Tài liệu ôn thi Toán lớp 12: Tích phân

152 1.4K 18
Tài liệu ôn thi Toán lớp 12: Tích phân

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Tài liệu ôn thi Toán lớp 12: Tích phân

Trần Só Tùng Tích phân Nhắc lại Giới hạn – Đạo hàm – Vi phân Các giới hạn đặc biệt: sin x =1 a) lim x ®0 x x =1 x ®0 sin x Hệ quả: lim sin u(x) =1 u(x)®0 u(x) u(x) =1 u(x)®0 sin u(x) ln(1 + x) =1 x® x lim lim lim x ỉ 1ử b) lim ỗ + ữ = e, x ẻ R x đƠ ố xứ Heọ quaỷ: lim (1 + x) x = e x®0 lim ex - =1 x® x Bảng đạo hàm hàm số sơ cấp hệ quả: (c)’ = (c số) (x a )' = ax a-1 (ua )' = aua-1u ' ỉ1ư ç ÷' = - èxø x ( x )' = x x (e )' = ex u' ổ1ử ỗ ữ' = - u ốuứ ( u ) ' = u' u u (e )' = u'.e u (ax )' = a x ln a (a u )' = a u ln a u ' u' (ln x )' = (ln u )' = x u u' (loga x ') = (loga u )' = x.ln a u.ln a (sinx)’ = cosx (sinu)’ = u’.cosu u' (tgx)' = = + tg x (tgu)' = = (1 + tg u).u' 2 cos x cos u -1 - u' (cot gx)' = = -(1 + cot g x) (cot gu)' = = - (1 + cot g u).u' 2 sin x sin u Vi phaân: Cho hàm số y = f(x) xác định khoảng (a ; b) có đạo hàm x Ỵ (a; b) Cho số gia Dx x cho x + Dx Ỵ (a; b) Ta gọi tích y’.Dx (hoặc f’(x).Dx) vi phân hàm số y = f(x) x, ký hiệu dy (hoặc df(x)) dy = y’.Dx (hoặc df(x) = f’(x).Dx Áp dụng định nghóa vào hàm số y = x, dx = (x)’Dx = 1.Dx = Dx Vì ta có: dy = y’dx (hoặc df(x) = f’(x)dx) Trang Tích phân Trần Só Tùng NGUYÊN HÀM VÀ TÍCH PHÂN §Bài 1: NGUYÊN HÀM Định nghóa: Hàm số F(x) gọi nguyên hàm hàm số f(x) khoảng (a ; b) x thuộc (a ; b), ta có: F’(x) = f(x) Nếu thay cho khoảng (a ; b) đoạn [a ; b] phải có thêm: F '(a+ ) = f(x) F '(b - ) = f(b) Định lý: Nếu F(x) nguyên hàm hàm số f(x) khoảng (a ; b) : a/ Với số C, F(x) + C nguyên hàm hàm số f(x) khoảng b/ Ngược lại, nguyên hàm hàm số f(x) khoảng (a ; b) viết dạng: F(x) + C với C số Người ta ký hiệu họ tất nguyên hàm hàm số f(x) ị f(x)dx Do viết: ị f(x)dx = F(x) + C Bổ đề: Nếu F¢(x) = khoảng (a ; b) F(x) không đổi khoảng Các tính chất nguyên hàm: · · · · ( ò f(x)dx ) ' = f(x) ò af(x)dx = aò f(x)dx (a ¹ 0) ị [ f(x) + g(x)] dx = ò f(x)dx + ò g(x)dx ò f(t)dt = F(t) + C Þ ị f [ u(x)] u'(x)dx = F [ u(x)] + C = F(u) + C (u = u(x)) Sự tồn nguyên hàm: · Định lý: Mọi hàm số f(x) liên tục đoạn [a ; b] có nguyên hàm đoạn Trang Trần Só Tùng Tích phân BẢNG CÁC NGUYÊN HÀM Nguyên hàm hàm số sơ cấp Nguyên hàm hàm số hợp thường gặp (dưới u = u(x)) ò dx = x + C ò du = u + C x a+1 ò x dx = a + + C (a ¹ -1) ua+1 ị u du = a + + C dx = ln x + C x (x ¹ 0) ị a ị ò e dx = e x x ò a dx = x du = ln u + C u ò e du = e u +C ax +C ln a (a ¹ -1) a u ị a du = (0 < a ¹ 1) u (u = u(x) ¹ 0) +C au +C ln a (0 < a ¹ 1) ò cos xdx = sin x + C ò cos udu = sin u + C ò sin xdx = - cos x + C ò sin udu = - cos u + C dx ò cos2 x = ò (1 + tg x)dx = tgx + C du ò cos2 u = ò (1 + tg u)du = tgu + C dx ò sin x = ò (1 + cot g x)dx = - cot gx + C dx = x +C x ò2 du ò sin du = u +C u ò2 (x > 0) ò cos(ax + b)dx = a sin(ax + b) + C (a ¹ 0) sin(ax + b)dx = cos(ax + b) + C ò a (a ¹ 0) dx ò ax + b = a ln ax + b + C òe ò ax + b u = ò (1 + cot g u)du = - cot gu + C dx = eax + b + C a (a ¹ 0) dx = ax + b + C ax + b a (a ¹ 0) Trang (u > 0) Tích phân Trần Só Tùng Vấn đề 1: XÁC ĐỊNH NGUYÊN HÀM BẰNG ĐỊNH NGHĨA Bài toán 1: CMR F(x) nguyên hàm hàm số f(x) (a ; b) PHƯƠNG PHÁP CHUNG Ta thực theo bước sau: + Bước 1: Xác định F’(x) (a ; b) + Bước 2: Chứng tỏ F '(x) = f(x) với "x Ỵ (a; b) Chú ý: Nếu thay (a ; b) [a ; b] phải thực chi tiết hơn, sau: + Bước 1: Xác định F’(x) (a ; b) Xác định F’(a+) Xác định F’(b–) ìF '(x) = f(x), "x Ỵ (a ; b) ï + Bước 2: Chứng tỏ íF '(a + ) = f(a) ïF '(b - ) = f(b) ỵ Ví dụ 1: CMR hàm số: F(x) = ln(x + x + a) với a > nguyên hàm hàm số f(x) = x2 + a R Giải: Ta có: F '(x) = [ln(x + x + a)]' = (x + x + a)' x + x2 + a 2x 1+ x2 + a x + x2 + a = = x2 + a + x x + a(x + x + a) = Vậy F(x) với a > nguyên hàm hàm số f(x) R ìïex Ví dụ 2: CMR hàm số: F(x) = í ïỵ x + x + x ³ x < ìex x ³ Là nguyên hàm hàm số f(x) = í treân R 2x + x < ỵ Giải: Để tính đạo hàm hàm số F(x) ta xét hai trường hợp: a/ Với x ¹ , ta có: ìe x x > F '(x) = í ỵ2x + x < b/ Với x = 0, ta có: Trang x2 + a = f(x) Trần Só Tùng · Tích phân Đạo hàm bên trái hàm số điểm x0 = F '(0 - ) = limx®0 · F(x) - F(0) x + x + - e0 = lim= x ®0 x-0 x Đạo hàm bên phải hàm số điểm x0 = F '(0 + ) = lim+ x®0 F(x) - F(0) ex - e0 = lim+ = x®0 x-0 x Nhận xét F '(0 - ) = F '(0 + ) = Þ F '(0) = ìe x x ³ Tóm lại: F '(x) = í = f(x) ỵ2x + x < Vậy F(x) nguyên hàm hàm số f(x) R Bài toán 2: Xác định giá trị tham số để F(x) nguyên hàm hàm số f(x) (a ; b) PHƯƠNG PHÁP CHUNG Ta thực theo bước sau: + Bước 1: Xác định F’(x) (a ; b) + Bước 2: Để F(x) nguyên hàm hàm số f(x) (a ; b), điều kiện là: F '(x) = f(x) với "x Ỵ (a; b) Dùng đồng hàm đa thức Þ giá trị tham số Chú ý: Nếu thay (a ; b) [a ; b] phải thực chi tiết hơn, sau: + Bước 1: Xác định F’(x) (a ; b) Xác định F’(a+) Xác định F’(b–) + Bước 2: Để F(x) nguyên hàm hàm số f(x) (a ; b), điều kiện là: ìF '(x) = f(x), "x Ỵ (a ; b) ï + Þ giá trị tham số íF '(a ) = f(a) ïF '(b - ) = f(b) ỵ Bài toán 3: Tìm số tích phân PHƯƠNG PHÁP CHUNG · Dùng công thức học, tìm nguyên hàm: F(x) = G(x) + C · Dựa vào đề cho để tìm số C Thay giá trị C vào (*), ta có nguyên hàm cần tìm Trang Tích phân Trần Só Tùng ìx2 x £ Ví dụ 3: Xác định a , b để hàm số: F(x) = í ỵax + b x > ì2x nguyên hàm hàm số: f(x) = í ỵ2 x £ x > R Giải: Để tính đạo hàm hàm số F(x) ta xét hai trường hợp: ì2x x < a/ Với x ¹ , ta có: F '(x) = í ỵ2 x > b/ Với x = 1, ta có: Để hàm số F(x) có đạo hàm điểm x = 1, trước hết F(x) phải liên tục x = 1, : lim- F(x) = lim+ F(x) = f(1) Û a + b = Û b = - a (1) x ®1 x ®1 · Đạo hàm bên trái hàm số y = F(x) điểm x = F'(1) = lim x ®1 f(x) - F(1) x2 - = lim= x ®1 x - x -1 · Đạo hàm bên phải hàm số y = f(x) ñieåm x0 = F '(1+ ) = lim+ x ®1 F(x) - F(1) ax + b - ax + - a - = lim+ = lim+ = a x ®1 x ®1 x -1 x -1 x -1 Hàm số y = F(x) có đạo hàm điểm x = Û F '(1- ) = F '(1+ ) Û a = (2) Thay (2) vào (1), ta b = –1 Vậy hàm số y = F(x) có đạo hàm điểm x = 1, a = 2, b = –1 Khi đó: F’(1) = = f(1) Tóm lại với a = 2, b = F(x) nguyên hàm hàm số f(x) Ví dụ 4: Xác định a , b , c để hàm số: F(x) = (ax + bx + c)e -2x laø nguyên hàm F(x) = - (2x - 8x + 7)e-2 x R Giải: Ta có: F '(x) = (2ax + b)e-2 x - 2(ax + bx + c)e -2x = éë-2ax + 2(a - b)x + b - 2cùûe-2x Do F(x) nguyên hàm f(x) R Û F '(x) = f(x), "x Ỵ R Û - 2ax + 2(a - b)x + b - 2c = - 2x + 8x - 7, "x Ỵ R ìa = ìa = ï ï Û ía - b = Û í b = -3 ï b - 2c = -7 ïc = ỵ ỵ Vậy F(x) = (x - 3x + 2)e-2x Trang Traàn Só Tùng Tích phân BÀI TẬP ỉ x pư Bài Tính đạo hàm hàm số F(x) = ln tg ỗ + ữ ố2 4ứ Tửứ ủoự suy nguyên hàm hàm số f(x) = cos x ì ln(x + 1) ,x¹0 ï Bài Chứng tỏ hàm số F(x) = í x ï0 ,x = ỵ ì ln(x + 1) ,x¹0 ï nguyên hàm hàm số f(x) = í x + x2 ï1 ,x=0 ỵ Bài Xác định a, b, c cho hàm soá F(x) = (ax + bx + c).e- x nguyên hàm hàm số f(x) = (2x - 5x + 2)e- x R ĐS: a = –2 ; b = ; c = –1 Bài a/ b/ Tính nguyên hàm F(x) f(x) = Tìm nguyên hàm F(x) f(x) = sin ÑS: a/ F(x) = Baøi a/ x + 3x + 3x - vaø F(0) = (x + 1)2 x2 +x+ ; x +1 x ổ pử p vaứ F ỗ ữ = è2ø b/ F(x) = (x - sin x + 1) Xác định số a, b, c cho hàm số: F(x) = (ax + bx + c) 2x - nguyên hàm hàm số: f(x) = b/ 20x - 30x + ổ3 treõn khoaỷng ỗ ; + ¥ ÷ è2 ø 2x - Tìm nguyên hàm G(x) f(x) với G(2) = ĐS: a/ a = 4; b = -2; c = 1; b/ G(x) = (4x - 2x + 10) 2x - - 22 Trang Tích phân Trần Só Tùng Vấn đề 2: XÁC ĐỊNH NGUYÊN HÀM BẰNG VIỆC SỬ DỤNG BẢNG CÁC NGUYÊN HÀM CƠ BẢN ị f(ax + b)dx = a F(ax + b) + C với a ¹ Ví dụ 1: CMR , ị f(x)dx = F(x) + C Giải: Ta có: f(ax + b)dx = f(ax + b)d(ax + b) với a ¹ a Áp dụng tính chất 4, ta được: 1 ị f(ax + b)dx = a ị (ax + b)d(ax + b) a F(ax + b) + C (đpcm) Ghi chú: Công thức áp dụng cho hàm số hợp: ị f(t)dt = F(t) + C Þ ị f(u)du = F(u) + C, với u = u(x) Ví dụ 2: Tính tích phân bất định sau: a/ ị (2x + 3) dx b/ ò cos4 x.sin xdx c/ ò 2e x dx ex + d/ ò (2 ln x + 1)2 dx x Giaûi: 1 (2x + 3)4 (2x + 3)4 +C= + C a/ Ta có: ị (2x + 3) dx = ò (2x + 3) d(2x + 3) = 2 b/ Ta có: ị cos4 x.sin xdx = - ị cos xd(cos x) = c/ Ta coù: cos5 x +C 2ex d(ex + 1) x dx = ò ex + ò ex + = ln(e + 1) + C (2 ln x + 1)2 1 d/ Ta có: ị dx = ị (2 ln x + 1)2 d(2 ln x + 1) = (2 ln x + 1)3 + C x 2 Ví dụ 3: Tính tích phân bất định sau: a/ ị 2sin x dx b/ ò cot g2 xdx c/ ị tgxdx Giải: a/ Ta có: ị 2sin x dx = ò (1 - cos x)dx = x - sin x + C ỉ b/ Ta coự: ũ cot g xdx = ũ ỗ - ÷ dx = - cot gx - x + C è sin x ø c/ Ta coù: ò tgxdx = ò sin x d(cos x) dx = - ò = - ln cos x + C cos x cos x Trang d/ ò tgx dx cos3 x Trần Só Tùng d/ Ta có: Tích phân tgx ò cos x dx = ò sin x d(cos x) 1 dx = - ò = - cos -3 x + C = + C 4 cos x cos x 3cos3 x Ví dụ 4: Tính tích phân bất định sau: a/ x ị + x dx b/ òx dx - 3x + Giải: a/ Ta có: x d(1 + x ) dx = = ln(1 + x ) + C ò + x2 ò 1+ x b/ Ta coù: òx 1 ỉ dx = ị dx = ũ ỗ ữdx - 3x + (x - 1)(x - 2) è x - x -1 ø = ln x - - ln x - + C = ln x-2 + C x -1 BAØI TẬP Bài Tìm nguyên hàm hàm số: x a/ f(x) = cos2 ; b/ ÑS: a/ (x + sin x) + C ; f(x) sin x - cos x + cos3 x + C b/ Bài Tính tích phân bất định : a/ ị e (2 - e d/ e2-5x + ò ex dx; x -x )dx; b/ e/ ÑS: a/ 2e - x + C; x d/ ex ò 2x dx ; c/ 2x.3x.5x ò 10x dx ex ò ex + 2dx ex + C; (1 - ln 2)2 x b/ - e2-6 x - e- x + C; e/ c/ 6x +C ln ln(ex + 2) + C Baøi Tính tích phân bất định : a/ ị d/ ò (1 - 2x) x + x -4 + dx ; 2001 dx; e/ x3 ÑS: a/ - + C; x d/ ò b/ ò x x dx ; c/ òx x + dx ; - ln x dx x 55 x + C; b/ (1 - 2x)2002 - + C; 2002 Trang e/ c/ (x + 1) x + + C ; (3 + ln x) + ln x + C Tích phân Trần Só Tùng Vấn đề 3: XÁC ĐỊNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP PHÂN TÍCH Phương pháp phân tích thực chất việc sử dụng đồng thức để biến đổi biểu thức dấu tích phân thành tổng biểu thức mà nguyên hàm biểu thức nhận từ bảng nguyên hàm phép biến đổi đơn giản biết Chú ý quan trọng: Điểm mấu chốt phép phân tích rút ý tưởng cho riêng từ vài minh hoạ sau: · Với f(x) = (x - 2)2 viết lại f(x) = x - 4x + · Với f(x) = x - 4x + viết laïi f(x) = x - + x -1 x -1 · Với f(x) = 1 viết lại f(x) = x - 5x + x -3 x -2 · Với f(x) = · Với f(x) = (2 x - 3x )2 viết lại f(x) = x - 2.6 x + x · Với f(x) = cos3 x.sin x viết lại f(x) = 2(cos3x + 3cos x).sin x 1 viết lại f(x) = ( - 2x - 2x + 1) 2x + + - 2x = cos3x.sin x + cos x.sin x = sin 4x - sin 2x + 3sin 2x = sin 4x + sin 2x · tg x = (1 + tg x) - · cot g x = (1 + cot g x) - · x n (1 + x ) + 1 = xn + 1+ x + x2 Đó vài minh hoạ mang tính điển hình Ví dụ 1: Tính tích phân bất định: I = ị x(1 - x)2002 dx Giải: Sử dụng đồng thức : x = – (1 – x) ta được: x(1 - x)2002 = [1 - (1 - x)](1 - x)2002 = (1 - x)2002 - (1 - x)2003 Khi đó: I = ị (1 - x)2002 dx - ò (1 - x)2003 dx = - ò (1 - x)2002 d(1 - x) + ò (1 - x)2003 d(1 - x) =- (1 - x)2003 (1 - x)2004 + + C 2003 2004 Toång quát: Tính tích phân bất định: I = ị x(ax + b)a dx, với a ¹ 1 Sử dụng đồng thức: x = ax = [(ax + b) - b] a a Trang 10 ... x) + ln x + C Tích phân Trần Só Tùng Vấn đề 3: XÁC ĐỊNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP PHÂN TÍCH Phương pháp phân tích thực chất việc sử dụng đồng thức để biến đổi biểu thức dấu tích phân thành tổng... Bài toán 3: Tìm số tích phân PHƯƠNG PHÁP CHUNG · Dùng công thức học, tìm nguyên hàm: F(x) = G(x) + C · Dựa vào đề cho để tìm số C Thay giá trị C vào (*), ta có nguyên hàm cần tìm Trang Tích phân. .. ị f(x)dx = ị f[j(t)].j ''(t)dt Từ ta trình bày hai toán phương pháp đổi biến sau: Bài toán 1: Sử dụng phương pháp đổi biến số dạng tích tích phân bất định I = ị f(x)dx PHƯƠNG PHÁP CHUNG Ta thực

Ngày đăng: 12/09/2012, 16:21

Hình ảnh liên quan

2. Bảng đạo hàm các hàm số sơ cấp cơ bản và các hệ quả: - Tài liệu ôn thi Toán lớp 12: Tích phân

2..

Bảng đạo hàm các hàm số sơ cấp cơ bản và các hệ quả: Xem tại trang 1 của tài liệu.
BẢNG CÁC NGUYÊN HÀM Nguyên  hàm  của  các  hàm  số  sơ  cấp  - Tài liệu ôn thi Toán lớp 12: Tích phân

guy.

ên hàm của các hàm số sơ cấp Xem tại trang 3 của tài liệu.
Vấn đề 2: XÁC ĐỊNH NGUYÊN HÀM BẰNG VIỆC SỬ DỤNG BẢNG CÁC NGUYÊN HÀM CƠ BẢN  - Tài liệu ôn thi Toán lớp 12: Tích phân

n.

đề 2: XÁC ĐỊNH NGUYÊN HÀM BẰNG VIỆC SỬ DỤNG BẢNG CÁC NGUYÊN HÀM CƠ BẢN Xem tại trang 8 của tài liệu.
Đó chỉ là một vài minh hoạ mang tính điển hình. - Tài liệu ôn thi Toán lớp 12: Tích phân

ch.

ỉ là một vài minh hoạ mang tính điển hình Xem tại trang 10 của tài liệu.
Chú ý: Nếu các em học sinh thấy khó hình dung một cách cặn kẽ cách biến đổi để đưa về dạng cơ bản trong bài toán trên thì thực hiện theo hai bước sau:   - Tài liệu ôn thi Toán lớp 12: Tích phân

h.

ú ý: Nếu các em học sinh thấy khó hình dung một cách cặn kẽ cách biến đổi để đưa về dạng cơ bản trong bài toán trên thì thực hiện theo hai bước sau: Xem tại trang 84 của tài liệu.
2. Ý nghĩa hình học của tích phân: - Tài liệu ôn thi Toán lớp 12: Tích phân

2..

Ý nghĩa hình học của tích phân: Xem tại trang 86 của tài liệu.
1. Định nghĩa tích phân: - Tài liệu ôn thi Toán lớp 12: Tích phân

1..

Định nghĩa tích phân: Xem tại trang 86 của tài liệu.
Ta có bảng xét dấu: - Tài liệu ôn thi Toán lớp 12: Tích phân

a.

có bảng xét dấu: Xem tại trang 87 của tài liệu.
1. Phương pháp sử dụng bảng nguyên hàm cơ bản. 2.  Phương pháp phân tích   - Tài liệu ôn thi Toán lớp 12: Tích phân

1..

Phương pháp sử dụng bảng nguyên hàm cơ bản. 2. Phương pháp phân tích Xem tại trang 89 của tài liệu.
Từ bảng xét dấu ta có: - Tài liệu ôn thi Toán lớp 12: Tích phân

b.

ảng xét dấu ta có: Xem tại trang 104 của tài liệu.
Vấn đề 1: DIỆN TÍCH HÌNH THANG CONG - Tài liệu ôn thi Toán lớp 12: Tích phân

n.

đề 1: DIỆN TÍCH HÌNH THANG CONG Xem tại trang 131 của tài liệu.
Vấn đề 2: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI HAI ĐƯỜNG (C1), (C2) - Tài liệu ôn thi Toán lớp 12: Tích phân

n.

đề 2: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI HAI ĐƯỜNG (C1), (C2) Xem tại trang 133 của tài liệu.
Vấn đề 3: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI NHIỀU ĐƯỜNG - Tài liệu ôn thi Toán lớp 12: Tích phân

n.

đề 3: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI NHIỀU ĐƯỜNG Xem tại trang 135 của tài liệu.
Tìm diện tích lớn nhất và nhỏ nhất của hình phẳng S. - Tài liệu ôn thi Toán lớp 12: Tích phân

m.

diện tích lớn nhất và nhỏ nhất của hình phẳng S Xem tại trang 136 của tài liệu.
* Gọi S2 là phần diện tích hình tròn còn lại S 2S SOBAC 8 24 3 - Tài liệu ôn thi Toán lớp 12: Tích phân

i.

S2 là phần diện tích hình tròn còn lại S 2S SOBAC 8 24 3 Xem tại trang 138 của tài liệu.
* Diện tích hình phẳng S cần tìm: - Tài liệu ôn thi Toán lớp 12: Tích phân

i.

ện tích hình phẳng S cần tìm: Xem tại trang 139 của tài liệu.
Bảng xét dấu: - Tài liệu ôn thi Toán lớp 12: Tích phân

Bảng x.

ét dấu: Xem tại trang 140 của tài liệu.
Bài 8. Tính diện tích hình phẳng giới hạn bởi các đường: a/ yx22x và y x 4; - Tài liệu ôn thi Toán lớp 12: Tích phân

i.

8. Tính diện tích hình phẳng giới hạn bởi các đường: a/ yx22x và y x 4; Xem tại trang 142 của tài liệu.
Vấn đề 1: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: (C) :y f(x); y 0; x a;x b (a b)====&lt;sinh ra khi quay quanh trục Ox được tính bởi công  thức:   - Tài liệu ôn thi Toán lớp 12: Tích phân

n.

đề 1: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: (C) :y f(x); y 0; x a;x b (a b)====&lt;sinh ra khi quay quanh trục Ox được tính bởi công thức: Xem tại trang 144 của tài liệu.
* Miền hình phẳng (H) sinh ra. ((H) giới hạn bởi 4 đường :x =..., x= ..., y= ..., y= ...) *  (H) quay quanh trục Ox hoặc trục Oy để ta dùng công thức thích hợp - Tài liệu ôn thi Toán lớp 12: Tích phân

i.

ền hình phẳng (H) sinh ra. ((H) giới hạn bởi 4 đường :x =..., x= ..., y= ..., y= ...) * (H) quay quanh trục Ox hoặc trục Oy để ta dùng công thức thích hợp Xem tại trang 144 của tài liệu.
Vấn đề 3: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: - Tài liệu ôn thi Toán lớp 12: Tích phân

n.

đề 3: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: Xem tại trang 145 của tài liệu.
Vấn đề 4: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: - Tài liệu ôn thi Toán lớp 12: Tích phân

n.

đề 4: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: Xem tại trang 146 của tài liệu.
Ví dụ 2: Gọi (H) là hình phẳng giới hạn bởi trục hoành và parabol (p) :y 2x x= -2. Tính thể tích của khối tròn xoay khi cho (H)  - Tài liệu ôn thi Toán lớp 12: Tích phân

d.

ụ 2: Gọi (H) là hình phẳng giới hạn bởi trục hoành và parabol (p) :y 2x x= -2. Tính thể tích của khối tròn xoay khi cho (H) Xem tại trang 147 của tài liệu.
Bài 20. Xét hình (H) giới hạn bởi đường cong y 1; x - Tài liệu ôn thi Toán lớp 12: Tích phân

i.

20. Xét hình (H) giới hạn bởi đường cong y 1; x Xem tại trang 148 của tài liệu.
Bài 19. Tính thể tích khối tròn xoay được tạo thành do quay xung quanh trục oy hình phẳng giới hạn bởi các đường:  - Tài liệu ôn thi Toán lớp 12: Tích phân

i.

19. Tính thể tích khối tròn xoay được tạo thành do quay xung quanh trục oy hình phẳng giới hạn bởi các đường: Xem tại trang 148 của tài liệu.
Bài 7. Xét hình phẳng (H) giới hạn bởi đường cong (C) :y 1; y x - Tài liệu ôn thi Toán lớp 12: Tích phân

i.

7. Xét hình phẳng (H) giới hạn bởi đường cong (C) :y 1; y x Xem tại trang 151 của tài liệu.
Bài 13. Tính diện tích hình phẳng giới hạn bởi đường cong (C) :y 3 x1 x 1 -= - Tài liệu ôn thi Toán lớp 12: Tích phân

i.

13. Tính diện tích hình phẳng giới hạn bởi đường cong (C) :y 3 x1 x 1 -= Xem tại trang 152 của tài liệu.

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan