Giáo trình hướng dẫn sự dao động của sóng âm độc lập trong tần số sóng phần 2 pdf

5 298 0
Giáo trình hướng dẫn sự dao động của sóng âm độc lập trong tần số sóng phần 2 pdf

Đang tải... (xem toàn văn)

Thông tin tài liệu

Gọi Ox là giao tuyến giữa mặt phẳng P và mặt phẳng qua S1 và S2 đồng thời vuông góc với P (mặt phẳng hình vẽ). Như trên đã nói, trên màn P sẽ quan sát thấy các vân hình hyperbol. Tuy nhiên nếu chỉ giới hạn một miền hẹp gần giao tuyến Ox, thì hệ vân giao thoa có dạng các đoạn thẳng song song (H.10). Trên trục Ox, ta xét trạng thái sáng tại điểm M cách O một đoạn X. Gọi khoảng cách giữa S1 và S2 là (, khoảng cách từ các nguồn đến màn quan sát là D. Hi ệu quang lộ từ các nguồn đến M là (r1 – r2) (H.9). Hạ các đường vuông góc S1H1 và S2H2 ta có: r 2 = D 2 + (x + 2 l ) 2 . r 2 1 = D 2 + (x - 2 l ) 2 . r 2 2 - r 2 1 = 2λx. (r 2 – r 1 ) (r 2 + r 1 ) = 2λx. Khoảng cách D rất lớn so với ( và x , cho nên gần đúng có thể xem: (r 1 + r 2 ) ≈ 2D. Vậy hiệu quang lô: δ = D dx . (4.1) Hay suy ra: x = l D.δ . (4.2). Áp dụng điều kiện các cực đại và cực tiểu giao thoa, ta có tọa độ của vân sáng: x s = ± k l D.λ (4.3) tọa độ của vân tối: x t = ± (2k + 1) . 2 D λ l (4.4) Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Khoảng cách giữa 2 vân sáng liên tiếp bằng: i = D λ l (4.5) Khoảng cách giữa hai vân tối liên tiếp cũng có giá trị như trên, i được gọi là khoảng cách vân. Như vậy trên màn quan sát hệ các vân sáng và vân tối xen kẽ nhau, cách đều nhau. Màu của các vân sáng là màu của ánh sáng đơn sắc phát đi từ các nguồn. Các vân tối đen hoàn toàn (trường hợp a 1 = a 2 ). Từ vân sáng tới vân tối cường độ sáng biến thiên liên tục theo hàm số cos 2 βx (ta chứng minh dễ dàng với giả thiết a 1 = a 2 ) Chú ý: Đo được khoảng vân i rồi dùng công thức (4.5) có thể tính được bước sóng ánh sáng. Để cho khoảng vân i đủ lớn (cỡ 10 3 lầnλ) thì D phải lớn. D có độ lớn cỡ m, còn ( có độ lớn cỡ mm. Tần số ánh sáng rất lớn, thí nghiệm chưa đo trực tiếp được; ta phải đo bước sóng λ, rồi từ đó tính ra tần sốĠ của ánh sáng. SS.5. CÁC THÍ NGHIỆM GIAO THOA KHÔNG ĐỊNH XỨ. 1. Tính không kết hợp của hai nguồn sáng thông thường. Trong các nguồn sáng thường gặp như ngọn lửa, đèn điện, m ặt trời… tâm phát sáng là các phân tử, nguyên tử, hoặc ion. Theo lý thuyết cổ điển, trong các tâm đó, bình thường điện tử ở tại các trạng thái dừng quanh hạt nhân. Khi nhân được năng lượng kích thích (nhiệt năng, điện năng…), các điện tử nhảy lên các trạng thái kích thích ứng với các mức năng lượng cao hơn. Các trạng thái kích thích không bền, điện tử lại rơi trở về các quĩ đạ o bền, kèm theo việc phát ra năng lượng dưới dạng sóng điện từ. Đó là quá trình phát sáng được mô tả vắn tắt. Quá trình đó có các đặc điểm như sau: - Số tâm phát sáng rất lớn và độc lập với nhau. - Quá trình phát sáng có tính ngẫu nhiên, các đoàn sóng phát đi từ các tâm riêng biệt, hay các đoàn sóng trước sau của cùng một tâm phát sáng cũng không có mối liên hệ gì với nhau về pha ban đầu, phương giao động và tần số, biên độ (Tuy nhiên một loại tâm phát sáng trong cùng các điều kiện chỉ có thể phát ra một bộ tần số đặc trưng nhất định). - Các đoàn sóng trong các nguồn sáng thông thường không kéo dài vô tận trong không gian và thời gian (như các hàm số sóng đơn sắc đã mô tả). Nếu thời gian cho mỗi lần phát sáng vào cỡ 10-8 s thì độ dài của mỗi đoàn sóng vào cỡ mét. Xét các đặc trưng trên chúng ta thấy các tâm phát sáng riêng biệt trong nguồn sáng không có tính kết hợp, các phần riêng biệt của một nguồn sáng cũng không kết h ợp – hai nguồn sáng độc lập không thể nào có tính kết hợp. Vì vậy thông thường chúng ta chỉ quan sát thấy sự cộng đơn giản của cường độ ánh sáng (I = I 1 + I 2 ) mà không quan sát thấy hiện tượng giao thoa. Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Ngày nay, từ năm 1960 người ta đã chế tạo được các nguồn sáng riêng rẽ nhưng kết hợp, đơn sắc và song song. Đó là nguồn laser (theo tiếng Anh light amplification by stimulated emission of radiation). Chúng ta sẽ nghiên cứu cơ chế phát sáng trong nguồn laser ở phần sau của giáo trình. Trong các phòng thí nghiệm người ta tạo ra hai nguồn kết hợp bằng cách dùng dụng cụ quang học tạo ra hai nguồn thứ cấp (hay dẫn xuất) kết hợp từ một nguồn sáng ban đầu. Ta sẽ lần lượt khảo sát một số thí nghiệm như vậy. 2. Thí nghiệm khe YOUNG (IĂNG). Đây là thí nghiệm đầu tiên thực hiện được sự giao thoa ánh sáng. Trước nguồn sáng, người ta đặt một màn chắn A có đục một khe hẹp F để hạn chế kích thước nguồn sáng. Ánh sáng phát ra từ F, rọi sáng hai khe hẹp, song song, F1 và F2 ở trên màn màn B. Giả sử F1, F2 cách đều hai khe sáng F. Theo cách bố trí trên, ta đã dùng hai khe F1, F2 để tách một đoạn sóng (phát ra từ nguồn sáng) thành hai đoàn giống hệt nhau. Như vậy F1 và F2 là hai nguồn kết hợp. Do hiện tượng nhiễu xạ (ta khảo sát trong chương sau) các khe F1 và F2 trở thành hai nguồn sáng dẫn xuất. Trong phần chồng chất của hai chùm tia phát xuất từ F1 và F2, ta có hiện tượng giao thoa với hệ thống các vân thẳng, song song, sáng tối xen kẽ và cách đều nhau một khoảng là i theo công thức (4.5). Tại O ta có vân sáng trung tâm. Nếu trước một trong hai nguồn F1, F2, thí dụ trước F1, ta đặt một bản mỏng có bề dày là e, chiết xuất n. Quang lộ đi từ F1 tới một điểm M trong trường giao thoa trên màn ảnh tă ng lên một lượng là e (n – 1). Vân sáng trung tâm cũng như tất cả hệ vân sẽ dịch chuyển một đoạn xác định. Từ đoạn dịch chuyển này ta có thể suy ra bề dày e hoặc chiết suất n của bản. 3. Hai gương Frexnen (Fresnel). Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Hai gương phẳng G1 và G2 hợp với nhau gócĠ bé. Giao tuyến của hai gương cắt mặt phẳng hình vẽ tại O (H.13). nguồn sáng điểm S đặt cách giao tuyến của hai gương một khoảng r. Mỗi một đoàn sóng xuất phát từ S đều cùng đến được hai gương. Như vậy hai chùm tia phản xạ từ hai gương thỏa mãn điều kiện kết hợp. Nhờ độ nghiêngĠ giữa hai gương mà 2 chùm tia ph ản xạ có phần chồng chất lên nhau, cho hiện tượng giao thoa. Để nghiên cứu định lượng hiện tượng chúng ta phân tích như sau. S1 và S2 là hai ảnh ảo của S qua hai gương G1 và G2. Có thể xem các chùm tia phản xạ từ gương như xuất phát từ 2 nguồn kết hợp S1 và S2. Hai nguồn này, cùng với S, nằm trên đường tròn tâm O bán kính r. Dễ dàng chứng minh rằng góc S 1 OS 2 = 2 α . Như vậy khoảng cách giữa hai nguồn kết hợp: λ = 2r α Tương tự như trường hợp giao thoa của hai nguồn sáng điểm, màn quan sát P được đặt vuông góc với đường trung trực của đoạn S1S2. Điểm O' chính là vị trí vân sáng trung tâm. Các công thức từ (4.1) đến (4.5) đều được áp dụng đúng nếu thay (= 2rĠ và D=D’+r. Để cho cường độ sáng của các vân đủ lớn, dễ quan sát, nguồn sáng S được bố trí dưới dạng khe hẹp, song song với giao tuyến của hai gương. So với trườ ng hợp hai khe lăng, giao thoa với hai gương Fresnel tránh được hiện tượng nhiễu xạ. 4. Hai bán thấu kính Billet. Một thấu kính hội tụ được cưa đôi theo đường kính (mặt phẳng đối xứng). Hai nữa L1 và L2 được tách rời nhau ra, cho ta hai ảnh riêng biệt S1 và S2 của cùng một nguồn sáng S (H.14). S1 và S2 là hai nguồn kết hợp. Hiện tượng giao thoa được quan sát trên màn P. Biết được khoảng cách ( giữa hai nguồn kết hợp, cũng như kho ảng cách D từ S1 và S2 đến màn quan sát chúng ta dễ dàng xác định kích thước của hệ vân giao thoa. Cách bố trí này cho ta hai nguồn thật, hoàn toàn cách rời nhau. Thành thử ta có thể dễ dàng thay đổi quang lộ của một trong hai chùm tia, bằng cách đặt bản mỏng T có bề dày e và chiết suất n trước nguồn sáng S1 chẳng hạn (xem phần khe lăng). 5. Gương lôi (Lloyd). Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Chùm tia sáng xuất phát từ S được tách làm hai phần: Phần đến trực tiếp trên màn quan sát P, phần còn lại đến P sau khi phản xạ từ gương phẳng G (H.15). Chùm tia phản xạ như xuất phát từ ảnh ảo S’. S và S’ là nguồn kết hợp S được đặt gần mặt phẳng của gương, sao cho khoảng cách l = ss’ là bé. O là giao tuyến giữa đường trung trực của đoạn ss’ và màn quan sát P. Ở O lẽ ra ta quan sát thấy vân sáng vì quang lộ SO=S’O, thì lại thấy vân tố i. Để giải thích điều ấy, chúng ta thừa nhận rằng, khi phản xạ trên gương G, quang lộ thay đổi đi một nữa bước sóng. Hay nói rằng khi phản xạ trên gương, pha của chấn động đã thay đổi đi l. Hiện tượng đổi pha này xảy ra, khi ánh sáng phản xạ trên môi trường chiết quang hơn (chiết suất lớn hơn). SS.6. KÍCH THƯỚC GIỚI HẠN CỦA NGUỒN SÁNG. Hình 16 Trong thí nghiệm khe young, nguồn sáng điểm S được đặt cách đều hai khe F1, F2. Trên hình vẽ 16, các quang lộ SF1 và SF2 bằng nhau F1 và F2 là hai nguồn đồng bộ. Tại O, chân đường trung trực của F1 F2 xuống màn P, ta có vân sáng trung tâm. Bây giờ giả sử S di chuyển một đoạn nhỏ y tới S’. Vân sáng trung tâm và có hệ thống vân sẽ dịch chuyển đi một đoạn x = OO’. Ta đi tính x. Hiệu quang lộ tại O’ bằng không. ta có: S ’ F 1 + F 1 O ’ = S ’ F 2 + F 2 O ’ Hay S ’ F 1 – SF ’ 2 = F 2 O ’ - F 1 O ’ Trước đây, ta đã tính được: F 2 O ’ – F 1 O ’ = x D l Tương tự ta có: S ’ F 1 – S ’ F 2 = v d l Vậy x = d yD (6.1) O’ nằm trên đường SI, I là trung điểm của đoạn F1 F2 (hình 16) Để có thể quan sát dễ dàng hệ vân, trong các thí nghiệm về giao thoa ánh sáng, người ta thay nguồn điểm S bằng một khe sáng F. Mỗi điểm trên khe là một nguồn sáng độc lập, cho một hệ vân riêng biệt. Muốn quan sát sát được rõ hiện tượng giao thoa, các hệ vân, ứng với các nguồn điểm, phải trùng nhau. Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m . r 2 1 = D 2 + (x - 2 l ) 2 . r 2 2 - r 2 1 = 2 x. (r 2 – r 1 ) (r 2 + r 1 ) = 2 x. Khoảng cách D rất lớn so với ( và x , cho nên gần đúng có thể xem: (r 1 + r 2 ) ≈ 2D. Vậy hiệu. S2 là (, khoảng cách từ các nguồn đến màn quan sát là D. Hi ệu quang lộ từ các nguồn đến M là (r1 – r2) (H.9). Hạ các đường vuông góc S1H1 và S2H2 ta có: r 2 = D 2 + (x + 2 l ) 2 . r 2 1 =. năng lượng dưới dạng sóng điện từ. Đó là quá trình phát sáng được mô tả vắn tắt. Quá trình đó có các đặc điểm như sau: - Số tâm phát sáng rất lớn và độc lập với nhau. - Quá trình phát sáng có

Ngày đăng: 24/07/2014, 07:20

Từ khóa liên quan

Mục lục

  • LỜI NÓI ĐẦU

  • Chương I: QUANG HÌNH HỌC

    • SS1. NHỮNG ĐỊNH LUẬT CƠ BẢN CỦA QUANG HÌNH HỌC.

    • SS2. GƯƠNG PHẲNG VÀ GƯƠNG CẦU.

    • SS3. CÁC MẶT PHẲNG KHÚC XẠ.

    • SS4. MẶT CẦU KHÚC XẠ.

    • SS 5. QUANG HỆ ĐỒNG TRỤC.

    • SS6. SỰ KẾT HỢP CỦA HAI HỆ ĐỒNG TRỤC.

    • SS 7. THẤU KÍNH.

    • SS8. MỘT SỐ KHUYẾT ĐIỂM CỦA THẤU KÍNH TRONG SỰ TẠO HÌNH.

    • SS 9. MẮT.

    • SS10. CÁC DỤNG CỤ QUANG HỌC.

    • SS 11. CÁC ĐẠI LƯỢNG TRẮC QUANG.

    • Chương II: GIAO THOA ÁNH SÁNG

      • SS.1. HÀM SỐ SÓNG – CÁC ĐẠI LƯỢNG ĐẶC TRƯNG CỦA SÓNG ÁNH SÁNG.

      • SS.2. NGUYÊN LÝ CHỒNG CHẤT.

      • SS. 3. NGUỒN KẾT HỢP – HIỆN TƯỢNG GIAO THOA.

      • SS.4. GIAO THOA KHÔNG ĐỊNH XỨ CỦA HAI NGUỒN SÁNG ĐIỂM.

      • SS.5. CÁC THÍ NGHIỆM GIAO THOA KHÔNG ĐỊNH XỨ.

      • SS.6. KÍCH THƯỚC GIỚI HẠN CỦA NGUỒN SÁNG.

      • SS. 7. GIAO THOA VỚI ÁNH SÁNG KHÔNG ĐƠN SẮC.

      • SS. 8. GIAO THOA DO BẢN MỎNG – VÂN ĐINH XỨ.

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan