Báo cáo thực hành kinh tế lượng 14

9 511 10
  • Loading ...
    Loading ...
    Loading ...

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 19/04/2015, 10:35

Kinh tế lượng (econometrics) là một bộ phận của Kinh tế học, được hiểu theo nghĩa rộng là môn khoa học kinh tế giao thoa với thống kê học và toán kinh tế. Hiểu theo nghĩa hẹp, là ứng dụng toán, đặc biệt là các phương pháp thống kế vào kinh tế. Kinh tế lượng lý thuyết nghiên cứu các thuộc tính thống kê của các quy trình kinh tế lượng, ví dụ như: xem xét tính hiệu quả của việc lấy mẫu, của thiết kế thực nghiệm... Kinh tế lượng thực nghiệm bao gồm: (1)ứng dụng các phương pháp kinh tế lượng vào đánh giá các lý thuyết kinh tế (2) phát triển và sử dụng các mô hình kinh tế lượng, tất cả để sử dụng vào nghiên cứu quan sát kinh tế trong quá khứ hay dự đoán tương lai. Báo cáo thực hành kinh tế lượng nghiên cứu các khuyết tật của mô hình để từ đó áp dụng các phương pháp khắc phục thích hợp đạt hiệu quả. Bài thực hành kinh tế lợng SV: Nguyễn Bá Chiến. Lớp: K43/05.01 Vấn đề nghiên cứu: Mối quan hệ giữa giá vàng với lợng kiều hối và chỉ số giá tiêu dùng Trên cơ sở số liệu của niên giám thống kê Việt Nam từ năm 1991 đến 2005, ta có số liệu thống kê sau đây : Năm GV KH CPI 1991 88.7 35 67.4 1992 31.3 136.64 17.5 1993 7.4 140.98 5.3 1994 8 249.47 14.4 1995 -3 284.96 12.7 1996 2.5 468.99 4.5 1997 -6.6 400 3.6 1998 0.7 950 9 1999 -0.2 1200 6.8 2000 -1.7 1757 -0.6 2001 5 1820 -0.2 2002 19.4 2150 4 2003 26.6 2580 3 Trong đó : GV là tốc độ tăng giá vàng (đơn vị tính %) KH là lợng kiều hối (đơn vị tính triệu USD) CPI là chỉ số giá tiêu dùng(đơn vị tính %) 1, Lập mô hình hồi qui mô tả mối quan hệ của GV theo KH và CPI. iiii UCPIKHGV +++= 321 2, ớc lợng mô hình hồi qui với các số liệu thu thập đợc bằng phần mềm Eviews. Hồi qui mô hình trên bằng phần mềm Eviews ta thu đợc kết quả ớc lợng sau: Báo cáo 1 Dependent Variable: GV Method: Least Squares Date: 10/27/07 Time: 07:04 Sample: 1991 2003 Included observations: 13 Variable Coefficient Std. Error t-Statistic Prob. KH 0.010336 0.003557 2.906004 0.0157 CPI 1.517031 0.175785 8.630046 0.0000 C -13.17907 5.323416 -2.475679 0.0328 R-squared 0.884550 Mean dependent var 13.70000 Adjusted R-squared 0.861461 S.D. dependent var 25.32673 S.E. of regression 9.426836 Akaike info criterion 7.524172 Sum squared resid 888.6524 Schwarz criterion 7.654545 Log likelihood -45.90712 F-statistic 38.30895 Durbin-Watson stat 1.175148 Prob(F-statistic) 0.000021 Từ kết quả nêu trên ta có mô hình hồi quy mẫu nh sau GV i = -13.17907+0.010336KH i + 1.517031CPI i + U i 3, Kiểm định các khuyết tật của mô hình đã ớc lợng bằng phần mềm Eviews. 3.1 Phát hiện đa cộng tuyến bằng độ Theil B 1 : Hồi qui mô hình ban đầu tìm đợc R 2 =0.88455 B 2 : Hồi qui mô hình : GV i = 1 + 2 KH i +V i tìm đợc R 2 -CPI = 0.024709 GV i = 1 + 2 CPI i +V i tìm đợc R 2 -KH = 0.787055 B 3 : Độ Theil m= R 2 {(R 2 - R 2 -CPI ) + (R 2 - R 2 -KH )}= 0.024709 + 0.787055 - 0.88455 = -0.072786 m 0. Vậy mô hình không có đa cộng tuyến 3.2 Kiểm định White phát hiện Phơng sai sai số thay đổi. Bằng phần mềm Eviews ta thu đợc kết quả báo cáo: Báo cáo 2: White Heteroskedasticity Test: F-statistic 1.450454 Prob. F(5,7) 0.315345 Obs*R-squared 6.615053 Prob. Chi-Square(5) 0.250879 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 10/27/07 Time: 07:33 Sample: 1991 2003 Included observations: 13 Variable Coefficient Std. Error t-Statistic Prob. C -5.552102 99.54290 -0.055776 0.9571 KH -0.015391 0.136969 -0.112369 0.9137 KH^2 1.58E-05 4.54E-05 0.347958 0.7381 KH*CPI -0.005369 0.009169 -0.585552 0.5766 CPI 15.81502 9.572838 1.652072 0.1425 CPI^2 -0.230279 0.122831 -1.874753 0.1030 R-squared 0.508850 Mean dependent var 68.35787 Adjusted R-squared 0.158029 S.D. dependent var 78.78938 S.E. of regression 72.29633 Akaike info criterion 11.70346 Sum squared resid 36587.32 Schwarz criterion 11.96421 Log likelihood -70.07250 F-statistic 1.450454 Durbin-Watson stat 2.152573 Prob(F-statistic) 0.315345 Thu đợc R 2 2 = 0.50885 - Để kiểm định hiện tợng phơng sai sai số thay đổi trong mô hình hồi quy ban đầu ta đi kiểm định cặp giả thuyết sau: H o : Mô hình có phơng sai sai số không thay đổi H 1 : Mô hình có phơng sai sai số thay đổi - Tiêu chuẩn kiểm định : 2 =n R 2 2 ~ 2 (5) - Miền bác bỏ :W ={ 2 : 2 > 2 (5)} Giá trị của thống kê quan sát: 2 qs = nR 2 2 = 6.615053 Với = 0.05, n = 13 ta tìm đợc giá trị tới hạn 2 0.05 (5) = 11.0705 Ta thấy mô hình trên có 6.615053 = 2 qs < 2 0.05 (2) = 11.0705 tức là 2 qs W => cha có cơ sở bác bỏ H o Vậy với mức ý nghĩa =0.05 mô hình đã cho có phơng sai sai số không thay đổi. 3.3. Phát hiện Tự tơng quan bằng kiểm định BG. Thu đợc R 3 2 = 0.163399 - Để kiểm định hiện tợng tự tơng quan trong mô hình hồi quy ban đầu ta tiến hành kiểm định căp giả thuyết sau: H o : Mô hình không có tự tơng quan H 1 : Mô hình có tự tơng quan - Tiêu chuẩn kiểm định : 2 =(n-1) 2 3 R ~ 2 (1) - Miền bác bỏ: W ={ 2 : ( ) 12 05.0 2 > } Giá trị thống kê quan sát : 2 qs = 2.124187 Giá trị tới hạn: ( ) 12 05.0 =3.84146 2 qs = 2.124187 < 3.84146= ( ) 12 05.0 2 qs W cha có cơ sở bác bỏ H o Vậy với mức ý nghĩa = 0.05 mô hình không có tự tơng quan. Báo cáo 3: Breusch-Godfrey Serial Correlation LM Test: F-statistic 1.757817 Prob. F(1,9) 0.217561 Obs*R-squared 2.124187 Prob. Chi-Square(1) 0.144990 Test Equation: Dependent Variable: RESID Method: Least Squares Date: 10/27/07 Time: 07:39 Sample: 1991 2003 Included observations: 13 Presample missing value lagged residuals set to zero. Variable Coefficient Std. Error t-Statistic Prob. KH 0.001214 0.003549 0.341989 0.7402 CPI 0.008397 0.169599 0.049512 0.9616 C -0.941643 5.181400 -0.181735 0.8598 RESID(-1) 0.440569 0.332297 1.325827 0.2176 R-squared 0.163399 Mean dependent var 1.78E-15 Adjusted R-squared -0.115468 S.D. dependent var 8.605485 S.E. of regression 9.088744 Akaike info criterion 7.499610 Sum squared resid 743.4474 Schwarz criterion 7.673441 Log likelihood -44.74747 F-statistic 0.585939 Durbin-Watson stat 1.723075 Prob(F-statistic) 0.639237 3.4. Phát hiện các sai lầm chỉ định. 3.4. 1.Phát hiện mô hình chứa biến không phù hợp 3.4.1.1. Kiểm định sự bằng không của 2 Dùng kiểm định T để kiểm định cặp giả thuyết sau: H 0 : 2 = 0 H 1 : 2 0 Tiêu chuẩn kiểm định :T qs = )( 0 2 2 Se 3 025.0 n t Miền bác bỏ giả thuyết W = {t: t > 3 025.0 n t } Từ kết quả báo cáo 1 ta có T qs = 2.609004 Với mức ý nghĩa =0.05, n = 13 ta có 10 025.0 t = 2.228 T qs = 2.609004 > 2.228 = 10 025.0 t T qs W bác bỏ giả thuyết H 0 hay biến KH đa vào là phù hợp. 3.4.1.2 Kiểm định sự bằng không của 3 Tiêu chuẩn kiểm định :T qs = )( 0 3 3 Se 3 025.0 n t Miền bác bỏ giả thuyết W = {t: t > 3 025.0 n t } Từ kết quả báo cáo 1 ta có T qs = 8.630046 Với mức ý nghĩa =0.05, n = 13 ta có 10 025.0 t = 2.228 T qs = 8.630046 > 2.228 = 10 025.0 t T qs W bác bỏ giả thuyết H 0 hay biến CPI đa vào là phù hợp. 3.4.2.Kiểm định các biến bỏ sót Kiểm định Ramsey Báo cáo 4: Ramsey RESET Test: F-statistic 0.010897 Prob. F(1,9) 0.919150 Log likelihood ratio 0.015731 Prob. Chi-Square(1) 0.900189 Test Equation: Dependent Variable: GV Method: Least Squares Date: 10/27/07 Time: 08:19 Sample: 1991 2003 Included observations: 13 Variable Coefficient Std. Error t-Statistic Prob. KH 0.010685 0.005021 2.127940 0.0622 CPI 1.598070 0.798100 2.002343 0.0763 C -13.98721 9.559455 -1.463181 0.1774 FITTED^2 -0.000615 0.005890 -0.104389 0.9191 R-squared 0.884690 Mean dependent var 13.70000 Adjusted R-squared 0.846253 S.D. dependent var 25.32673 S.E. of regression 9.930747 Akaike info criterion 7.676808 Sum squared resid 887.5777 Schwarz criterion 7.850639 Log likelihood -45.89925 F-statistic 23.01683 Durbin-Watson stat 1.185671 Prob(F-statistic) 0.000148 Thu đợc R 4 2 = 0.88469 - Để xem mô hình ban đầu có bỏ sót biến hay không ta đi kiểm định cặp giả thuyết sau: H 0 : mô hình chỉ định đúng H 1 : mô hình chỉ định sai - Tiêu chuẩn kiểm định F - kiểm định sự thu hẹp của hàm hội qui: F= 1)1( )4)(( 2 4 22 4 R nRR ~ F(1; n-4) - Miền bác bỏ: W = {F: F > F 05.0 (1;n-4)} Giá trị thống kê quan sát: F qs = 0.010897 Giá trị tới hạn: F 05.0 (1; 9) = 5.12 F qs = 0.010897 < F 05.0 (1; 10) = 5.12 F qs W Cha có cơ sở bác bỏ H o Vậy với mức ý nghĩa = 0.05 mô hình chỉ định đúng. 3.5, Phát hiện tính chuẩn của sai số ngẫu nhiên U. 0 1 2 3 4 5 -15 -10 -5 0 5 10 15 20 Series: Residuals Sample 1991 2003 Observations 13 Mean 1.78e-15 Median -0.730565 Maximum 16.51875 Minimum -12.03250 Std. Dev. 8.605485 Skewness 0.385999 Kurtosis 2.226298 Jarque-Bera 0.647072 Probability 0.723586 Để kiểm tra mô hình ban đầu sai số ngẫu nhiên U có phân bố chuẩn hay không ta dùng tiêu chuẩn kiểm định Jarque-Bera. - Ta đi kiểm định cặp giả thuyết sau: H 0 : mô hình có sai số ngẫu nhiên phân phối chuẩn H 1 : mô hình có sai số ngẫu nhiên không phân phối chuẩn - Tiêu chuẩn kiểm định: JB= n( 24 )3( 6 22 + kS ) ~ )2(2 - Miền bác bỏ: W ={JB, JB > )2(2 } Từ kết quả báo cáo ta thu đợc JB qs = 0.647072 Với =0.05, JB qs =10.647072 < )2(2 05.0 = 5.99147 JB W , cha có cơ sở bác bỏ H 0 . Vậy sai số ngẫu nhiên có phân phối chuẩn. 5. Phân tích dựa vào kết quả ớc lợng. 5.1. Khi một biến độc lập thay đổi một đơn vị thì biến phụ thuộc thay đổi nh thế nào? 1 = -13.17907 cho biết khi KH = 0, CPI = 0 thì GV trung bình của VN là- 13.17907 % 2 = 0.010336 cho biết nếu giữ nguyên CPI thì khi KH tăng lên 1triệuUSD thì GV tăng 0.010336% 3 = 1.517031 cho biết nếu CPI tăng 1% thì GV tăng 1.517031% 5.2. Nếu giá trị của 1 biến độc lập tăng thêm 1 đơn vị thì biến phụ thuộc thay đổi? Khi KH tăng 1 đơn vị khoảng tin cậy đối xứng với độ tin cậy 0.95 của 2 là: 2 - Se ( 2 ) t 10 025.0 2 2 + Se ( 2 ) t 10 025.0 Thay số vào ta đợc 0.002411 2 0.018261 Khi CPI tăng 1 đơn vị khoảng tin cậy đối xứng với độ tin cậy 0.95 của 3 là: 3 - Se ( 3 ) t 10 025.0 3 3 + Se ( 3 ) t 10 025.0 Thay số vào ta đợc 1.12538202 3 1.90867998 5.3. Sự biến động giá trị của biến phụ thuộc đo bằng phơng sai do các yếu tố ngẫu nhiên gây ra là bao nhiêu? Để trả lời cho câu hỏi này ta đi tìm khoảng tin cậy hai phía với độ tin cậy 1- = 0.95 của 2 là: )3( )3( 2 2/ 2 n n 2 )3( )3( 2 2/1 2 n n Thay số vào ta đợc 43.38466 2 222.1631 Vậy giá trị của GV đo bằng phơng sai do các yếu tố ngẫu nhiên gây ra nằm trong khoảng [43.38466; 222.1631] %. . Coefficient Std. Error t-Statistic Prob. C -5 .552102 99.54290 -0 .055776 0.9571 KH -0 .015391 0.136969 -0 .112369 0.9137 KH^2 1.58E-05 4.54E-05 0.347958 0.7381 KH*CPI -0 .005369 0.009169 -0 .585552 0.5766 CPI. tìm đợc R 2 -CPI = 0.024709 GV i = 1 + 2 CPI i +V i tìm đợc R 2 -KH = 0.787055 B 3 : Độ Theil m= R 2 {(R 2 - R 2 -CPI ) + (R 2 - R 2 -KH )}= 0.024709 + 0.787055 - 0.88455 = -0 .072786 m 0 136.64 17.5 1993 7.4 140 .98 5.3 1994 8 249.47 14. 4 1995 -3 284.96 12.7 1996 2.5 468.99 4.5 1997 -6 .6 400 3.6 1998 0.7 950 9 1999 -0 .2 1200 6.8 2000 -1 .7 1757 -0 .6 2001 5 1820 -0 .2 2002 19.4 2150
- Xem thêm -

Xem thêm: Báo cáo thực hành kinh tế lượng 14, Báo cáo thực hành kinh tế lượng 14, Báo cáo thực hành kinh tế lượng 14