Chuyên đề Đại số luyện thi đại học

27 494 0
  • Loading ...
    Loading ...
    Loading ...

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Tài liệu liên quan

Thông tin tài liệu

Ngày đăng: 27/11/2014, 07:12

Hướng dẫn giải CDBT từ các ĐTQG Toán học – 97  Chuyên đề 3: ĐẠI SỐ  Vấn đề 1: PHƯƠNG TRÌNH CHỨA CĂN A. PHƯƠNG PHÁP GIẢI 1.         2n 2n B0 A B AB (với n  * ) 2. 2n 2n B 0 (hayA 0) A B AB       (với n  * ) 3.     2n 1 2n 1 A B A B (với n  * ) 4.                2 A0 B0 A B C A B C 5.                 2 2 A0 B0 A B C C0 A B C B. ĐỀ THI Bài 1: ĐẠI HỌC KHỐI B NĂM 2011 Giải phương trình: 2 3 2 x 6 2 x 4 4 x 10 3x       (x  R). Giải Điều kiện: –2  x  2. Đặt t = 3 2 x 6 2 x    t 2 = 9(2 + x) – 36    2 x 2 x + 36(2 – x) = 9(10 – 3x – 2 4 4 x ) Phương trình đã cho trở thành t – 2 t 9 = 0  t = 0 hoặc t = 9.  Với t = 0: 3 2 x 6 2 x 0     3 2 x 6 2 x    9((2 + x) = 36(2 – x)  6 x 5  (Thỏa điều kiện–2  x  2) .  Với t = 9: 3 2 x 6 2 x 9     3 2 x 6 2 x 9    (*). Do –2  x  2 nên 3 2 x 6 6 2 x 9 9          . Suy ra phương trình (*) vô nghiệm. Hướng dẫn giải CDBT từ các ĐTQG Toán học – 98 Vậy phương trình đã cho có một nghiệm 6 x 5  . Cách khác: Đặt u = 2x và v = 2x (u  0, v  0) thì :  u.v = 2 4x  2 2 u 2 x v 2 x         u 2 + 4v 2 = 10 – 3x và u 2 + v 2 = 4 Do đó phương trình đã cho trở thành 22 22 3u 6v 4uv u 4v (1) u v 4 (2)           (1)  3u – 6v = u 2 + 4v 2 – 4uv  3(u – 2v) = (u – 2v) 2  u – 2v = 0 hoặc 3 = u – 2v ª Với u = 2v thế vào (2) ta được 2 4 v 5   2 v 5   4 u 5  Suy ra: 4 2x 5 2 2x 5           16 2x 5 4 2x 5           6 x 5  ª Với u = 3 + 2v thế vào (2) ta được (3 + 2v) 2 + v 2 = 4  5v 2 +12v +5 = 0 Phương trình này vô nghiệm vì v  0 . Bài 2: ĐẠI HỌC KHỐI B NĂM 2010 Giải phương trình        2 3x 1 6 x 3x 14x 8 0 (x  ). Giải Điều kiện:    1 x 6 3 Với điều kiện 1 x 6, 3    phương trình đã cho tương đương:                2 3x 1 4 1 6 x 3x 14x 5 0            3x 15 x 5 (x 5)(3x 1) 0 3x 1 4 1 6 x  x – 5 = 0 hay         31 (3x 1) 0 3x 1 4 1 6 x Nhận xét:  1 x 3 nên 3x + 1  0 Do đó         31 (3x 1) 0 3x 1 4 1 6 x vô nghiệm Vậy phương trình đã cho chỉ có một nghiệm x = 5. Hướng dẫn giải CDBT từ các ĐTQG Toán học – 99 Bài 3: ĐẠI HỌC KHỐI A NĂM 2009 Giải phương trình:   3 2 3x 2 3 6 5x 8 0 x      . Giải Điều kiện x  6 5 . Khi đó đặt      3 u 3x 2 và v 6 5x, v 0 (*) Ta có        3 2 u 3x 2 v 6 5x   32 5u 3v 8 Phương trình đã cho trở thành hệ:        32 2u 3v 8 5u 3v 8                2 3 8 2u v 3 8 2u 5u 3 8 3             32 8 2u v 3 15u 4u 32u 40 0                 2 8 2u v 3 u 2 15u 26u 20 0  u = 2 và v = 4 (nhận) Thế u = 2 và v = 4 vào (*), ta được:          3 3x 2 2 6 5x 4         3x 2 8 6 5x 16 x = 2 (nhận) Vậy phương trình có nghiệm x =  2 Bài 4: ĐẠI HỌC SÀI GÒN KHỐI D NĂM 2007 Giải phương trình:     22 3 x 5x 10 5x x Giải Đặt t =  2 x 5x 10 (với t  0 ) suy ra t 2 = x 2 – 5x + 10  5x – x 2 = 10  t 2 Phương trình đã cho trở thành: 3t = 10  t 2    t 5 loại t2       Vậy  2 x 5x 10 = 2  x 2  5x + 10 = 4       x3 x2 . Bài 5: CAO ĐẲNG TÀI CHÍNH – HẢI QUAN NĂM 2007 Giải phương trình:   3x 7 x 1 = 2. Giải Điều kiện: x  1 Với điều kiện x  1, phương trình đã cho tương đương: Hướng dẫn giải CDBT từ các ĐTQG Toán học – 100   3x 7 x 1 + 2  3x + 7 = x + 5 + 4 x1  x + 1 = 2 x1  (x + 1) 2 = 4(x + 1)       x1 x3 (thỏa x  1) Bài 6: ĐẠI HỌC KHỐI D NĂM 2006 Giải phương trình:      2 2x 1 x 3x 1 0 (x  ). Giải Đặt t =       2 2 t1 2x 1 (t 0) t = 2x 1 x = 2 . Phương trình đã cho trở thành:     42 t 4t 4t 1 0          22 (t 1) (t 2t 1) 0 t 1, t 2 1 (nhận) Với t = 1 ta có x = 1. Với t = 21 , ta có x = 2  2 Vậy phương trình có nghiệm: x = 1; x = 2  2 Bài 7: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI B NĂM 2006 Giải phương trình:         2 3x 2 x 1 4x 9 2 3x 5x 2 (1) Giải Đặt t =      3x 2 x 1 t 0 suy ra      22 t 4x 3 2 3x 5x 2 22 4x 2 3x 5x 2 t 3.      Khi đó: (1) trở thành: t = t 2 – 6  t 2 – t – 6 = 0             t 2 loại t 3 nhận Khi đó: (1)     3x 2 x 1 3 (*) Điều kiện:       3x 2 0 x1 x 1 0 (a) Với điều kiện x  1, phương trình (*) tương đương: 3x – 2 + x – 1 +   2 3x 2 x 1 9     3x 2 x 1 6 2x                         2 2 6 2x 0 x3 3x 2 x 1 6 2x x 19x 34 0              x3 x2 x2 x 17 thoả điều kiện (a) Vậy nghiệm của phương trình là x = 2. Hướng dẫn giải CDBT từ các ĐTQG Toán học – 101 Bài 8: ĐỀ DỰ BỊ 2 - ĐẠI HỌC KHỐI D NĂM 2006 Giải phương trình: x + 2 7x = 2       2 x 1 x 8x 7 1 (x  ) Giải Điều kiện              2 7 x 0 x 1 0 x 8x 7 0 1  x  7 Với điều kiện 1  x  7, phương trình đã cho tương đương: x – 1 – 2         x 1 2 7 x x 1 7 x = 0            x 1 x 1 2 7 x x 1 2 = 0         x 1 2 x 1 7 x = 0  x 1 2 x 5 x4 x 1 7 x                Bài 9: ĐẠI HỌC KHỐI D NĂM 2005 Giải phương trình sau:      2 x 2 2 x 1 x 1 4 Giải Điều kiện: x   1 Phương trình đã cho tương đương với       2 2 x 1 1 x 1 4 2 x 1 1 x 1 4 x 1 2 x 3 nhận                 Bài 10: ĐỀ DỰ BỊ 1  ĐẠI HỌC KHỐI B NĂM 2005 Giải phương trình:     3x 3 5 x 2x 4 . (1) Giải Điều kiện:             3x 3 0 5 x 0 2 x 5 2x 4 0 (a) Với điều kiện 2  x  5, phương trình (1) tương đương:     3x 3 2x 4 5 x                                2 3x 3 2x 4 5 x 2 (2x 4)(5 x) (2x 4)(5 x) x 2 (2x 4)(5 x) (x 2) (x 2) 2(5 x) (x 2) 0 x 2 x 4 thỏa điều kiện (a) Hướng dẫn giải CDBT từ các ĐTQG Toán học – 102 Bài 11: Chứng minh rằng phương trình sau có đúng một nghiệm: x 5  x 2  2x  1 = 0. Giải Ta có x 5  x 2  2x  1 = 0 (1) (1)  x 5 = (x + 1) 2  điều kiện x  0 Với 0  x < 1 thì VT < 1 và VP  1  (1) vô nghiệm Do đó chỉ xét x  1 Xét f(x) = x 5  x 2  2x  1, x  1 f'(x) = 5x 4  2x  2 = 2x (x 3  1) + 2(x 4  1) + x 4 > 0, x  1 Do đó f(x) tăng trên [1; +), f liên tục Và f(1); f(2) < 0 nên f(x) = 0 luôn có nghiệm duy nhất. Bài 12: Giải phương trình:        2 x 4 x 4 2x 12 2 x 16 . Giải  Điều kiện:       x 4 0 x4 x 4 0  Đặt t =      x 4 x 4 t 0  t 2 = 2x +  2 2 x 16 Phương trình (1) trở thành: t 2 – t – 12 = 0       t4 t 3 (loại)  Với t = 4:    x 4 x 4 4  2x +  2 2 x 16 16 và x  4     2 x 16 8 x và x  4                    2 2 4 x 8 4 x 8 x5 x5 x 16 8 x .  Vấn đề 2: BẤT PHƯƠNG TRÌNH CHỨA CĂN A. PHƯƠNG PHÁP GIẢI 1. 2 B 0 A B A 0 A B           2.             2 B 0 B 0 A B hay A 0 A B 3.       B 0 A B A B Hướng dẫn giải CDBT từ các ĐTQG Toán học – 103 B. ĐỀ THI Bài 1: ĐẠI HỌC KHỐI A NĂM 2010 Giải bất phương trình:      2 xx 1 1 2(x x 1) Giải Điều kiện x  0. Khi đó:      2 xx 1 1 2(x x 1)           2 2 x x 1 2(x x 1) 0 1 2(x x 1) (*) Nhận xét: Mẫu số: 2 2 1 3 3 1 2(x x 1) 1 2 x 1 0 2 4 2                  Do đó bất phương trình (*) trở thành:      2 x x 1 2(x x 1) ≤ 0        2 2(x x 1) x x 1                   2 2 x x 1 0 2(x x 1) x x 1                   22 x x 1 0 2(x x 1) x x 1 2x x 2x 2 x                2 x x 1 0 x x 1 2x x 2 x 0                2 x x 1 0 (x 1) 2 x(x 1) x 0              2 x x 1 0 (x 1 x) 0              x x 1 0 x 1 x 0             x (1 x) 1 0 x 1 x         2 0 x 1 x (1 x)           2 0 x 1 x 3x 1 0          0 x 1 35 x 2    35 x 2 Cách khác: Điều kiện: x  0. Vì     2 1 2(x x 1) 0 nên Hướng dẫn giải CDBT từ các ĐTQG Toán học – 104      2 xx 1 1 2(x x 1)       2 x x 1 2(x x 1) (1) • x = 0: (1) không thỏa. • x > 0: Chia hai vế của bất phương trình (1) cho x ta được (1)          11 x 1 2 x 1 x x          11 2 x 1 x 1 x x Đặt       2 11 t x x t 2 x x (1) trở thành:               2 22 t1 2(t 1) t 1 2t 2 t 2t 1 (*) (*)          2 t1 t 2t 1 0           2 t1 t 1 0  t = 1 Do đó:       1 x 1 x x 1 0 x 15 x 6 2 5 3 5 2 x 42 15 x (loại) 2                . Bài 2: CAO ĐẲNG KHỐI A, B, D NĂM 2009 Giải bất phương trình:   x 1 2 x 2 5x 1 x      Giải     x 1 2 x 2 5x 1                              2 x2 x2 x2 2 x 3 x 1 x 2 2 x x 6 0  2  x  3. Bài 3: CAO ĐẲNG KỸ THUẬT CAO THẮNG NĂM 2007 Giải bất phương trình:      22 5x 10x 1 7 2x x . (1) Giải      22 5x 10x 1 7 2x x Điều kiện để căn bậc hai có nghóa là: 5x 2 + 10x + 1  0       5 2 5 5 2 5 x hoặc x 55 (*) Với điều kiện đó ta có: (1) Hướng dẫn giải CDBT từ các ĐTQG Toán học – 105          22 5 5x 10x 1 36 5x 10x 1 (*) Đặt     2 t 5x 10x 1, t 0 (*) trở thành t 2 + 5t – 36  0  t  4 (nhận)  t  9 (loại) Với t  4, ta có:    2 5x 10x 1 4  x 2 + 2x – 3  0  x  3  x  1 (những giá trò này đều thỏa điều kiện (*)). Bài 4: CAO ĐẲNG BÁN CÔNG HOA SEN NĂM 2007 Giải bất phương trình:  2 x 4x > x – 3. (1) Giải Điều kiện: x 2 – 4x  0  x  0  x  4 Trường hợp 1: x – 3 < 0  x < 3: (1) đúng so sánh với điều kiện được x  0 Trường hợp 2: x  3 (1)  x 2 – 4x > x 2 – 6x + 9  x > 9 2 So với điều kiện x  3 ta nhận x > 9 2 Kết luận: nghiệm x  0; x > 9 2 Bài 5: ĐẠI HỌC KHỐI A NĂM 2005 Giải bất phương trình:     5x 1 x 1 2x 4 Giải Điều kiện:            5x 1 0 x 1 0 x 2 2x 4 0 Khi đó bất phương trình đã cho tương đương với              5x 1 2x 4 x 1 5x 1 2x 4 x 1 2 (2x 4)(x 1)  x + 2 >         22 (2x 4)(x 1) x 4x 4 2x 6x 4       2 x 10x 0 0 x 10 Kết hợp với điều kiện ta có: 2  x < 10 là nghiệm của bất phương trình đã cho. Bài 6: ĐỀ DỰ BỊ 2 Giải bất phương trình:      2 8x 6x 1 4x 1 0 Giải      2 8x 6x 1 4x 1 0      2 8x 6x 1 4x 1 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 106 2 22 2 11 xx 42 8x 6x 1 0 1 4x 1 0 x 4 8x 6x 1 (4x 1) 8x 2x 0 11 xx 11 42 x x . 1 42 x 0 x 4                                                 Bài 7: ĐỀ DỰ BỊ 1 Giải bất phương trình:     2x 7 5 x 3x 2 (1) Giải Điều kiện         2x 7 0 5 x 0 3x 2 0   2 x5 3 (a) (1)      2x 7 3x 2 5 x         2x 7 3x 2 5 x 2 3x 2 5 x    3x 2 5 x 2  (3x – 2)(5 – x)  4  3x 2 – 17x + 14  0  x  1  x  14 3 So với điều kiện (a) ta có nghiệm     2 14 x 1 hay x 5 33 Bài 8: Giải bất phương trình:         2 2 x 16 7x x3 x 3 x 3 Giải Điều kiện                    2 x3 x 3 0 x 4 x4 x 16 0 x4 Bất phương trình đã cho tương đương với              22 2 x 16 x 3 7 x 2 x 16 10 2x      2 2 2 10 2x 0 10 2x 0 V 2 x 16 10 2x x 16 0               [...]... u = 118 x  0,v  y  0 (*) Hướng dẫn giải CDBT từ các ĐTQG Toán học –  u2 v  uv2  6  Đưa về hệ:  4 2 2 4  u v  u v  20  u  1 u  2 Giải hệ này ta được  ;  v  2 v  1 Nghiệm của hệ đã cho (x; y) = (4; 1) hay (x; y) = (1; 4) PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH  Vấn đề 4: BẤT PHƯƠNG TRÌNH CÓ CHỨA THAM SỐ A ĐỀ THI Bài 1: ĐẠI HỌC KHỐI D NĂM 2011 Tìm m để hệ phương trình sau có nghiệm 2x3 ...  x    Bài 12: ĐỀ DỰ BỊ 2 - ĐẠI HỌC KHỐI B NĂM 2006 (x  y)(x2  y2 )  13  Giải hệ phương trình:  2 2 (x  y)(x  y )  25  (x, y  ) Giải 2 2 (x  y)(x  y )  13 (x  y)(x 2  y 2 )  13 (1)     2 2 2 (x  y)(x  y )  25 (x  y)(x  y)  25 (2)   (x  y)3  1 x  y  1     2 x  y  5 (x  y)  25   (3; 2) hoặc (2;  3) Bài 13: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI D NĂM 2006... (1) trừ (2) vế theo vế ta được : (y  x) h(x, y) = 0    h(x, y)  0 (a) (b) (a) và (1) Kết hợp:  (b) và (1) Dạng 4: Hệ tổng quát: Thường biến đổi để nhận ra ẩn số phụ, sau đó dùng phương pháp thế để giải tiếp B ĐỀ THI Bài 1: ĐẠI HỌC KHỐI A NĂM 2011 5x2 y  4xy2  3y3  2  x  y   0  Giải hệ phương trình:  2 2 2 xy x  y  2   x  y     2 Ta có : (2)  xy x  y  2 2x  (1) (2)...  t  2  2 t 2  3  t  1  16  2 t 2  t  4  11  t 114 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 0  t  11 0  t  11     2  2 t 3 2 4(t  t  4)  (11  t) 3t  26t  105  0   Với t = 3 ta có x + y = 6, xy = 9 Suy ra nghiệm của hệ là: (x; y) = (3; 3) Bài 11: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI A NĂM 2006 x2  1  y(y  x)  4y  Giải hệ phương trình:  (x, y  2 (x  1)(y  x  2)... f'(u) =  2u + 1; f’(u) = 0  u = 2 Bảng biến thi n u 1 2 0 f'(u) + 0 1  1 4 f(u) 0 0 Nhờ bảng biến thi n ta chọn 0  m  1 4 Bài 7: ĐỀ DỰ BỊ 2 5  Cho phương trình x2   m2   x2  4  2  m3  0 3  Chứng minh rằng với mọi m  0 phương trình luôn có nghiệm Giải 5  x2   m 2   x2  4  2  m 3  0 3  122 (1) Hướng dẫn giải CDBT từ các ĐTQG Toán học – Đặt t  x2  4  2  t2 = x2 + 4  x2... là:  4;   4  Bài 8: ĐẠI HỌC KHỐI D NĂM 2008 xy  x  y  x2  2y2  Giải hệ phương trình:  x 2y  y x  1  2x  2y  (x, y  ) Giải 2 xy  x  y  x  2y2  Hệ phương trình:  x 2y  y x  1  2x  2y  (1) (2) (x,y  ) x  1 Điều kiện:  y  0 (1)  xy + y2 + x + y – (x2 – y2) = 0  y(x + y) + x + y – (x + y)(x – y) = 0 113 Hướng dẫn giải CDBT từ các ĐTQG Toán học –  y  x  (x + y)(2y... Vậy hệ phương trình đã cho có 4 nghiệm:  2 10  2 10 x x   x  1 x  1     5 5       y  1 y  1  10 10   y  5 y   5   2 109 Hướng dẫn giải CDBT từ các ĐTQG Toán học – Bài 2: ĐẠI HỌC KHỐI A NĂM 2010 (4x2  1)x  (y  3) 5  2y  0 (1)  Giải hệ phương trình:  (x, y  2 2 (2) 4x  y  2 3  4x  7  ) Giải Điều kiện: x  3 Đặt u = 2x; v  5  2y 4 Phương trình (1) trở... 2x)2 = 2  x2 + 2x – 3 = 0  x = 1 hay x = –3 Khi x = 1 thì y = –1 thỏa mãn (*); khi x = –3 thì y = 7 (thỏa mãn (*)) 110 Hướng dẫn giải CDBT từ các ĐTQG Toán học – x  1 x  3 Vậy nghiệm của hệ phương trình là  hay  y  1 y  7 Bài 4: ĐẠI HỌC KHỐI B NĂM 2009 xy  x  1  7y  Giải hệ phương trình:  2 2 x, y  2  x y  xy  1  13y   Giải Vì y = 0 không thỏa mãn hệ đã cho, nên x 1  x ... trình:  2 2 2 x  xy  y  7(x  y)  (x, y  ) 115 Hướng dẫn giải CDBT từ các ĐTQG Toán học – Giải Đặt u = x  y, v = xy  u2  3u  v  0 u  0 u  1  Ta có:    2 v  0 v  2 v  2u   u  0 x  0   v  0 y  0  u  1 x  2 x  1   hoặ c   v  1 y  1 y  2 Bài 14: DỰ BỊ 1 - ĐẠI HỌC KHỐI A NĂM 2005 x2  y2  x  y  4  Giải hệ phương trình:  x  x  y  1  y ... x  3y x  12y   x  1 x  3    1 hay  y  1 y  3  1 Hệ có 2 nghiệm (x; y) = (1; ) ; (x; y) = (3; 1) 3 Bài 5: ĐẠI HỌC KHỐI D NĂM 2009 x  x  y  1  3  0  Giải hệ phương trình   x, y  5 2  x  y   2  1  0  x  111 Hướng dẫn giải CDBT từ các ĐTQG Toán học – Giải Điều kiện x  0 x(x  y)  x  3  Hệ đã cho tương đương:  2 2 2 x (x  y)  x  5  (*) Đặt t = x(x + y) Hệ . Hướng dẫn giải CDBT từ các ĐTQG Toán học – 97  Chuyên đề 3: ĐẠI SỐ  Vấn đề 1: PHƯƠNG TRÌNH CHỨA CĂN A. PHƯƠNG PHÁP GIẢI 1.         2n 2n B0 A. (1) Dạng 4: Hệ tổng quát: Thường biến đổi để nhận ra ẩn số phụ, sau đó dùng phương pháp thế để giải tiếp. B. ĐỀ THI Bài 1: ĐẠI HỌC KHỐI A NĂM 2011 Giải hệ phương trình:     . Với t = 21 , ta có x = 2  2 Vậy phương trình có nghiệm: x = 1; x = 2  2 Bài 7: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI B NĂM 2006 Giải phương trình:         2 3x 2 x 1 4x 9 2 3x 5x 2
- Xem thêm -

Xem thêm: Chuyên đề Đại số luyện thi đại học, Chuyên đề Đại số luyện thi đại học, Chuyên đề Đại số luyện thi đại học