Nonlinear oscillations of the third order systems. Part III Parametric oscillation

13 306 0
Nonlinear oscillations of the third order systems. Part III  Parametric oscillation

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Journal o f Technical Physics, J. Tech. P h y s 21, 2, 253 -26 5, 1980. Polish Academy o f Sciences, Institute o f Fundamental Technological Research, Warszawa. NONLINEAR OSCILLATIONS OF THE THIRD ORDER SYSTEMS PART m . PARAMETRIC OSCILLATION N G U Y E N V A N D A O (H A N O I) Introductio n "he theory o f the parametric oscillation o f the second-order system has been in- vestgated in a lot o f publications. F o r a long tim e it has played an im portant role in the theory o f nonlinear oscillations. R ecently, in som e problem s o f the dynam ics on e can mee. the param etric oscillation o f the third-order system [7], to the study o f w h ich this charter is devoted (cf. [11, 12]). n the first Section the approxim ate solution o f the m otion eq uation is constructed. The stationary solutions are studied. The second Section is concerned with the stability condition o f the stationary oscilla- tioi. T he R ou th-H urw itz criteria are taken out. The influence o f the C oulom b friction on the param etric oscillation is considered in the Sect. 3. In this case the resonance curve has the d o sed form . n Sect. 4 the influence o f the turbulent friction on the param etric oscillation is studied. T h i friction limits the growth o f the parametric oscillation and causes a considerable chaige in the rigidity o f the system investigated. Under the influence o f the com bination friction (Sect. 5), the resonance curve is simlar in quality to that in the case o f the C oulom b friction. It is o f closed form as w ell. 1. Construction o f A pp ro xim ate S olution Let us consider the parametric oscillation o f the system described by the third order diferential equation o f the form : (1 .) x '+ Ệ x + Q 2x + Ệ Q 2x + e [k x 3 + hx3 + R (x,x ,x )-cxco s y t] = 0, w b re Ệ ,Q ,k ,h ,c ,y are con stan ts and R (x ,x ,x ) is the function characterizing the ncilinear friction. W e assume that there is a resonance relation eA = Q2(l -Tj2), ri=-^Q- T hen, Eq. (1.1) can be written as: Ỉ54 Nguyen Van Dao ^ h e n 1.3) f ( x , X, x) = A X + ỆẠx + k x 3 + hx3 + R (x , X, x ) . A partial tw o -p a ram eters solu tio n o f (1.2) is fo u n d in the series: 1.4) X = ỠCOS + + EU1 ịa , ip, -y/j + e2u2 ịa , ip, -yfj + n w iich us (a , y, 0) are p erio dic fu n c tio n s o f 6 a nd w ith-th e period 2 71, an d a, ip are u ncto ns o f time d ete rm in ed fr om th e set o f e quatio ns: ~ = eAl(a,xp )+£2A 2{ a ,y )+ •••, ; i . 5 ) . ^ = eBL(a, ỳ )+ e2B 2(a, y>) + 1 ) d eterm in e th e functio n s US, A S, B S, first w c calculate: dx y ~dt = 2 d 2x • I A n . CUị \ 2 asm(p + s \A X cos(p—aB1sm(p+ + £ • • 9 y2 I d2ui \ — acoscp+ —yA ! sin(p — yaB1 COSẹ?+ - Ỵ T I + 8 1.6 ) í/3A' y 3 / 3 3 ổ3Mj \ 2 - ^ - 3- = asm 9? + £ I — ~ ^ -yM 1 cosẹ> + fl-Sj SÌ1199 + —^ 3 I + £ •••’ <p = y f + y . S ib stitu tin g E qs. (1.4), (1.6) in to (1.2) a nd co m parin g the coefficients o f e w ith eq ỉegrtes, w e ob ta in : Ô3U1 ô2u1 y 2 dul y 2 I y 2 \ 1.7) + sinọ? = - / o + ữ c o s ^ c c o s /o = / ịa c o s ọ ) , —-yứsinọ?, — -~ ac o sẹ> Ị. N)W, w e expan d th e fu n c tio n / o in the F o u rier series: 0 0 ; i . 8 ) / o = J j ? [qm(a)cosm(p+pm(a)sinm(p], m = 0 Nonlinear oscillations o f the third order systems. Part III 255 lere 2.71 q0 = — Ị fiacosq), — -y ứ sin ọ ? , — ^ị-ứcosọ?! d(p, o ' 271 I .9) qm = — J" /Ịa c o s ẹ ? , — ~-a sin ẹ > , — ^ -aco sọ?! cosmcpdcp, o ' . 271 pm = — Ị / Ị a c o s ạ ) , —-y ứ sin ọ ?, — —-a c o s ^ Ị smmĩpdcp. Ố ' T he function «! satisfying Eq. (1.7) will be fou nd in the form 1.10) ^ [G„(a, yj)cosn<p + B n(a, y)sinm<p] /ith the additional con dition that it contains no resonance terms. It will be seen later hat this condition is equivalent to the following: the function Wi does not contain COS99, in 99. By substituting (1.8), (1.10) into (1.7), w e have1.10) into (1.7), w e have: |yyGn- ! / / „ j s i n A ! 9 5 - ỈƠ„Ị cosnọ? - Ị-^-v41 + y £ a 5 iỊco s 9 9 + Ị^2 ~ ứjBi - y M ij s i n g j = c a c o s ỹ c o s y í 00 - ) (ạmcosrn(p+pmsinm<j - y , (<7 mCoswẹ>+/>msinwẹ>). m = 0 By com parin g the harm onics sinọ?, COS op, one obtains: y Al +yỆaB1 = - - ^ c o s 2 rp+q^ (1.12) y Ệ A i - ^ - a B i = - - ^ - s i n 2 y + P i By com paring the other harm onics, w e get: nguy en van ưao On solv in g Eqs. (1.13), w e ha ve: (1 — 2 ,, -ị- accos2v>j ổ 3, c " = y / y £ . I - y + £/>„ - |-j-r tứ cco s2y > + -^ -a c s i n 2 y I ỗ 3n = n 2 r I t u i Y ' 1— — U( („*_!) Ị^+rl^Ị From (1.12), w e have Q 1 £ < /0 sin99> + .í2</0 cosẹ>> — -Ị-ac COS 2^-* Ạ-OCỆs in 2 y ^ = i 2 ( l 2 + £ 2) ’ ( 1 . 1:) £ < /o c os<p> — í2< /0sinẹ>> + -^-acsin2y> — ^-flccos2y> Bl = a(Ệ2 + ũ 2) ’ wheie ( F ) is th e o perator o f the a veraging function F on tim e. By p uttin g in E q. (1. fo fn m Eqs. (1.3) an d (1.7) a nd calcu latin g, w e h a ve th e fo llo w in g eq u a tio ns o f th e Í approxim ation: (1.10 da £ d t = Ệ2 + Q 2 [ 8 dip ■ E dt = a (i2 + Q*) ĩ-^ -(fc —£Q 2h)a3 — -^ -ứ ccos2y — -^ -^ sin 2 ^ y + i?! j , Ị^— (Ệ2 + & 2) A a + -^-(Ệk + Q*h)a3 + ^ - s i n 2 xp- ac . ■ ~ —ỆQos2tp+R .2 Y w h ec 2Ệ R i = <JR0COSỌỊ>4- — </?0sino9>, y 2Ẽ ' l . n R 2 = — ( R 0c o s (p )-(R 0sinq)'), y i v y 2 R q = Rịacoscp, — |- a s i n (p, — — acoscp Ttus, in the first a p p r o xim a tio n w e h ave a partial so lu tio n o f E q. (1.1) in th e for L 2 Nonlinear oscillations o f the third order systems. Part ỈII 257 iere a and Iff are the solution o f Eqs. (1.16). The refinement o f the first approxim ation is: 9) .Y = a c O S 0 Ệ \ Ệq„—Qnp„+ \-ịnacsm2y)— ~accos2tp jỗ3n ~Ó2{n2-ỉ)(Ệ 2 + n2Q2) - X X C O S /7ọ? + Qnq„ + Ệp„ — ị^-nac cos2ĩf + y -ứcsin 2^Ị<5 3n Q20 ? - ì ) ( Ệ 2 + n2Q 2) sin H(p th a and y> being the solution o f Eq. (1.16). The stationary solution o f the set (1.16) is determ ined from the equations: .2 0) ^ - a 0sin2ĩp + ^ - c o s l i f = -— { k - Ệ Q 2h ) a ị + R y , l y 4 o ~ ~ a 0co$2y.'- sin 2 y = — (Ệ2 + Q 2)Aa0 + -^-(Ệk + Q4h)ao + R 2- 2 y 4 y 4 y By elim inating the phase y), we obtain the equation for the am plitude a0 : .21) W(ao,y) = 0 here 3 ~>QZ .22) W(a0, y) : ỆA+ 4 ka2° + a0( f + Q 2) V 1 + > Rl + 0 2 c 4 Relation (1.21) is plotted in Fig. 1 for the case R = 0, -Ệ = ũ = Ỉ, c* = 0.05, kị, —0.1 and /7* = 0 (curve 1), /7 * = 0.05 (curve 2) and /7* = 0.1 (curve 3). From this cure, it is seen that with increacing h, the maximum of the amplitudes decreases and le nonlinear system b ecom es harder. In Fig. 2 the resonance curves are presented for ie case R = 0, Ệ = o = \, c* = 0.05, /?* = 0.1 and k* = 0 (curve 1), k* = - 0 .0 5 :urve 2), /c* = -0 .1 (curve 3). With decreasing k, the maximum of the amplitude ecreases and the nonlinear system becom es softer. Ịả'* = -Qĩk, /7* — c* — p T c j- F i g . 1 i J o u rn a l T ec hn . Ph ys. 2/80 Nguyen Van Dao B\ contrast with the parametric oscillation in the well known second-order system, ie riiidity of the nonlinear system and the maximum of the amplitudes of oscillation ĩre tepend on the com bination o f the param eters h and k. The system considered is hart system if T = £ k + Q Ah > 0 and a soft one if T < 0. I f Q = ỆQ2h — k is positive, len tie m axim um o f am plitudes decreases w ith increasing Q. 2. S tability o f S tationary O sc illa tio n F ist we shall con sider the stability o f the stationary solution a0 Ỷ 0 o f Eqs. (1.16). ubsttuting in them a = a0+ỗa, y = ip0+ồy) 'iíh í0 , xp0 being the solution of Eqs. (1.20), we have the following variational equations: ỊỊ^-(& -£í22/7)ứẳ + aoỊ— Ị j < 5 c - (Ậ2 + Q 2)Aa0 dt Ệ2 + Q 2 + 2. 1) + *tfỉc+ữ*h)al 2 y cỉôyj - 2 ỗ y > Ị, I Ả-(Ệk + QVi)a0+ Ị * ì Ị ]ôa + ị j { k - Ệ Q 2h ) a l + ~ R ^ ỏ v } - dt Ệ2 + Q 2 Tie characteristic equation of this system is: 2.2 ) yheri 2.3) Ằ2~Z + S = 0 , z = 5 = ễ2 + Q 2 r ~ ( i ' - ỉ ữ 2/ i ) « ỗ + — (0 0 * 1) ' ] . s2a [ 2/1 4Q 2(Ệ2 + Q 2) X y + 2 Q2 Ỵy(Ệk + L)4h) a0 -f 4Í22 (— 2 + - ị ( k 2 + Q 6h2)aị + 3ao(fc- í f i V , ) ( f } + + « ( £ ) ( £ ) ’ +4 í ă í ă i + Ệ2 + w + a 0 \ a 0 Nonlinear oscillations o f the third order systems, Pari III 25! ( 2 .‘ ) rhe expression z can be also written in the form: d W e2a 0 4 Q 2(Ệ2 + Q 2) da0 h er w is o f the form (1.22). C onseq uen tly, the stability condition o f stationary solu tioi is: (2.3 3(k -ỆQ 2h)al + 2(a0R iy < 0, ÔÌV (2.0 ôa0 > 0 . Mow, let us consider a special case o f the stability o f equilibrium a = 0, w h en th sysem (1.16) has the form : ( 2 .') da £ [ 3 r, c „ ca - . _ 1 = ~ỆĨ + Õ T [ 8 4 1ccos2 ^ ~ 2 ’ = ~nr + 5 r [7 (f 2+ fi2^ a + Ậ + . i/r £2 + £ 2 8 <7 dtp h i c ■ n c a t o — flsin2v> — - y - f c o s 2 ^ . (2.r or In this case we put a = ỗữ, y = ^o + ổ y and the variational eq uation s are: d ò a dt EC I y \ = “ Ị 2 c o s 0 + ^ ° / 0 = V + Q2)A 4- -ysin2vj0 - f cos2y>o ỗứ £C • M c —— = 1 ■ ■_ sin(2u’o 4- v) 00, eft 2 y ý Ệ r + ữ 2 (2.0 0 £C 2y (Ệ 2 + Q 2) - (Ệ2 + Q2)A - \/ệ2 + Q2 cos(2tPo + O) ỗ a , 0 = arete V 2Ệ • The second Eq. (2.9) yields: cos(2 tpo + 0) — —- A y i 2 + Q 1 sin(2 Y’o + ớ) = ± ~ \ / c 2—4(Ệ2 + £}2) A 2 am therefore the first Eq. (2.9) is o f the fo rm 1: dòa ~ dt~ ^ ỹ | = f » V - 4 T F ’ + i F ) 2 * í « . Hence, there fo llow s the stability co ndition o f equilibrium a = 0 c M l > 2 ] /ệ 2 + Q 2 8* Nguỵetì Van Dao 2.10) rị1 < 1 , ĩ]2 > 1 H — = = = = , ĩ] = y/2í2. 2í 2 2 | / | 2 + £ 2 2& 2 > / f 2 + í 2 2 In the figures presented the stability conditions are satisfied on the lines in b old face. 3. Th e In fluence o f C oulom b Fric tio n Let us consider the case 3.1) R(x, X , x) = ÌĨQsig n * , vhere h0 is a positive constant, •+ 1 if À '> 0, 3.2) sig n * = — 1 if X < 0, 0 if X = 0. In this case it is easy to verify that 3.3) 71 h0 if Ũ ^ 0 , <i?0sinọ9) = 'o if a = 0 . <i?0cosọ)) = 0 for all a. N o w , Eqs. (1.16), (1.17), (1.22) are o f the form : for a 0: da £ ~dt = Ệ2+ Q 3.4) ; dt a{Ệ2 + Q 2) Ợc — ỆQ2h)a3 ^-ứcos2y — ^£sin2y> — p ~ ^ o | » ± ( p + Q *)Aa+ — (Ệk + Q V i W + ^ s m 2 ụ ,- 3.5) ca f- ", 2 ~ f c o s 2 v + 2 Ệ , Ri — 77 n II R-> = —-ho 71 V - (ỉ a + f f a V + O * L + ị « Í V + ^ h X - $ 3.6) The equation w — 0 yields: ;3.7) r 1 + ~4 Ỵ ị 2 + -Q 2 ) (Ệk* + Q*h*)a 2 + ntf2 + Q'2)a 1 * £ 2 + £ 2 1 -X / 1 2 + Q 2 VÍP V 4 - ? 1 4 f J 2 - 0 ( f / i J|(i 2 2 - A - lls) f l 2 + - ^ - / i S , 7 1 (2 (3.8) ố‘/c yt = /; = e] \ /;* = E^ ° * Í 22 ’ * ~ Í 2 2 ’ 0 Í 3 2 ’ c * = £C Í P V y 2 Q ■ Nonlinear oscillations o f the third order systems. Part III 261 In Fie. 3 the dependence of a0 on i f is presented for the case Ệ = Q = 1, /z* = 0.05, ¥ — —0.1, c* = 0.05 and h0 = 2 .5- 10-3 (curve I), /? 0 = 5 • 10-3 (curve 2). H ere the :sonance curve has a closed form. H owever, only the upper branch lim ited by the ỉrtical taneencies corresponds to the stability o f the stationary cond ition (2.6). T he lerease in h0 leads to the narrowing o f the resonance curve. W ith sufficiently high values f h0, there is no stationary oscillation. T o find the expressions (1.14) first we expan d: 00 4 V I 1 sign sin 09 = — > ——-—— sin(2;?7+ 1) 09. 7r 2m + 1 m — 0 N o w the form ulae (1.9) are o f the form : Po = P i = 4s = 0, i# l , 3 , q1 = ỆAa + ~ kaz, Pl = - A Q a - Ặ h Q 3a3, 4 g3 = - L ka3, p 3 = ~ h ũ 3a3 r\ _ 4/7 o ' o Pin, - 0 , p 2m+1 - ^ i + T r ’ m ^ Therefore, the expressions (1.14) are: Ho = G0 = 0, - - T f S W T W ) ( ^ 0 + ^ - 3 ^ - f « > c o s 2 V + 3i2Ca s m 2 ,, |, " 3 = W t f ‘ + 9Q2) I - ^ - 0 + ■§- (3fr + n3 - 3 £ c a c o s2 y - ĩ c a s i n 2 y I , 2m+1 nQ m (m + l ) [ f 2 + (2m + l ) 2i32] ’ ^ 2m ’ ^ 2m+1 7T Í32w ( w + l ) ( 2 m + 1 )[£ 2 + ( 2m + 1) 2Í 2 2] ’ 2m Nguyen Van Dao 4. The Influence of Turb ulen t Frictio n on P ara m etric O scillatio n N ow, we turn to the study on the case o f the turbulent friction, when R(x, X, x) has 2 form: .1) R(x, x,x) = /?2 x 2sign x , lere h2 is a positive constant. It is easy to see that: ( / ỉo S Ì n ọ ? ) = .2) — ■ 2,71 <R 0coscp) = 0, d therefore Eqs. (1.16) take the form: for a =£ 0: I ? _ 2 h2y a , da dt dtp Ệ2+ Q 2 (ỆQ2h —k)a3 + ~a co s2tp+ -^ -£sin 2 y > + ^ - h 2Qa2 , 4 4 Í2 371 j w = £ dt a(Ệ2 + Q2) ^ 7 ( f 2 4 - £ ? 2) z l a 4 - (£Ả ' + í 24/0 ữ 3 + - ^ - s i n 2y> 2Q Ệ c o s 2 w + -^ -A 2 i3 2a 2| . 4Í2 By com paring with Eq. (1.16), w e have: * , - .4) 3ti hi Qaz. R2 = -Z— h 2 Qza2. 07Z Consequently, the expression (1.22) is: \ 2 U Ỉ 5) W(a0, y ) = U A + ~ k a l\ + q 4 a + ± h Q 2a2o + ^ f - h 2a0 Fig. 4. [...]... approach to the study o f third- order nonlinear systems , J S o u n d V ib r , 40, 2, 19 75 > A ONDL, Notes on the solution o f forced oscillations o f a third- order non-linear system, J S o u n d V ib r , 3 7 ,2 , 1974 j A T o n d l , A d d itio n a l n o te o n a K z ♦ s in s k i, th ird -o r d e r s y s t e m , J S o u n d Vibr., 47, 1, 1976 N g u y e n v a n D a o , Parametric oscillation o...263 Nonlinear oscillations o f the third order systems Part III T h e eq u ation V2 w — 0 y ie ld s : 4 (Ệ 2 + Q 2) ^ k * + Q *h * ) a ° + 37i(Ệ2 + Q 2) h * ũ o ± 1+ v , i 2+ ữ 2 2 ± Ệ2 + Q 7 ^ // A c ì , } h* = J m* 9 Ỉ 2 Q2 ’ V ' -... 1963 z )SINSKI, G B o y a d jie v , The vibrations o f the system with non-linear friction and relaxation with slo\ly variable coefficients, P ro c 4th C o n fe re n c e o n N o n - L in e a r O s c illa tio n s, P ra g u e 196 7 H V S r i r a n g a r a j a n , p S r in iv a s a n , Application o f ultraspherical polynomials to forced oscillations o f third order non-linear system, J S o u n d... m e th o d s ) H C a n d e r e r , N ic h tlin e a r e M e c h a n ik , o f n o n -lin e a r Berlin o s c illa tio n s , H a n o i 1969 1958; N g 'Y E n v a n D a o , Non-linear oscillations o f the third order systems Part / Autonomous systems, J re ch n P h y s , 2 0, 4, 1979 N g ' Y E n v a n D a o , N o n - l in e a r o s c illa tio n s o f th e t h i r d o r d e r s y s te m s P a r t I I ... n d Vibr., 47, 1, 1976 N g u y e n v a n D a o , Parametric oscillation o f an uniform beam in a Theological model,P ro c 2nc N a tio n a l C o n fe re n c e o n M e c h a n ic s , H a n o i 19 77 } N 'í B o g o liu b o v , Y u a M it r o p o ls k y , Asymptotic methods in the theory o f non-linear oscillations, M o c o w 1963 K Nguyen van r* Dao, F u n d a m e n ta l m e th o d s ) H C a n d... tn e g o n a d rg a n ia p ara m etry czn e R o z p a t rz o n o kze d g a n ia w p rz y p a d k u k o m b in a c y jn e g o ta rcia N o n lin e a r o sc illa tio n s o f th e th ir d o rd er systems Part 111 265 p e 3 K) M e HEJIH H EH HLIE KOJIEEAHHil CH C TEM T P E T L E rO nO PflJIK A ^ ỈA C T L I I I IIA P A M E T P M ^ E C K J iE K O J IE B A H H H HacTOHiuan paooT a c o cra B jifleT TpeTLK) . Warszawa. NONLINEAR OSCILLATIONS OF THE THIRD ORDER SYSTEMS PART m . PARAMETRIC OSCILLATION N G U Y E N V A N D A O (H A N O I) Introductio n "he theory o f the parametric oscillation o f the. with the parametric oscillation in the well known second -order system, ie riiidity of the nonlinear system and the maximum of the amplitudes of oscillation ĩre tepend on the com bination o f the. ’ 0 Í 3 2 ’ c * = £C Í P V y 2 Q ■ Nonlinear oscillations o f the third order systems. Part III 261 In Fie. 3 the dependence of a0 on i f is presented for the case Ệ = Q = 1, /z* = 0.05, ¥ —

Ngày đăng: 08/04/2015, 15:29

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan