgxVnB0wqlk5wA39cySgRvzF3y8oHwAA8QMArWbrsM/T+32Fp6WpSrUrp7mhf77T76N8AADEDwDsLo4U11f/sMhbxK8eKW1W26mwfu6g4d3+ifiVoK5QPgAA4gcAdtPrpiLODxunw3pQV/50wFf6Bw61q57un+EOlfIBAHgaq70BQENNJ52LU2bFH97E9d/+zw82KB8AgKfxjgUADeXR8Z+cX5HyAQAQPwCAVuufuQ1J+QAAiB8AQOv3z9YF7igfAADxAwAor39+csRfYAk19/TPeMyeSDiUDwCA+AEAT0rY8jcrdnOPIaAp54cNl/fPalpemktTPgAA4gcAvFo+FybN16LpK4sW/VP4RP1iy9p0lA8AgPgBAI+5MGnGLSmEGFu06J/CiZg5UZQPAID4AQBP2rpPDv2TzwvTacoHAED8AIC39fm3ZQb9k9MzQ77M8VA+AIDWoEgpOQsAdpsXZsyty5dlnA7rp8J6cw8sa6ZZuYK6cn7Y2DquVf3xLJmS8gEAtAbezwDsOtGU3Fk+gvGfPMdD+QAAiB8A8KSELV+cMfP9Lf0DAADxAwCt4HbCKTqpbNf2jxs2PgIAoK645wfArmA64h/n0+OxUi/uW+P+nx8eNDp9Sllfyw1PHAAA4gcAKjQesy/Npcv9qBboH1HaQm3RlHxx5rOv8uPD/hKTCQAA4gcA3GI1LV+eTUdTTmUf3hr9c6JLf6JPV5WSypBVrQEAxA8AeIwjxdtL1ljVd++0Rv8EdeXp/b4jgW1VE03Jv5vbVoaUDwCA+AEAj1lNy19MVVULrdc/RVE+AADiBwA85jcr9mvRInf4jIa0zX8vZRWElu8fygcAQPwAgJc4UrzySd4l3UZD2uf3av1tSkBTdnbFkinnN+RbS1a+umjh/qF8AADEDwB4SYEwOB3WH+7SdjZPTtGU/OCefX3V3vmpWrJ/KB8AAPEDAK1QPqMh7Vv7fEZF1/bTSefVeStrpbifHPGXGFGe6B/KBwBA/ACA58sn5/pmFVhNy1/NpycSjqtSIWHL52+nKB8AAIgfALuII8VLs2YmTraWz/lho4ZDNNNJRwjhqlSYTjoXp0zKBwAA4gfA7i2fkYB6dsBQldZ/+hX3D+UDANidePMD4GFvL1m7tnyEEEPt6vcHDcoHAADiB0CLi6bk2KK1a8sn40hAPdFVxgJ0lA8AgPgBAI9xpHhxZtuMr6Cu7Lbyyfharx7US3ralA8AgPgBAO+5sWMfnh8M7sbyEUIYqniir/jgD+UDAABvhAC8ZzUtX4umt/7J6bAe8Su79oSMhrTCgz+UDwAAxA8AT3pn2c76k5Pd+i4/J8MdKuUDAADxA6ClmI64tpK9zoGx61/MBvPkDeUDAADxA8CrbsUZ9slhyZSUDwAAhXHFAMBjri5lx8/Bpl7fr6blTNJJ2mIm6UyuO1uXYRgJqAFNORpU+/xqvW9Jums6lA8AAMQPgNaRsGU0lb2raePnvCVsOZFwPow74zG7wMMyG7BmHhPUlUc6tZPdej2OdjUtszZ7pXwAACB+AHhb3Mr+k4DWuEXeEra8GXP+fdXOCrDSjlyOLVpji9aZft+xPVptV+X+1Xya8gEAgPgB0FIWyq+O6jlS3Fl33lm2skZXKnNpLv1uwD7T76tVtt1OOFsPjPIBAID4AdAKPow3NH4StryxYl/fsaFqlSYSzoVJ8/ywUX3/rKblL2dMygcAAOIHQOtL2LLmn9ORYnbDeXOxNkM9OcUtWX3/JGz5iynKBwAA4gfA7jCRcKaTTq0u+k1HvLdmv7Vk1XaoJ1//XJpLnx0wKrv/J2HLC5Pm5nFSPgAAED8AWt+r89b5YaPKTzKddK6v2IVXb6tHuV1esL4ZqeSl+K1Fm/IBAID4AbC7RFPOb1bs411aBR/byKGenK6tWPcF1SOBstPliT79rulMJBzKBwCAEilSSs4CAK+4NJfONzgzGtK+tc9X4i46Dbirp3QRv1rZyJUjxV1T1nv7VAAAWgYjPwC8pCP/8gDjMXty3fnuAV+BYRDTEVNJ5/dx59qK5Z4nFU1VeNuSqgjKBwCA0jHyA8BLbiecrSs75zMa0o4G1cFPc2Im6cwm5UfrTjTluPN5jYa0M/0+vr8AANQVIz8AvKS/raSBjvFYo5cuqNJ4zP5GRK/VtqcAACAn7pEF4CUtnAdLJuPwAAAQPwCwxelwaw5Zr6WJHwAA6otpbwA85mS3PrZoue2ogroy3KEOtqvtny64Xe5dRh/GndGQxvcXAADiBwD+wFDF6bAr+ieoK8f2aPcF1YPt6s4ltkdDQgixmpYvz6ZLSaCEzcgPAADEDwBs19zBn4hf/WKndjSodvqK34DU6VOePWTcWLVfi6aLxI/FNxYAgPpiqWsAnlTimtc1FNSVRzq1h7u0yhZdSNjy0ly6wJ6qrHYNAEC9MfIDwJOOBNSGTX470aX/l06tyu1EA5pypt/3/O0U3zsAAIgfACjPqbA+lXQKjKVUaSSgnuzWD3eoao2W1870z6W5NN87AACIHwAoz9kB46VZs7b9E9SVx3v0YyG1HnsKHdujXfXbOdc/GGxn7wEAAOqLe34AeN6VRasm899qMr2tqHx3K31/0DgSoH8AAKgjRn4AeN6psD4cUF+dt0rfVCereY6F1IG2mk1vK6zXyP1l+tsUvpUAABA/AFDEULv67CHj5j376pJdSgJF/Orn9qgP7NF6DUV1QXQEdaUes+wAAADxA6AFqYoYDWmjIS2aklPrzkzSWUjJzRAaCagBTTkaVPv8apdPMZo3v6wjV+Qc26PxHQQAgPgBgPJE/ErErx3vcmlO5Oyu+4Lc7QMAQN3xdgsADRVN5Vhm5iBLvQEAQPwAQIv54J6d9Senw7rBizEAAMQPALSY66vZ8fPQXm74AQCgEbjnB0DtJWy5ZMq1tJxNynVbDrar7Zpo05ReQwnprlhdrYlnJm5tm/YW8audPtZ5AwCA+AHgKaYj3luz/301e7Hp8di2sY6RgHqyWz/coe7CCrqxkj3s89Q+XocBACB+AHgqe95ZtsYWrVIePJFwJhKmEOJ0WD/ZvYtud1lNy6xTNBrShljqAACARlGklJwFANW4nXB+OWNW/OGnw/pjPXrLjwI5Urw0a04kto2J/fnRNpY6AACA+AHgjQv6Vz5JZ81qq0BQV34waET8rRxAVxazR8bO9PtGQyx1AAAA8QPA9RK2vDSXzhrKqMbpsH4q3JpzcXeWz0hAfWbQ4KcIAADiB4AHyufCpJm1cFn1RkPat/f7WmwK3M7yCerKj0b8THgDAID4AbBLyycj4lefGfIFtFYIoJzTAoO6cn7YaI0nCACAt/CLRwBlX9BfmkvXqXyEENGUc2HSTNgN+r3MdNKZTjr1+MwJW740a+68IeoHg5QPAADNwcgPgPJcmqvBCgdFNWZ4ZDrpXJwyhRARv/rUPr1Wq047UtxYtV+Lpnf+1bmDBmtbAwBA/ADwgCpXtXZV/5iO+IsPN7b+yUhA/eN9vk5fVV9xOun87ce5R8YoHwAAiB8A3mA64ucTqfpNeGt8/2yO/GwV8atf7NSOhdSyvq7piPfW7LeWrJznJ6gr3z3go3wAACB+AHjDzlXLWrV/MkYC6hf2an1+NaiLnAdgOmI+5cxvyA/idoElv1nhAAAA4geAl+ycJLYb+ierhbYew+S6U8og2EhAPTtgqIQPAADEDwCvKHHY50SXPtCuDLarQoiUIz64Z19ftaufKeeS/inX6bD+WI9O+QAAQPwA8IxShn1Oh/WT3XrOjTunk86r81Y0VdWK0t7qH27yAQCA+AHgSYUXeSsxS24nnH/4pKoNgrzSPyMB9XsHDIPwAQCA+AHgOS/MmPlu6C/rnhZHilc+qWqbIPf3z5l+32hI42cGAADiB4D3JGz5/O1U9eWzaTxmX5pLt17/jATUM/0+VnUDAMC1mJYBoIi5DZkvQr53oJJ1zEZD2vlhf1CvMBLilrwwaSbsev3iZqhdPXfQKLfHvj9oPDPIetYAABA/ALzs9/HcE95+eLDy21oifuX8sNEa/TMa0n404j8S4OUUAADiB4DH3byX4xad7w8anb6qRjkCmuf7J6gr5w4aZ/p9rG0AAADxA8DzErbcuT7baEiryUCHp/snc+sRi1kDAED8AGgRS2aOtPjWPl+tPr93++e7B1jbAAAA4gdAC1lLZ3fF6bBe21leHu0fxnwAACB+ALSU2WR2VJzs1mv+VVrg/h8AAED8AHCvhC3/KWo5BZPhrrltqbfRkFanm/u91T8jrO0GAADxA8BD5XNh0ry2Yr00axbon4nEtvh5tEev3yF5pX8yW7vyIwQAAPEDwDPlk1nGbSLhFO6frXqN+t7i7/7+OT/sPztQydauAACA+AHQBC9Mp7cuYF1i/5zo0htw0e/y/on4FcoHAADiB4A3RFMymnKy/jBn/2QlxH3BBr1iuLx/AAAA8QPAG64uWTn/fGf/pLcnUr3nvNE/AACA+AFQM6tpOR6z8/1t4flvnb6GzveqSf9MJ51yP9B0hEM0AQBA/ADwujfuWoUfkK9/RkNa44+2+v65OFVe/yRs+fOJVOkrQAAAAOIHgBsVHvYp2j9NUWX/CCFK75/NRfAyZ4AfGAAAiB8AXvXOsl3iIzNX/1uXRTgabNrLRU3658pikSGv6aTz/O3U5iJ4Xwnr/MAAANBiFCmZ2wHsCqYj/uLDjbI+JKgrmzFwpt/XlJlvm7buTVSZiF/90wHfzjuXTEf843x665jYuYPGUDu/GwIAgPgB4E1XFq2xYqMfBbihB6rvHyHEaEj7Wq8e0hUhRMySH8ad16Jptz1TAABA/ACoUAXDPll+fNjf4NXe6tc/Lm88AABQJ7zHA7vCO8tWazyR6u//oXwAACB+ALQs0xHVTHjLeH/NdsnTqVP/UD4AABA/ADyvJsM+Y4vWlUW3DB/VvH8oHwAAiB8AnleTYZ/W7h/KBwAA4gdAK7gVr+V0tdbrH8oHAADiB0ArcKS4vFDjVmml/qF8AAAgfgC0iJv37HqsCt0a/UP5AABA/ABoETmHfYK6MhrSRgLV/r/vwv6hfAAAQGFscgq0rPGYfWkuvfVPTof1x3p0VRFCiIQtb6zYVa6FcDqsnwrrLnm+00nn4pRJ+QAAAOIH2F0cKX52J7U5520koJ7p9wW07Llhq2n5iymzmqlxruqfF2bMiYRD+QAAgJy4AgBa0+yGs5k0QV353gFjZ/kIITp9ynOH/dXMgnPV/LevFMswygcAAOIHQKt5df6zIDk/bBj5/19XFXF2wGiN/hloUykfAABA/AC7yHTSiab+MPvrdFjPOeaT1T/PDBqnq5i95pL+URXKBwAA5MU9Py3LcRxVVYUQtm2bpimlNAxD13Up5fz8fG9vr67/4Up3fn5+3759a2tre/fuzfxzeXm5u7tbCJFIJHw+n6IoPp+PU+ohv1mxX4umhRBBXXnusF9Vmnw8lmWpqqooiqJsO5T19fVUKmUYRiAQSCaTGxsbXV1dlmXpuj49PT00NJROp30+XzweDwaDUsqtr1c7PxtQgWQyadt2MBhMJBLpdLqzszPz+rn5A7a+vp55tTQMg9OFekilUn6/P/PvS0tLUspwOLy4uCiECIfDa2trtm13d3dnXg9t29Y0jZMGVEznFOyKxt1yjagoSldX18bGxsbGxurq6oEDBzKvuVevXu3u7t7Y2Dh9+rRhGKZpaprm8/kyBQVvOd6lPdypzW44ouBgSONeaD4tbcdxrE/Ztq3r+gcffBCLxSKRiK7r0WhUURS/329Z1kcffXT8+PGenp6+vj7Hcfieoh4yv+i5efPm22+//Zd/+Zeapq2trS0uLj733HORSOTcuXOZ3/50dHRwrlA/fr9/Y2MjkUj09PT09PSsrKy8++67L7744ve+971QKJRKpTIvoZnf/vA7a4D4QUnBk3nFlFJOTk7u379fUZRwOCylbG9vj8Vik5OTly5d6uvr6+3tPXHihM/nM01TVdW2tjauOz1KVYR7ZnlZlqUoiqqqqqoahmEYRub9+9e//vXLL788MTHR0dHx0EMPLS8vZwaIFhYWDMMYGBjo7+/PXBnwDUU9rK+v79mz56233hobG/voo4/+5E/+JJ1Oj4+P//a3v+3u7v7pT38qhEgmk1LK9fX1QCDAGUOdtLW1CSFmZ2fffvvt8fHx5eXlf/mXfzl+/PihQ4cURcnEj23bjuMQPwDxg7w2XyI3R29s2x4ZGRFCvP/++7qu37t3r7e31zTNmZmZf/3Xfz1+/PjevXullJZlZT5KURTbtplchCplJmFKKTd/ljL/8vd///evv/763bt3FxcXr169+sknnyiK0tfXF41GT548+fjjj6+srAgh5ufn29vbBwcHOZOorYGBgcnJyXfffXdhYeGxxx770pe+ND8//9577926dWtjY0MIcffuXUVRNE3LXJsC9fDxxx8fOHAgEz9vvvnm9evXfT7fwsJCMpnUNK29vX1zEvvWV1EAxA9yxE+mfzRNk1I6jmPb9u9+97vBwcG9e/ceOnRICLG2tvY3f/M3f/3Xfz09PX3q1KkDBw60tbXFYrH29va2trZ0Ok38oHqZmyWklKZpplKpjY0N0zRt297Y2PizP/uzb3zjG4qiDA4Orq6u9vT0fPWrX927d+93vvOdxx9/fGhoSAgRCAQyt6txJlFbKysrb7755sDAwBe/+MVvf/vbHR0dfr//iSee+OlPfzo1NbWxsaFpWkdHR2byG6cLddLb2yuEaGtr+9KXvtTT03Pr1q3333//448/zvz4tbe3Z96LpZSZd3POGED8IAdFUTLj45m5Rpn4cRxndHRUCLG+vh6Px2Ox2CuvvPLBBx8kk0khREdHR2dnZ+ZOysw/KR/U/MdS0zTDMDKDiqOjow8++ODw8HA8Hs9MwhRCdHZ2xuPxBx98UFXV1dXVzM9hT08PZw//P3tnHh5XXe//75k5s5/Z98meNGnapAuFttBCgUILFhARROGiFwHl4r0ij1xUfBC5D4rcRx/Ri4pcFq/oz0uhYJEKFEs36Eq6p22apmn2zL6vZ86c8/vjbc8d0yQ0bQpp+b7+4EmGyWQ655vv+b4/y/sz6eh0upqamoULFxJCXC7X7t2758
- Xem thêm -

Xem thêm: 60 đề thi thử thpt quốc gia môn vật lý with keys (lỗi hiển thị nhưng vẫn tải xuống bình thường), 60 đề thi thử thpt quốc gia môn vật lý with keys (lỗi hiển thị nhưng vẫn tải xuống bình thường)